References
1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators.
Global, regional, and national incidence, prevalence, and years lived
with disability for 310 diseases and injuries, 1990-2015: a systematic
analysis for the Global Burden of Disease Study 2015. Lancet
(London, England) . 2016;388(10053):1545-1602.
doi:10.1016/S0140-6736(16)31678-6
2. Villarreal MF, Huerta-Gutierrez R, Fregni F. Parkinson’s disease.Neuromethods . 2018;138(9):139-181.
doi:10.1007/978-1-4939-7880-9_5
3. Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: present
and future. Metabolism . 2015;64(3 Suppl 1):S40-6.
doi:10.1016/j.metabol.2014.10.030
4. Movement Disorder Society Task Force on Rating Scales for Parkinson’s
Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status
and recommendations. Mov Disord . 2003;18(7):738-750.
doi:10.1002/mds.10473
5. Goetz CG, Fahn S, Martinez-Martin P, et al. Movement Disorder
Society-sponsored revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS): Process, format, and clinimetric testing plan.Mov Disord . 2007;22(1):41-47. doi:10.1002/mds.21198
6. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder
Society-Sponsored Revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS): Scale presentation and clinimetric testing results.Mov Disord . 2008;23(15):2129-2170. doi:10.1002/mds.22340
7. Kalia L V, Kalia SK, Lang AE. Disease-modifying strategies for
Parkinson’s disease. Mov Disord . 2015;30(11):1442-1450.
doi:10.1002/mds.26354
8. Ueckert S. Modeling Composite Assessment Data Using Item Response
Theory. CPT Pharmacometrics Syst Pharmacol . 2018;7(4):205-218.
doi:10.1002/psp4.12280
9. Ueckert S, Plan EL, Ito K, et al. Improved utilization of ADAS-cog
assessment data through item response theory based pharmacometric
modeling. Pharm Res . 2014;31(8):2152-2165.
doi:10.1007/s11095-014-1315-5
10. Novakovic AM, Krekels EHJ, Munafo A, Ueckert S, Karlsson MO.
Application of Item Response Theory to Modeling of Expanded Disability
Status Scale in Multiple Sclerosis. AAPS J . 2017;19(1):172-179.
doi:10.1208/s12248-016-9977-z
11. Krekels EHJJ, Novakovic AM, Vermeulen AM, Friberg LE, Karlsson MO.
Item response theory to quantify longitudinal placebo and paliperidone
effects on PANSS scores in schizophrenia. CPT pharmacometrics Syst
Pharmacol . 2017;(July):543-551. doi:10.1002/psp4.12207
12. Gottipati G, Karlsson MO, Plan EL. Modeling a Composite Score in
Parkinson’s Disease Using Item Response Theory. AAPS J . 2017;(2).
doi:10.1208/s12248-017-0058-8
13. Wilson M, Masters GN. Polytomous Item Response Theory Models .
Vol 58.; 1993. doi:10.1007/BF02294473
14. Lei P-W, Zhao Y. Effects of Vertical Scaling Methods on Linear
Growth Estimation. Appl Psychol Meas . 2012;36(1):21-39.
doi:10.1177/0146621611425171
15. O’Hagan A, Stevens JW, Campbell MJ. Assurance in clinical trial
design. Pharm Stat . 2005;4(3):187-201. doi:10.1002/pst.175
16. Keizer RJ, Karlsson MO, Hooker A. Modeling and Simulation Workbench
for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT
pharmacometrics Syst Pharmacol . 2013;2:e50. doi:10.1038/psp.2013.24
17. Team RC. R: A Language and Environment for Statistical ComputingNo
Title. 2017.
18. Chalmers RP. mirt : A Multidimensional Item Response Theory Package
for the R Environment. J Stat Softw . 2012;48(6).
doi:10.18637/jss.v048.i06
19. Chalmers RP. Generating Adaptive and Non-Adaptive Test Interfaces
for Multidimensional Item Response Theory Applications. J Stat
Softw . 2016;71(5). doi:10.18637/jss.v071.i05
20. Venuto CS, Potter NB, Ray Dorsey E, Kieburtz K. A review of disease
progression models of Parkinson’s disease and applications in clinical
trials. Mov Disord . 2016;31(7):947-956. doi:10.1002/mds.26644
21. Vu TC, Nutt JG, Holford NHG. Disease progress and response to
treatment as predictors of survival, disability, cognitive impairment
and depression in Parkinson’s disease. Br J Clin Pharmacol .
