References
- Noon RK. Forensic Engineering Investigation. Boca Raton, CRC Press,
2001.
- Sun JZ, Li MQ, Li H. Deformation behavior of TC17 titanium alloy with
basketweave microstructure during isothermal compression. J
Alloy Compd . 2018;730:533-543.
- Wiryolukito S. Design flaw enhanced by improper workmanship to cause
fatigue failure on rotor blade of compressor gas turbine.Applied Mechanics and Materials . 2014;660:593-597.
- Cini A, Irving PE. Development of fatigue cracks from mechanically
machined scratches on 2024-T351 aluminium alloy-part I:
experimentation and fractographic analysis. Fatigue Fract Eng
M . 2017;40(5):776-789.
- Gourdin S, Cormier J, Henaff G, Nadot Y, Hamon F, Pierret S.
Assessment of specific contribution of residual stress generated near
surface anomalies in the high temperature fatigue life of a René 65
superalloy. Fatigue Fract Eng M . 2017;40(1):69-80.
- Inchekel A, Talia JE. Effect of scratches on the fatigue behavior of
an Al-Li alloy. Fatigue Fract Eng M. 1994;17(5):501-507.
- Mayer H, Haydn W, Schuller R, Issler S, Furtner B, Bacherhochst M,
Very high cycle fatigue properties of bainitic high carbon–chromium
steel. Int J Fatigue . 2009;31(2):242-249.
- Poulain T, Mendez J, Hénaff G, de Baglion L. Analysis of the ground
surface finish effect on the LCF life of a 304L austenitic stainless
steel in air and in PWR environment. Eng Fract Mech .
2017;185:258-270.
- Zhan Z, Hu WP, Meng QC, Shi SD. Continuum damage mechanics-based
approach to the fatigue life prediction for 7050-T7451 aluminum alloy
with impact pit. Int J Damage Mech. 2016;25(7):943-966.
- Zhan ZX, Hu WP, Zhang M, Meng QC. The fatigue life prediction for
structure with surface scratch considering cutting residual stress,
initial plasticity damage and fatigue damage. Int J Fatigue.2015;74:173-182.
- Xu ZW, Wu SC, Wang XS. Fatigue evaluation for high-speed railway axles
with surface scratch. Int J Fatigue. 2019;123:79-86.
- Nishimura Y, Yanase K, Ikeda Y, Tanaka Y, Miyamoto N, Miyakawa S, Endo
M. Fatigue strength of spring steel with small scratches.
Fatigue Fract Eng M . 2018;41(7):1514-1528.
- Arola D, Williams CL. Estimating the fatigue stress concentration
factor of machined surfaces. Int J Fatigue. 2002;24(9):923-930.
- Javadi H, Jomaa W, Texier D, Brochu M, Bocher P. Surface roughness
effects on the fatigue behavior of as-machined inconel718. Solid
State Phenom. 2016; 258, 306-309
- de Lacerda JC, Martins GD, Signoretti VT, Teixeira RLP. Evolution of
the surface roughness of a low carbon steel subjected to fatigue.Int J Fatigue. 2017;102:143-148.
- Ding MC, Zhang YL, Xian HW, Wang JL. Fatigue strength prediction based
on micro scratches, Journal of Northeastern University (Natural
Science) . 2020; 41(5): 693-699. (in Chinses)
- Xu ZW, Wu SC, Wang XS. Fatigue evaluation for high-speed railway axles
with surface scratch. Int J Fatigue. 2019;123:79-86.
- Ding MC, Zhang YL, Lu HT. Fatigue life prediction of TC17 titanium
alloy based on micro scratch. Int J Fatigue. 2020;139:105793.
- Itoga H. Effect of surface roughness on step-wise S–N characteristics
in high strength steel. Int J Fatigue. 2003;25(5):379-385.
- Zhu LN, Deng CY, Wang DP, Hu SS. Effect of surface roughness on very
high cycle fatigue behavior of ti-6al-4valloy. Acta Metall Sin .
2016;52(05):583-591. (in Chinses)
- Murakami Y, Metal fatigue effects of small defects and nonmetallic
inclusions: Ekevier Science Ltd., 2002.
- Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities
on fatigue strength. Int J Fatigue. 1994;16:163–82.
- Lorenzino P, Okazaki S, Matsunaga H, Murakami Y. Effect of small
defect orientation on fatigue limit of carbon steels. Fatigue
Fract Eng M . 2015;38(9):1076-1086.
- Åman M, Tanaka Y, Murakami Y, Remes H, Marquis G. Fatigue strength
evaluation of small defect at stress concentration. Procedia
Structural Integrity. 2017;7:351-358.
- Garb C, Leitner M, Grün F. Application of\(\sqrt{\text{area}}\)-concept to assess fatigue strength of
AlSi7Cu0.5Mg casted components. Eng Fract Mech. 2017;185:61-71.
- Roiko A, Murakami Y. A design approach for components in ultralong
fatigue life with step loading. Int J Fatigue. 2012;41:140-149.
- Murakami Y. Metal fatigue: effects of small defects and nonmetallic
inclusions. Oxford: Elsevier, 2002. p. 58-9.
- Huang ZY, Liu HQ, Wang HM. Effect of stress ratio on VHCF behavior for
a compressor blade titanium alloy. Int J Fatigue.2016;93:232–237.
- Mayer H. Recent developments in ultrasonic fatigue. Fatigue
Fract Eng M. 2016;39(1):3-29.
- Li W, Gao N, Zhao HQ. Crack initiation and early growth behavior of
TC4 titanium alloy under high cycle fatigue and very high cycle
fatigue. J Mater Res. 2018;33(08):935-945.
- Basquin OH. The exponential law of endurance tests. Proceedings of
ASTM,1919;(10):625~630.
- Langer BF. Design of pressure vessels for low cycle fatigue. Journal
of Basic Engineering ASME.1962;84(3):389~402.
- Weibull W. Fatigue Testing and Analysis of Results. London: Pergamon
Press,1961.
- Coffin LF. A Study of effects of cyclic thermal stresses on a ductile
metal. Transaction of ASME,1954;76:931~950.
- Uhlmann E, Fleck C, Gerlitzky G, Faltin F. Dynamical fatigue behavior
of additive manufactured products for a fundamental life cycle
approach. Procedia CIRP . 2017;61:588-593.
- Suraratchai M, Limido J, Mabru C, Chieragatti R. Modelling the
influence of machined surface roughness on the fatigue life of
aluminium alloy. Int J Fatigue . 2008;30(12):2119-2126.
- Dai WB, Yuan LX, Li CY, He D, Jia DW, Zhang YM. The effect of surface
roughness of the substrate on fatigue life of coated aluminum alloy by
micro-arc oxidation. J Alloy Compd . 2018;765:1018-1025.
- Aspinwall DK, Soo SL, Berrisford AE, Walder G. Workpiece surface
roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718
using minimum damage generator technology. CIRP Ann-Manuf
Techn. 2008;57(1):187-190.
- Do Vale JL, Beltrão VDC, Silva CHD, Pintaúde G. Evaluation of the
error of the light beam incidence on concave surfaces in 3D roughness
parameters using optical interferometry. Measurement .
2018;120:182-192.