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Abstract
Barriers to fieldwork exist for many reasons such as physical ability, financial cost and time availability. Unfortunately, these barriers disproportionately affect minority communities and create disparity in access to fieldwork experience in the natural science community. Travel restrictions and global lockdown has extended this barrier to fieldwork across the community and led to increased anxiety about gaps in productivity, especially for graduate students and early-career researchers. In this paper we discuss Agent-Based Modeling as an open-source, accessible and inclusive resource to substitute for lost fieldwork during COVID-19 and for future scenarios of travel restrictions such as climate change. We detail the process of model development with a plethora of examples from the literature on how Agent-Based Models can be applied broadly across life-science research. We aim to amplify awareness and adoption of this technique to broaden the diversity and size of the Agent-Based Modeling community in ecology and evolutionary research. We also describe the benefits of Agent-Based models as a teaching and training resource for students across education levels. Finally we discuss the current challenges facing Agent-Based Modeling and discuss how the field of quantitative ecology can work in tandem with traditional field ecology to improve both methods. 
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Introduction
Fieldwork encompasses any practical work taking place outside the laboratory for data collection and learning (Lock, 1998). Field-data collection is essential to investigate long term ecological processes and observe new phenomena for the first time. Moreover, university fieldwork is a central component of coursework as fieldwork-based skills including project design, surveying, data curation and risk assessment are vital for students seeking work in a competitive job market (Pool and Sewell, 2007). Fieldwork for research and teaching purposes thus provides essential training and experience for early-career researchers (Peacock and Bacon, 2018). 
Despite these benefits, fieldwork is an expensive endeavor that is not accessible to all (Giles, Jackson and Stephen, 2020). Access to resources and the privilege of delaying other responsibilities to conduct fieldwork creates a barrier for minorities and the disabled community (Healy et al, 2002; Giles, Jackson and Stephen, 2020). The opportunity to work in remote areas on exotic species is thus afforded to a select few in the community. The COVID-19 global pandemic has extended these barriers across the community and disrupted projects throughout the world leading to the loss of field seasons for many researchers due to lockdowns and travel restrictions (Fikrig, 2020). For early-career researchers and students, this has led to amplified stress and anxiety regarding the uncertain future of their projects (Tercel, 2020; Leigh Hester, 2020; Kimbrough, 2020). Adapting to “the new normal” presents an opportunity to integrate computational tools into learning and research. Throughout this paper, we will discuss Agent-Based Modelling (also known as Individual-Based Modeling but hereafter referred to as Agent-Based Modelling) as an accessible and powerful tool with broad applications in the field of ecology and evolution. 

Agent-Based Models (ABM) are a simulation tool capable of testing and teaching ecological theory from the microbe level to whole ecosystems (McClane et al, 2011). It is a tool particularly suited to ecology as it is composed of individual agents and an environment. The model developer creates input data and the ABMs test the interactions between these inputs in a spatially explicit environment, giving it an advantage over most traditional modeling tools (Huston et al., 1988). Over the past twenty-five years ABM’s have been used across a wide range of projects to study wildlife movement, behavior, and management among others (Tang and Bennett, 2010; Bryson, Ando and Lehmann, 2007). The software used in ABM’s is continually developing in line with technological advancements. The integration of adaptation, learning, fuzzy logic, randomness, and evolution into Agent-Based Models are now being used to examine how systems emerge and how their influence over the environment and its inhabitants change over time. 
ABM simulations offer insight into the adaptation and function of systems over time and space when access to field data is dangerous, unavailable, or simply impossible to collect (Sokolowski and Banks, 2009). As COVID-19 creates a major barrier for fieldwork in the summer of 2020, Agent-Based Modeling offers an alternative method to collect data and test hypotheses in a collaborative and inclusive way throughout the lockdown. Software to create and run ABMs is open-source and hosts an inclusive community that is essential to newcomers to the field. Early skepticism of this tool has led to marked improvements in standards and protocols such that a framework now exists to ensure repeatability and consistency across Agent-Based Models (Hare and Deadman, 2004; Grimm et al, 2010). The result of this development is that ecologists can simulate testable hypotheses in realistic environments with complex dynamics between agents for both hypothetical and real-world scenarios without having to travel for fieldwork. 
Applications in research
Simulations allow for dynamic studies of ecological relationships. A central facet of ecological studies is understanding these relationships and informing practical management decisions for conservation (Margules and Pressey, 2000). Ecological understanding is derived from examining subtle processes, patterns, and interactions that occur between species and the environment  (Pressey et al., 2007). ABMs are capable of advanced ecological simulations that create empirical data to inform practical management. This diverse tool enables ecologists to study wildlife behavioral ecology, movement ecology, intra/inter-specific interaction ecology, disturbance ecology and human interaction ecology across a range of environments; for example, agriculture, forestry, urban landscapes and wilderness at any spatiotemporal resolution (McClane et al, 2011). Importantly, ABMs move away from the ‘average-individual’ paradigm which is typical in traditional models and toward an “ecology of individuals” to capture variance at the core of the system (Uchmański & Grimm 1996). 