2012;74(2):284-295. doi:10.1111/j.1365-2125.2012.04208.x
22. Buatois S, Retout S, Frey N, Ueckert S. Item Response Theory as an
Efficient Tool to Describe a Heterogeneous Clinical Rating Scale in De
Novo Idiopathic Parkinson’s Disease Patients. Pharm Res .
2017;34(10):2109-2118. doi:10.1007/s11095-017-2216-1
23. Holden SK, Finseth T, Sillau SH, Berman BD. Progression of MDS-UPDRS
Scores Over Five Years in De Novo Parkinson Disease from the Parkinson’s
Progression Markers Initiative Cohort. Mov Disord Clin Pract .
5(1):47-53. doi:10.1002/mdc3.12553
24. Latourelle JC, Beste MT, Hadzi TC, et al. Large-scale identification
of clinical and genetic predictors of motor progression in patients with
newly diagnosed Parkinson’s disease: a longitudinal cohort study and
validation. Lancet Neurol . 2017;16(11):908-916.
doi:10.1016/S1474-4422(17)30328-9
25. Prasad S, Saini J, Yadav R, Pal PK. Motor asymmetry and neuromelanin
imaging: concordance in Parkinson’s disease. Parkinsonism Relat Disord.
2018;53:28-32
26. Heldmann M, Heeren J, Klein C, et al. Neuroimaging abnormalities in
individuals exhibiting Parkinson’s disease risk markers. Mov Disord
2018;33(9):1412-1422
27. van der Hoorn A, Burger H, Leenders KL, de Jong BM. Handedness
correlates with the dominant Parkinson side: A systematic review and
meta-analysis. Mov Disord 2012;27: 206-210
28. Gottipati G, Berges A, Yang S, Chen C, Karlsson M, Plan E. Item
response model adaptation for analysing data of different versions of a
Parkinson’s disease endpoint. Pharm Res 2019;
doi.org/10.1007/s11095-019-2668-6
29. Vong C, Bergstrand M, Nyberg J, Karlsson MO. Rapid sample size
calculations for a defined likelihood ratio test-based power in
mixed-effects models. AAPS J. 2012;14(2):176-186;
doi.10.1208/s12248-012-9327-8
30. Ahamadi M, Conrado DJ, Macha S, Sinha V, Stone J, Burton J, Nicholas
T, Gallagher J, Dexter D, Bani M, Boroojerdi B, Smit H, Weidemann J,
Chen C, Yang M, Maciuca R, Lawson R, Burn D, Marek K, Venuto C, Stafford
B, Akalu M, Stephenson D, Romero K; Critical Path for Parkinson’s (CPP)
Consortium. Development of a disease progression model for leucine-rich
repeat kinase 2 in Parkinson’s disease to inform clinical trial designs.
Clinical Pharmacology and Therapeutics 2020; 107:553-562;
doi.org/10.1002/cpt.1634
31. Forjaz MJ, Ayala A, Testa CM, Bain PG, Elble R, Haubenberger D,
Rodriguez-Blazquez C, Deuschl G, Martinez-Martin P. Proposing a
Parkinson’s disease-specific tremor scale from the MDS-UPDRS. Mov
Disord. 2015;30(8):1139-43; doi.10.1002/mds.26271
32. Regnault A, Boroojerdi B, Meunier J. et al. Does the MDS-UPDRS
provide the precision to assess progression in early Parkinson’s
disease? Learnings from the Parkinson’s progression marker initiative
cohort. J Neurol 2019;266:1927–1936
33. Jonsson S, Yang S, Chen C, Plan EL, Karlsson MO. Sample size for
detection of drug effect using item level and total score models for
Unified Parkinson’s Disease Rating Scale data, PAGE 27 (2018) Abstr 8638
[www.page-meeting.org/?abstract=8638]
34 Sheng Y, Yang S, Ma P, Chen C. Item response theory modelling of
motor scores to investigate feasibility of reducing proof-of-concept
trial for Parkinson’s disease. PAGE 27 (2018) Abstr 8545
[www.page-meeting.org/?abstract=8545]
35. de Siqueira Tosin MH, Goetz CG, Luo S, Choi D, Stebbins GT. Item
Response Theory Analysis of the MDS-UPDRS Motor Examination: Tremor vs.
Nontremor Items [published online ahead of print, 2020 May 29]. Mov
Disord. 2020;10.1002/mds.28110
36. Štochl J, Croudace TJ, Brožová H, Klempíř J, Roth J, Růžička E.
Changes of hand preference in Parkinson’s disease. J Neural Transm
(Vienna). 2012;119(6):693-696.