References
  1. Noon RK. Forensic Engineering Investigation. Boca Raton, CRC Press, 2001.
  2. Sun JZ, Li MQ, Li H. Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression. J Alloy Compd . 2018;730:533-543.
  3. Wiryolukito S. Design flaw enhanced by improper workmanship to cause fatigue failure on rotor blade of compressor gas turbine.Applied Mechanics and Materials . 2014;660:593-597.
  4. Cini A, Irving PE. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy-part I: experimentation and fractographic analysis. Fatigue Fract Eng M . 2017;40(5):776-789.
  5. Gourdin S, Cormier J, Henaff G, Nadot Y, Hamon F, Pierret S. Assessment of specific contribution of residual stress generated near surface anomalies in the high temperature fatigue life of a René 65 superalloy. Fatigue Fract Eng M . 2017;40(1):69-80.
  6. Inchekel A, Talia JE. Effect of scratches on the fatigue behavior of an Al-Li alloy. Fatigue Fract Eng M. 1994;17(5):501-507.
  7. Mayer H, Haydn W, Schuller R, Issler S, Furtner B, Bacherhochst M, Very high cycle fatigue properties of bainitic high carbon–chromium steel. Int J Fatigue . 2009;31(2):242-249.
  8. Poulain T, Mendez J, Hénaff G, de Baglion L. Analysis of the ground surface finish effect on the LCF life of a 304L austenitic stainless steel in air and in PWR environment. Eng Fract Mech . 2017;185:258-270.
  9. Zhan Z, Hu WP, Meng QC, Shi SD. Continuum damage mechanics-based approach to the fatigue life prediction for 7050-T7451 aluminum alloy with impact pit. Int J Damage Mech. 2016;25(7):943-966.
  10. Zhan ZX, Hu WP, Zhang M, Meng QC. The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage. Int J Fatigue.2015;74:173-182.
  11. Xu ZW, Wu SC, Wang XS. Fatigue evaluation for high-speed railway axles with surface scratch. Int J Fatigue. 2019;123:79-86.
  12. Nishimura Y, Yanase K, Ikeda Y, Tanaka Y, Miyamoto N, Miyakawa S, Endo M. Fatigue strength of spring steel with small scratches. Fatigue Fract Eng M . 2018;41(7):1514-1528.
  13. Arola D, Williams CL. Estimating the fatigue stress concentration factor of machined surfaces. Int J Fatigue. 2002;24(9):923-930.
  14. Javadi H, Jomaa W, Texier D, Brochu M, Bocher P. Surface roughness effects on the fatigue behavior of as-machined inconel718. Solid State Phenom. 2016; 258, 306-309
  15. de Lacerda JC, Martins GD, Signoretti VT, Teixeira RLP. Evolution of the surface roughness of a low carbon steel subjected to fatigue.Int J Fatigue. 2017;102:143-148.
  16. Ding MC, Zhang YL, Xian HW, Wang JL. Fatigue strength prediction based on micro scratches, Journal of Northeastern University (Natural Science) . 2020; 41(5): 693-699. (in Chinses)
  17. Xu ZW, Wu SC, Wang XS. Fatigue evaluation for high-speed railway axles with surface scratch. Int J Fatigue. 2019;123:79-86.
  18. Ding MC, Zhang YL, Lu HT. Fatigue life prediction of TC17 titanium alloy based on micro scratch. Int J Fatigue. 2020;139:105793.
  19. Itoga H. Effect of surface roughness on step-wise S–N characteristics in high strength steel. Int J Fatigue. 2003;25(5):379-385.
  20. Zhu LN, Deng CY, Wang DP, Hu SS. Effect of surface roughness on very high cycle fatigue behavior of ti-6al-4valloy. Acta Metall Sin . 2016;52(05):583-591. (in Chinses)
  21. Murakami Y, Metal fatigue effects of small defects and nonmetallic inclusions: Ekevier Science Ltd., 2002.
  22. Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength. Int J Fatigue. 1994;16:163–82.
  23. Lorenzino P, Okazaki S, Matsunaga H, Murakami Y. Effect of small defect orientation on fatigue limit of carbon steels. Fatigue Fract Eng M . 2015;38(9):1076-1086.
  24. Åman M, Tanaka Y, Murakami Y, Remes H, Marquis G. Fatigue strength evaluation of small defect at stress concentration. Procedia Structural Integrity. 2017;7:351-358.
  25. Garb C, Leitner M, Grün F. Application of\(\sqrt{\text{area}}\)-concept to assess fatigue strength of AlSi7Cu0.5Mg casted components. Eng Fract Mech. 2017;185:61-71.
  26. Roiko A, Murakami Y. A design approach for components in ultralong fatigue life with step loading. Int J Fatigue. 2012;41:140-149.
  27. Murakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions. Oxford: Elsevier, 2002. p. 58-9.
  28. Huang ZY, Liu HQ, Wang HM. Effect of stress ratio on VHCF behavior for a compressor blade titanium alloy. Int J Fatigue.2016;93:232–237.
  29. Mayer H. Recent developments in ultrasonic fatigue. Fatigue Fract Eng M. 2016;39(1):3-29.
  30. Li W, Gao N, Zhao HQ. Crack initiation and early growth behavior of TC4 titanium alloy under high cycle fatigue and very high cycle fatigue. J Mater Res. 2018;33(08):935-945.
  31. Basquin OH. The exponential law of endurance tests. Proceedings of ASTM,1919;(10):625~630.
  32. Langer BF. Design of pressure vessels for low cycle fatigue. Journal of Basic Engineering ASME.1962;84(3):389~402.
  33. Weibull W. Fatigue Testing and Analysis of Results. London: Pergamon Press,1961.
  34. Coffin LF. A Study of effects of cyclic thermal stresses on a ductile metal. Transaction of ASME,1954;76:931~950.
  35. Uhlmann E, Fleck C, Gerlitzky G, Faltin F. Dynamical fatigue behavior of additive manufactured products for a fundamental life cycle approach. Procedia CIRP . 2017;61:588-593.
  36. Suraratchai M, Limido J, Mabru C, Chieragatti R. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. Int J Fatigue . 2008;30(12):2119-2126.
  37. Dai WB, Yuan LX, Li CY, He D, Jia DW, Zhang YM. The effect of surface roughness of the substrate on fatigue life of coated aluminum alloy by micro-arc oxidation. J Alloy Compd . 2018;765:1018-1025.
  38. Aspinwall DK, Soo SL, Berrisford AE, Walder G. Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann-Manuf Techn. 2008;57(1):187-190.
  39. Do Vale JL, Beltrão VDC, Silva CHD, Pintaúde G. Evaluation of the error of the light beam incidence on concave surfaces in 3D roughness parameters using optical interferometry. Measurement . 2018;120:182-192.