REFERENCES
Ahrabi, F., Enteshari, S., Moradshahi, A. (2011). Allelopathic potential
of para-hydroxybenzoic acid and coumarin on canola: talaieh cultivar.Journal of Medicinal Plant Research, 5, 5104-5109.
Achigan-Dako, A. G., Sogbohossou, O. E. D., Maundu, P. (2014). Current
knowledge on Amaranthus spp.: research avenues for improved
nutritional value and yield in leafy amaranths in sub-Saharan Africa.
Euphytica, Springer Press 1-15.
https://doi.org/10.1007/s10681-014-1081-9
Bakhshayeshan-Agdam, H., Salehi-Lisar, S. Y. (2020) Agronomic Crops
Response and Tolerance to Allelopathic Stress. In: Hasanuzzaman M. (eds)
Agronomic Crops. Springer, Singapore.
https://doi.org/10.1007/978-981-15-0025-1_17
Bakhshayeshan-Agdam, H., Salehi-Lisar, S. Y., Motafakkerazad, R. (2019).
Allelopathic effects of redroot pigweed (Amaranthus retroflexusL.) aqueous extract on cucumber and wheat.
Allelopathy
Journal, 46, 55-72. https://doi.org/10.26651/allelo.j/2019-46-1-1198
Bakhshayeshan-Agdam, H., Salehi-Lisar, S. Y., Motafakkerazad, R.,
Talebpour, A. H., Farsad, N, (2015). Allelopathic effects of redroot
pigweed (Amaranthus retroflexus L.) on germination and growth of
cucumber, alfalfa, common bean and bread wheat. Acta
AgriculturaeSlovenica, 2, 193-202.
https://doi.org/10.14720/aas.2015.105.2.02
Bhowmik, P. C., Doll, J. D. (1982). Corn and soybean response to
allelopathic effects of weed and crop residues. Agronomy Journal, 74,
601-606. https://doi.org/10.2134/agronj1982.00021962007400040005x
Borella, J., Martinazzo, E. G., Aumonde, T. Z., Do Amarante, L., De
Moraes, D. M., Villela, F. A. (2014). Performance of radish seeds and
seedlings under action of aqueous extract of leaves ofTremamicrantha (Ulmaceae ). Biosci J, 30, 108-116.
Buldaa, O. V., Rassadina, V. V., Alekseichuk, H. N., Laman, N. A.
(2008). Spectrophotometric measurement of carotenes, xanthophylls, and
chlorophylls in extracts from plant seeds. Russian Journal of Plant
Physiology, 55, 604-611. https://doi.org/10.1134/s1021443708040171
Chou, C. H. (1999). Roles of allelopathy in plant biodiversity and
sustainable agriculture. Critical Reviews in PlantSciences, 18, 609-636. https://doi.org/10.1080/07352689991309414
Costea, M., Weaver, S., Tardif, F. (2004). The biology of Canadian
weeds. 130. Amaranthus retroflexus L., A.powellii S.
Watson and A.hybridus L. (Update). Canadian Journal of Plant
Science, 84, 631-668. https://doi.org/10.4141/p02-183
Dall’Osto, L., Lico ,C., Alric, J., Giuliano, G., Havaux, M., Bassi, R.
(2006). Lutein is needed for efficient chlorophyll triplet quenching in
the major LHCII antenna complex of higher plants and effective
photoprotection in vivo under strong light. BMC Plant Biology, 6, 1-20
Dehghani, F., Yahyaabadi, S., Ranjbar, M. (2014). Allelopathic potential
of petal, leaf and seed extracts of sunflower different ecotypes onZea mays . International Journal of Biosciences, 5, 136-144.
https://doi.org/10.12692/ijb/5.12.136-144
Dere, S. H., Gunes, T., Sivaci, R. (1998). Spectrophotometric
Determination of Chlorophyll-A, B and Total Carotenoid Contents of Some
Algae Species Using Different Solvents. Journal of Botany, 22, 13-17
Einhellig, F. A. (1995). Allelopathy-current status and future goals, in
allelopathy: organisms, processes, and applications, eds A Inderjit, KMM
Dakshini, and FA Einhellig–(Washington, DC: American Chemical Society
Press), 1-24. https://doi.org/10.1021/bk-1995-0582.ch001
Einhellige, F. A. (1996). Intractions involving allelopathy in cropping
system. Agronomy Journal, 69, 13-23.https://doi.org/10.2134/agronj1996.00021962003600060007x
Fu, Y. Y., Mu, C. S., Gao, H. W., Li, J., W, X. M. (2014). Cloning of
18S rRNAGene and Stability Evaluation of Reference Genes inMedicago sativa . Plant Physiol J, 50, 1809-1815
Gniazdowska, A., Bogatek, R. (2005). Allelopathic interactions between
plants. Multi site action of allelochemicals. Acta Physiol. Plant, 27,
395-407. https://doi.org/10.1007/s11738-005-0017-3
Gonzalez, V. M., Kazimir, J., Nimbal, C., Weston, L. A., Cheniae, G. M.