Software
Innovation in Agent-Based Models is fueled by the collaborative and diverse community that extend this tool to simulate increasingly complex phenomena (Heckbert et al., 2010). The availability of software packages and the computational power required to develop a model has greatly improved in recent years facilitating greater accessibility across disciplines (Railsback, Lythinen and Jackson, 2006). Table-1 displays the range of software available for developing an ABM. Our paper recommends ecologists to use NetLogo (https://ccl.northwestern.edu/netlogo/). Netlogo is universally accessible and does not require advanced programming skills to create basic models. Rather, it requires computational thinking for model development (Fig. 1), meaning that it has a low threshold for entry and no ceiling for complexity as models can be as intricate as the developer requires (Wilensky and Rand, 2015). Netlogo hosts an open-source platform with a simple programming language, graphical user interface and a comprehensive library of resources comprising community models, code documentation and cloud services (Fig. 2). The accessibility of this method has promoted the growth of a diverse community and research output. Sustained development has led to integration of ABMs with other scientific software such as R, Python and GIS for advanced research applications. See review by Abar et al (2017) for a comprehensive review of ABM software.
Model development
Agent-Based Models in research allow ecologists to take a project from concept to completion without collecting data in the field. When fieldwork is not accessible ecologists are capable of exploring hypotheses using an Agent-Based Model. To ensure this method remains reputable Grimm et al (2006) have developed the Overview, Design Concepts, and Details protocol (ODD), a standardized communication method to ensure that model development is understandable and repeatable by the scientific community, which is a staple of good research (Fig. 3). The ODD protocol is a structured report for presenting the rationale, evidence and supporting information of the model development process. It entails:

1. Overview: General information and context of the model 

2. Design concepts: Strategic considerations and internal methods 

3. Details: Technical methodology and details of their use in the model. 

Widely used since its conception, the ODD protocol ensures the high standards of ecological research are adhered to during model development (Grimm et al, 2010; Grimm et al, 2020). It ensures the research question, no matter how complex, is transparent to scientific review such that the theoretical foundations of the model are robust and the formulation of model features is rigorous for example the individual dynamics of colony failure in honeybees (Becher et al, 2014). 

Overview
Agent-Based Models test hypotheses in a spatially explicit environment. Agents can be arbitrary entities with no real-life characteristics to test the validity of ecological theory outside the natural environment, for example, the landscape of fear theory (Teckentrup et al 2018), the theory of trophic ecology (Giacomini et al 2009) or the dynamics of predator-prey systems (Gras et al, 2009). Alternatively, agents can be realistic representations of wildlife to answer targeted research questions on real-world systems. For example, Florida panther (Puma concolor couguar) movement ecology in a disturbed landscape (Cramer et al 2001), elk (Cervus canadensis) migration patterns in Yellowstone National Park (Bennet et al, 2006) and examining the effect of different management strategies on coyote (Canis latrans) population structure (Conner et al, 2008). Macro-scale landscape processes can be simulated to study dynamic environmental effects on individual agents such as the effect of oil and gas development on species communities in western North America (Copeland et al, 2009) or the effect of landscape management and structure on multi-species diversity (Goss-Custard and Stillman, 2008; Hovel and Regan, 2008). 