(1997). Inhibition of a photosystem II electron transfer reaction by the
natural product sorgoleone. J. Agric. Food Chem, 45, 1415-1421.
https://doi.org/10.1021/jf960733w
Inderjit, D. M. M., Einhellig, F. A. (1993). Allelopathy: organism,
processes and applications. Journal of the American Chemical Society,
123, 7518-7533
Jiang, Q. D., Roche, T. A., Monaco, Durham, S. (2006). Gas Exchange,
Chlorophyll Fluorescence Parameters and Carbon Isotope Discrimination of
14 Barley Genetic Lines in Response to Salinity. Field Crops Ress, 96,
269-278. https://doi.org/10.1016/j.fcr.2005.07.010
Khan, A. L., Hussain, J., Hamayun, M., Kang, S. M., Kim, H. Y.,
Watanabe, K. N., Lee, I. N. (2010). Allelochemical, eudesmane-type
sesquiterpenoids from Inula falconeri . Molecules, 15, 1554-1561.
https://doi.org/10.3390/molecules15031554
Kohli, R. K., Singh, H. P., Batish, D. R. (2001). Allelopathy in
agroecosystems. Food Products Press. New York. USA
Leslie, A. W. (2005). History and current trends in the use of
allelopathy for weed management. Horticulture Technology, 14, 149-154.
https://doi.org/10.21273/horttech.15.3.0529
Maqbool, N., Wahid, A., Farooq, M., Cheema, Z. A., Siddique, K. H. M.
(2013). Allelopathy and abiotic stress interaction in crop plants, in
Allelopathy, eds ZACheema, M Farooq, and A Wahid. (Berlin: Springer
Berlin Heidelberg), 451-468.
https://doi.org/10.1007/978-3-642-30595-5_19
Meazza, G., Scheffler, B. E., Tellez, M. R., Rimando, A. M., Romagni, J.
G., Duke, S. O., and et al. (2002). The inhibitory activity of natural
products on plant p-hydroxy phenyl pyruvate dioxygenase. Phytochemistry,
60, 281-288. https://doi.org/10.1016/s0031-9422(02)00121-8
Mlakar, S. G., Jakop, M., Bavec, M., Bavec, F. (2012). Allelopathic
effects of Amaranthus retroflexus and Amaranthus cruentusextractson germination of garden cress. African Journal of Agricultural
Research, 42, 325-31. https://doi.org/10.5897/ajar11.1145
Pruvis, W. (2000). Lichens. Smithsonian Books.
Rashtbari,
S.,
Dehghan,
G.,
Yekta,
R.,
Jouyban,
A.,
Iranshahi,
M. (2017). Effects of Resveratrol on the Structure and Catalytic
Function of Bovine Liver catalase (BLC): Spectroscopic and Theoretical
Studies.
Adv Pharm
Bull, 7, 349-357. https://doi.org/10.15171/apb.2017.042
Razavi, S. M. (2011). Plant coumarins as allelopathy agents. Int. J.
Biol. Chem, 5, 86-90. https://doi.org/10.3923/ijbc.2011.86.90
Razeghi, J., Leister, D. (2013). GC9 is involved in the chloroplast F0F1
ATP synthase in Arabidopsis.
Ludwig-Maximilians-University
of Munich, 1-95
Rühle, T., Razeghi, J. A., Vamvaka, E., Viola, S., Gandini, C., Kleine,
T., Schünemann, D., Barbato, R., Jahns, P., Leister, D. (2014). The
Arabidopsis Protein CONSERVED ONLY IN THE GREEN LINEAGE160 Promotes the
Assembly of the Membranous Part of the Chloroplast ATP Synthase [W].
Plant Physiol, 165, 207-226. https://doi.org/10.1104/pp.114.237883
Salehi-lisar, S. Y., Bakhshayeshan-agdam, H. (2016). Drought stress in
plants: Causes, consequences, and tolerance. In: Drought Stress
Tolerance in Plants (Eds., MA Hossain et al.). Springer Press. New York.
USA, 1, 1-16. https://doi.org/10.1007/978-3-319-28899-4_1
Shahrokhi, S., Darvishzadeh, M., Mehrpooyan, M., Farboodi, M. (2012).