Purpose
Agent-Based Models are a versatile tool for continuing field-based research and generating new data that can inform future field studies. If fieldwork is a central component to a project an Agent-Based model can be used in tandem with fieldwork for testing theoretical situations. An example of this is Carter et al (2015) where applied ecological theory was used to model Tiger (Panthera tigris) territoriality and population dynamics in Nepal's Chitwan National Park.  The ABM prediction accuracy was tested against a twenty-year field study on tigers in the same national park with high accuracy. This provided researchers with the confidence that the model could offer new insights on conservation and management of tigers in the park region.

Purely theoretical experiments, such as species reintroduction, paleoecology or impact assessments for proposed developments can also be modeled using an Agent-Based Model to predict scenarios where fieldwork is not applicable. This can provide knowledge to inspire field-based projects or further study that could validate these models. For example, in the selection of Eurasian lynx (Lynx lynx) reintroduction release sites in Scottish National Parks and possible avenues of dispersal and human interaction by Phillips et al (2019) to inform spatio-temporal understanding of lynx ecology in an unknown and novel environment using an Agent-Based Model. 
Entities, state variables and scales
Model development commences with the selection of agents and the environment required to answer the proposed research question. Detailed understanding is required to create simulations capable of emulating real-world systems. Model parameters and rules dictate how agents interact with each other and the world. The research question will dictate the level of complexity needed at this stage in development. See Fig. 4 for an example of Agent-Based Model entities, state variables and scales. 

Process overview and scheduling
Design concepts will control how the model works and influence how entities interact. Process designs determine the order in which agents complete actions. The process can be sequential or random. Scheduling of processes is usually circular with a goal being set for an agent, an action to accomplish the goal and an outcome as a result of success or failure.  See Fig. 4 for example of processes

Design concepts:
Model entity design is the foundation of model complexity. In this phase of development, the entities of the model are fitted with a complex adaptive system (CAS) under the criteria listed throughout this section. Implementation of these criteria creates structured Agent-Based models that provide greater value in basic or advanced models. The framework ensures that theoretical foundations are included computationally so that the model is a realistic system in applied research (Railsback, 2001).

Basic principles
Basic principles of the model development process include ecological theory, experimental design, entity development and the hypotheses proposed. These principles govern the insights the model can offer, the application of these insights to the real world and how the model is validated. Integration of tunable parameters, agent behavior, environmental characteristics and processes in this phase of development sets the Agent-Based modeling approach apart. This allows the developer to incorporate subtle variables with radiating effects not seen in traditional models for example the role of dominance and territoriality in canid species social structure (Pitt, Box and Knowlton, 2003) or the role of previous environmental experience in barnacle goose (Branta leucopsi) foraging behavior (Kanarek, Laberson and Black, 2008) . 
Emergence
A major advantage of Agent-Based Modelling is the influence of unique agent decision making on system dynamics.  Data emerges from interactions between agents and the environment. When a model event happens which changes an agent or environmental state the output can influence the model in sometimes unpredictable ways. The ability for novel system dynamics to emerge naturally through agent processes is another trope that sets Agent-Based Modelling apart from other techniques (Uchmański & Grimm 1996). The emergence of unconventional patterns can be examined under different parameter values such as habitat heterogeneity which affects foraging behavior (Nonaka and Holme, 2007) or via agent actions such as dispersal (Kramer-Schadt et al 2004).
Adaption
Adaption is a central component of natural science that is difficult to model accurately (Holman et al, 2018). Agents in ecology change their behavior dynamically over time in response to their environment, these adaptations can often be unpredictable (Alberti, 2009). Adaption is a fundamental process in Agent-Based Modelling that improves its applicability to ecological research. What dictates why and how agents make decisions ultimately alters systems and creates emerging patterns within the model. Changes in the environment may cause a shift in individual behavior which can radiate outward to the collective, for example, examining how elk (Cervus elaphus) adjust their movement ecology to a fire disturbed landscape (Rupp and Rupp, 2010) or the adaption of honey bee (Apis mellifera) colonies to prevent futile attacks on colonies capable of a successful defense (Johnson and Nieh, 2010). 
Objectives
Objectives are an integral part of Agent-Based Modeling as they drive actions and decision making (Fig. 5). Defining the agent’s objective and ordering action processes propels the model through time. Agent objectives are tasks with a measurable outcome that spur interactions between agents and the environment. An example of dependent objectives can be seen in Rands et al (2004), where individual choice on how to accomplish an objective (fulfill energy requirements) leads to the emergence of varying successful behaviors. These behaviors, in turn, affect group size, group behavior, and environmental conditions. Objectives ultimately define ecosystem processes and population metrics through agent actions, for example, Wang and Grimm’s (2007) model on common shrews (Sorex araneus) home range establishment.

Learning
Learning is the process agents use to gather information within the model. Agent cognition can range from logical if-then statements to complex algorithms that better mimic animal cognition. Agent learning and decision making models have advanced in line with development in machine learning and artificial intelligence leading to the integration of these techniques within Agent-Based Models (Rand, 2006; DeAngelis and Diaz, 2019). Individual behavior is important in Agent-Based Modeling and the ability for individuals to develop strategies from experience with a fitness incentive is an invaluable resource for modeling ecological systems (DeAngelis and Diaz, 2019). Machine Learning is a rapidly advancing field and its integration with Agent-Based models yields massive potential for forecasting real-world systems and understanding behavior (Rammer and Seidl, 2019). Using a Machine Learning model internally within an agent changes the decision making process and how they take action over time (Fig. 6). Integration of machine learning can also extend knowledge transfer through agent generations and communities which is imperative in modeling species who exhibit complex behaviors. Examples from the literature of Agent-Based models integrated with Machine Learning algorithms in ecology include the use of neural networks for decision making (Okunishi, Yamanaka and Ito, 2019), genetic algorithms for fitness and strategy development (Mitchell, Tissue and Wilensky, 2012; Hamblin, 2012), Q-learning algorithms for movement (Kons and Santos, 2019) and deep learning for predicting disturbance events (Rammer and Seidl, 2019). 
Prediction
The goal of a simulation is to extract a prediction from a set of covariates and apply it to real-world scenarios (Banks, 2014). Like all models, this requires accurate data sources to correctly imitate field ecology and produce meaningful results. Agent-Based models can be independent of field studies and generate accurate predictions of ecological scenarios. Otherwise, Agent-Based models can be used as an experimental extension of field data and integrated into the experimental design to generate high fidelity input data which increases model accuracy (Poisot et al, 2019). Model predictions and processes can be validated using existing field-data and/or statistical validation techniques during the model development process to refine the model and tune the parameters. Bonnell et al (2010) show these techniques in their paper on disease dynamics in red colobus monkeys (Procolobus spp.). Dispersal patterns of simulated agents were modeled against field observations with statistical tests to validate predictions on disease dynamics and found high accuracy in simulations of real-world ecological situations.

Sensing
Designing a model that incorporates physiological barriers and restrictions to activity is key to capturing biological realism in ecological models (Johnston et al, 2014). Internal state and navigation capacities are also key parameters for wildlife movement ecology. However they remain understudied and our knowledge on these topics is limited (Graf, Kramer-Schadt, Fernández and Grimm, 2007; Tang and Bennett, 2010). Senses are not universal and different species have advantages and disadvantages in how they sense their environment (Kalmign, 1988). The five senses and other non-human senses such as electro-magnetic detection (Keeton, 1971), echolocation (Jones and Holderled, 2007), and ultraviolet light detection (Viitala, Korplmäki, Palokangas and Koivula, 1995) provide wildlife with the data they need to make decisions. Sense within an ABM  dictate where agents go and the resources they can access (Fig.s 5 and 6), thus having consequences at individual, collective, and landscape scales (Graf, Kramer-Schadt, Fernández and Grimm, 2007). ABM's can be used to examine the influence of sensory inputs on a variety of ecological processes because they are spatially explicit and allow for adaptation and the emergence of behavioral patterns within individuals. Simulations with high-frequency sensory data can help understand underlying movement mechanics and broad-scale population dynamics (Graf, Kramer-Schadt, Fernández, and Grimm, 2007).