Comparison of allelopathic effects of Amaranthus retroflexus L.
different organs extracts on germination and initial growth of Alvand
and Zarrin wheat cultivars. International Journal of Agronomy and Plant
Production, 3, 489-49
Shao-Lin, P., Jun, W., Qin-Feng, G. (2004). Mechanism and active variety
of allelochemicals. Acta Botanica Sinica, 53 , 511-517
Shao, J., Wu, Z., Yu, G., Peng, X., Li, R. (2009). Allelopathic
mechanism of pyrogallol to Microcystis aeruginosa PCC7806
(Cyanobacteria ): from views of gene expression and antioxidant
system. Chemosphere, 75, 924-928.
https://doi.org/10.1016/j.chemosphere.2009.01.021
Singh, H. P., Daizy, R., Batisha, D. R., Kohli, R. K. (2001).
Allelopathy in agroecosystems an overview. Journal of Production
Agriculture, 4, 121-161. https://doi.org/10.1300/j144v04n02_01
Singh, N. B., Sunaina. (2014). Allelopathic stress produced by bitter
gourd (Momordica charantia L.). Journal of Stress
Physiology and Biochemistry, 10, 5-14
Soheili Movahhed, S., Esmaeili, M. A., Jabbari, F., Khorramdel, S.,
Fouladi, A. (2017). Effects of water deficit on Relative Water Content,
Chlorophyll Fluorescence indices and seed yield in four pinto bean
genotypes. Journal of Crop Production, 10, 169-190
Soltys, D., Krasuska, U., Bogatek, R., Gniazdowska, A. (2013).
Allelochemicals as Bioherbicides—Present and Perspectives. In:
Herbicides—Current Research and Case Studies in Use (Eds., Price, AJ,
Kelton JA). Licensee InTech Press. New York. USA, 517-542.
https://doi.org/10.5772/56185
Sunmonu, T. O., Van Staden, J. (2014). Phytotoxicity evaluation of six
fast-growing tree species in South Africa. South Afric. J. Bot, 90,
101-106. https://doi.org/10.1016/j.sajb.2013.10.010
Telfer, A. (2002). What is b-carotene doing in the photosystem II
reaction centre? Phil. Trans. R. Soc. Lond. B, 357, 1431-1440.
https://doi.org/10.1098/rstb.2002.1139
Thornton, B., Basu, C. (2011). Real-Time PCR (qPCR) Primer Design Using
Free Online Software. Biochemistry and Molecular Biology Education, 39,
145-154. https://doi.org/10.1002/bmb.20461
Uddin, M. R., Park, K. W., Han, S. M., Pyon, J. Y., Park, S. U. (2012).
Effects of sorgoleone allelochemical on chlorophyll fluorescence and
growth inhibition in weeds. Allelopathy J, 30, 61-70
Wasternack, C., Hause, B. (2013). Jasmonates: biosynthesis, perception,
signal transduction and action in plant stress response, growth and
development. Annals of Botany, 111, 1021-1058.
https://doi.org/10.1093/aob/mct067
Weir, T. L., Park, S. W., Vivanco, J. M. (2004). Biochemical and
physiological mechanisms mediated by allelochemicals. Current
Opinion in Plant Biology, 7, 472-479.
https://doi.org/10.1016/j.pbi.2004.05.007
Wink, M., Latzbruning, B. (1995). Allelopathic properties of alkaloids
and other natural-products-possible modes of action, in allelopathy:
organisms, processes, and applications, eds A Inderjit, KMM Dakshini,
and FA Einhellig. (Washington, DC: American Chemical Society Press),
117-126. https://doi.org/10.1021/bk-1995-0582.ch008
Wu, F. Z., Pan, K., Ma, F. M., Wang, X. D. (2004). Effects of ciunamic
acid on photosynthesis and cell ultrastructure of cucumber seedlings.
Acta Hortic Sin, 31, 183-188
Yekta,
R.,
Dehghan,
G.,
Rashtbari,
S.,
Sheibani,
N.,
Moosavi-Movahedi,
A. A. (2017) Activation of catalase by pioglitazone: Multiple
spectroscopic methods combined with molecular docking studies.
J Mol Recognit, 30.
https://doi.org/10.1002/jmr.2648
Yu, J. H., Zhang, Y., Niu, C. X., Li, J. J. (2006). Effects of two kinds
of allelochemicals on photosynthesis and chlorophyll fluorescence
parameters of Solanum melongena L. seedlings. Chin. J. Appl.
Ecol, 17, 1629-1632
Yu, J. Q., Ye, S. F., Zhang, M. F., Hu, W. H. (2003). Effects of root
exudates and aqueous root extracts of cucumber (Cucumis sativus )
and allelochemicals, on photosynthesis and antioxidant enzymes in
cucumber. Biochem Syst Ecol, 31, 129-139.
https://doi.org/10.1016/s0305-1978(02)00150-3
TABLE 1 The sequences of the designed primers, the resulting
protein name and its molecular weight (KDa), the length of the fragment
amplified by the primers (bp) and the PCR program for the main genes and
the internal control