Interaction 
Interaction is a core concept that underlies ecological theory and practical consequences in the field (Urban, 2011). Species interact extensively with the abiotic, biotic, and human environment (Gilpin, 1973). ABM's are a unique resource for modeling interactions as individual variance is captured as opposed to other ecological models which are typically written as mathematical equations (Evans 2012; Pickett, Kolasa & Jones 2010). The Lotka-Volterra models are an example of such an equation structure where predator-prey dynamics are captured by a pair of differential equations. This classical approach to modeling is mathematically tractable in that there are general solutions (Kokko 2007). Such models are deterministic and include no randomness, they assume we are dealing with a population of ‘average individuals’ (Uchmański & Grimm 1996). The solutions are continuous which is an acceptable simplification but does lead to the “atto-fox problem” where fractional populations/organisms (0.5 predators) are possible (Mollison 1991). While mathematical models are useful at identifying trends over time, they cannot capture individual life histories which are key to understanding interactions at a finer scale. In systems where cognition and sensory modality play a part in interactions, Agent-Based models are a tool to examine the processes that drive these interactions, an example of its application is presented in Srinivasan et al (2010) on modeling predator-prey dynamics between orca (Orcinus orca) and dusky dolphins (Lagenorhynchus obscurus) in Kaikoura, New Zealand.
Stochasticity
The values used to parameterize Agent-Based models rarely emulate real-world systems precisely. Variation in model parameters allows the developer to test the uncertainty in model output. These values can then be refined iteratively in model development. A priori knowledge of an event outcome can limit stochasticity and root uncertainty in parameter values. Stochasticity in singular events leads to high unpredictability but with repetition, patterns emerge through a probability distribution whereby the frequency of an outcome is more predictable over time (Promel, 2005). Typically in ecology, a range of acceptable parameter values is known and can be refined through the literature, parameter experimentation (Grimm and Railsbeck, 2006), sensitivity analysis (Thiele, Kurth and Grimm, 2014) and using machine learning (Calvez and Hutzler, 2006). Thus, stochastic Agent-Based models can be used experimentally or tuned to be deterministic if appropriate.
Collectives
Many species complete their life cycle within a collective and the group dictates their fitness and safety, for example, mammal herds, and flocking birds (Seppa et al, 2001; Sparkman et al, 2010; Wang et al, 2011). The behaviors and movement patterns exhibited by groups begin at the individual level. However, how these patterns emerge is poorly understood due to their inherent complexity (DeAngelis and Diaz, 2019). Agent-Based Modeling is invaluable for studying how the actions of an individual can have collective consequences. This can be applied to understanding arbitrary behavior arbitrarily, for example, flocking behavior and the role of leadership in group dynamics as shown in Quera, Beltran and Dolado, (2010) or for applications to specific species, for example, examining how group foraging can drive spatial segregation as is seen in Northern gannets (Morus bassanus) (Wakefield et al. 2013).

Observation 
Agent-Based Models are a tool for generating data. Data is extracted from the model by running simulations and selecting parameters to be recorded into data-files. In NetLogo, developers can run batch simulations using the BehaviourSpace function. Historically, developing and running an ABM was a separate endeavor to the statistical analysis of the data it produces (Thiele and Grimm, 2010).  Model development, testing, and batch simulations are conducted and the data file product would  be taken for analysis in separate software such as Excel, Python, or R (Thiele and Grimm, 2010).  Integration of Netlogo with statistics software such as Python and R has expanded what is possible with an ABM throughout the development process as it combines the strengths of both programs to increase accuracy, validation, and ease-of-use. R and Python have a comprehensive suite of statistical operations but they do not have the power to conduct the complex simulations that Netlogo does (jaxa-Rozel and Kwakkel, 2018; Petzoldt and Rinke, 2007). Both programs are open-source and have a growing user community, thus integration will allow for the expansion and development of ABMs as a tool with increased capacity for sub-modeling, parameter testing, and data analysis (Thiele and Grimm, 2010).
Details

Initialisation 
Each ABM begins from a point (t=0). The parameters at initialisation are important as model performance is sensitive to these conditions (Saadat et al, 2018). There are techniques available to choose these initial parameters such as using observations from field sites and a variety of statistical methods for example sensitivity analysis and micro-simulation for tuning initial model parameters (Hassan et al, 2010). 

Input
Input data in Agent-Based Models are data that influence processes within the model environment but are not in turn influenced by the simulation for example daily precipitation input data effects on simulated soil moisture (Eisinger and Wiegand, 2008). For this reason, these data are differentiated from entity variables and initial model parameters (Grimm et al, 2010). This data may be selected from field sites such as weather stations, previous publications, or generated using statistical modeling. A powerful tool added to the NetLogo software has allowed for the integration of raster and vector shapefiles from GIS datasets.  This high-frequency input data strongly increases simulation accuracy and moves away from the patchwork environment typical of ABM’s towards more realistic landscape portrayals (Wilensky, 1999; Walker and Johnson, 2019). Innovation with input data is pushing Agent-Based approaches toward increased realism and allowing developers to discover new solutions within a representational simulated environment. Concurrently this promotes repeatability and open-science as input data files can be included in the model package to ensure transparent and scrupulous model development (Grimm et al, 2010; Walker and Johnson, 2019).
Submodels
In Fig.s 5 and 6 the importance of agent sub-models on decision making is shown. Each agent has its own internal model which dictates the actions they take based on the data they can process from the environment. Advances are not only being made in creating complex internal models but also by incorporating mathematical models and combining multiple Agent-Based models that influence each other in a series of realistic and intrinsic interactions (Fig. 7). Complex submodels improve accuracy with the  introduction of more complex interactions and parameters that alter processes over time and space. 
Applications in teaching and training
Universities are in the process of altering both taught and research-based programs to adapt to COVID-19. To effectively practice social distancing, universities are forecasting that blended learning (in-person and online teaching) will become standard practice in the 2020-2021 academic year. This presents an opportunity to design courses that promote inclusivity and accessibility for those not capable of physical ecological training. Agent-Based Models can be incorporated into blended learning for all student levels to advance their understanding of important topics for scientific training (Shiflet and Shiflet, 2014). Agent-Based models can be used in a variety of ways to diversify teaching methods in a blended environment. 

Agent-Based models allow students to view theory in practice using a graphical interface to see how changing parameters affect patterns in simulations (Shiflet and Shiflet, 2014). NetLogo hosts a library of ready-to-run models that are free-to-use which simulate (with adjustable parameters) a range of concepts such as disease transmission, predator-prey dynamics, territoriality, forest canopy development, ecological disturbance, and succession. These models can be used in parallel with traditional lecturing to enhance understanding or as a valid alternative to practical field components of modules which may not be possible in 2020-2021 and beyond. 

Software, especially NetLogo, uses a very intuitive programming language which is an easy-to-use resource for students looking to improve computer literacy or as an introduction to programming (low threshold, no ceiling). Programming and quantitative skills  are becoming increasingly important in research throughout the literature (Ríos-Saldaña, Delibes-Mateos and Ferreira, 2018), The ability to use quantitative methods in combination with traditional fieldwork is an attractive attribute for candidates in a competitive job market (Shiflet and Shiflet, 2014; Ríos-Saldaña, Delibes-Mateos and Ferreira, 2018).

Agent-Based models can also be used in student research projects to complete the full research process for original ideas without a field component. Ecotourism research companies such as Operation Wallacea have been important destinations for undergraduate and graduate students to complete exciting projects in exotic locations. However this avenue is clouded in uncertainty due to COVID-19 (Galley and Clifton, 2004; Operation Wallacea COVID-19 statement). The Agent-Based Modeling approach develops students' experimental design and quantitative methodology in a practical, accessible, and collaborative way. 
Limitations in Agent-Based models
Despite the benefits listed above, there are challenges to creating an Agent-Based Model capable of generating new insights into ecological systems. Whilst the complex dynamic nature of Agent-Based models is what makes them attractive, it is also one of the challenges they face. When modeling a system to infer knowledge the development process of the model has to remain focused on the question posed so each facet of the system has the appropriate level of detail for the purpose of the research objective (Couclelis, 2002; Crooks, Castle and Batty, 2008).

As Orzack (2012) notes “…it is not credible (much less feasible) that we would create a model of ecosystem dynamics that was explicitly grounded in the metabolic dynamics of the cell.” This problem can also extend into the theoretical framework for model development where ad-hoc programming can mask important assumptions made in the development which can skew the outcome of the model (Crooks, Castle and Batty, 2008). All models are simplified representations of reality. This broad definition speaks to the diversity of modeling approaches. Why the need for simplicity? For starters, we are ignorant of the way the world works. We do not have a complete understanding of any process even if we are near certain of the general outline (Breckling, 1992). In Agent-Based Modeling, this is a problem when designing Agents and the Environment as simplified systems may not accurately model reality. 

Certainly, the most potent challenge of Agent-Based Modeling is model validation and calibration. If real-world data is unavailable then validating the results of the model can be challenging and can devalue predictions made. Two solutions exist that attempt to resolve these issues. Firstly, the ODD protocol was designed to communicate each aspect of model development in order to reduce ad-hoc programming and encourage the developer to justify each model feature with data or references (Grimm et al, 2006). Secondly, by working with field ecologists and building models in tandem with field-based projects, the outcomes of that model can be calibrated and validated by real-world data from the system the model is trying to emulate. Despite these challenges, the growth and diversification of the Agent-Based modeling community births new ways of thinking and practices to increase the applicability of this t
Conclusions
In this paper, we discussed the broad applications of Agent-Based Models in ecology and evolutionary research. We detail the process of model development thoroughly and show the diverse use of this tool in research across natural science and as a teaching tool. Agent-Based Models can teach students key concepts in ecology and evolution which add to their skill set by introducing them to quantitative methods and tools. The goal of this paper is to amplify Agent-Based Modeling as a resource that ecologists can use to enhance their research, diversify their skillset, and expand their teaching practices. During the COVID-19 pandemic and looking forward to future unforeseen barriers to fieldwork, Agent-Based models offer alternatives that field ecologists may utilize. We highlight how the method is continually developing and relies on the growth of a diverse community to offer innovative ways to use this tool and integrate it with other tools of research. Online resources that are open-source present the opportunity to grow professionally during the COVID-19 pandemic and future disruption of fieldwork. Agent-Based Modeling offers scientists the freedom to work on projects and learn new skills to improve inclusivity, collaboration, and quantitative literacy throughout the community. 
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Tables
Table 1. Toolbox of products to develop Agent-Based Models recommended for ecologists. All software in the table is open-source and free to use. NetLogo is recommended for ecologists as it hosts an advanced suite of tools for life sciences research. 
	Platform
	Developer
	Programming 

language
	Operating system

	AnyLogic
	The AnyLogic Company; Oakbrook Terrace, Illinois, USA
	Java
	Microsoft Windows 7 and after; SP1, x64; 

Apple Mac OS X 10.10

Universal; SuSE Linux, x64 (with installed GTK+,



	Cougaar
	Cougaar Software Inc.; Vienna, Virginia, USA].
	Java
	Windows 98; 
Windows NT; 
Windows XP; 
Linux; 
Mac OS X; and Java-1.4-capable PDA

	Framsticks
	Poznan University of Technology, Poznan, Poland
	FramScript
	Windows;
Linux; 
Mac OS X

	MASON
	George Mason University, Fairfax, Virginia, USA
	JAVA
	Any Java supporting machine (version 1.3 or higher)

	NetLogo
	Northwestern University, Evanston, Illinois, USA
	NetLogo
	Any Java supporting machine (version 6 or higher)

	SARL
	 Stéphane Galland, Burgundy Franche-Comté University, France;

 Nicolas Gaud, Burgundy Franche-Comté University, France,

 Sebastian Rodriguez, Advanced Informatics Technology Research Group, Tucuman, Argentina
	SARL/Java
	Any Java supporting machine (version 1.8 or higher)

	Starlogo
	Mitchel Resnick, Eric Klopfer, and others at MIT Media Lab and The MIT Scheller Teacher Education Program, Massachusetts Institute of Technology; Cambridge, MA, USA
	StarLogo (an extension of Logo)
	Mac OS X v10.2.6 or higher with Java 1.4 installed;
Windows;
Unix; Linux (StarLogo does not seem to be compatible with Java 5/1.5 on Solaris)

	SWARM
	Swarm Development Group
	Java
	Windows; Linux; Mac OS X
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