References:
Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery,
S., & Liu, G.-y. (2000). High-resolution atomic force microscopy
studies of the Escherichia coli outer membrane: structural basis for
permeability. Langmuir, 16 (6), 2789-2796.
Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R.,
Gedanken, A., & Banin, E. (2012). Understanding the antibacterial
mechanism of CuO nanoparticles: revealing the route of induced oxidative
stress. Small, 8 (21), 3326-3337.
Ashmore, D. A., Chaudhari, A., Barlow, B., Barlow, B., Harper, T., Vig,
K., . . . Pillai, S. (2018). Evaluation of E. coli inhibition by plain
and polymer-coated silver nanoparticles. Revista do Instituto de
Medicina Tropical de São Paulo, 60 .
Ávalos, A., Haza, A., Mateo, D., & Morales, P. (2013). Nanopartículas
de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio
ambiente/Silver nanoparticles: applications and toxic risks to human
heatlh and environment. Revista Complutense de Ciencias
Veterinarias, 7 (2), 1.
Azam, A., Ahmed, A. S., Oves, M., Khan, M., & Memic, A. (2012).
Size-dependent antimicrobial properties of CuO nanoparticles against
Gram-positive and-negative bacterial strains. International
journal of nanomedicine, 7 , 3527.
Azzouz, A., Assaad, E., Ursu, A.-V., Sajin, T., Nistor, D., & Roy, R.
(2010). Carbon dioxide retention over montmorillonite–dendrimer
materials. Applied Clay Science, 48 (1-2), 133-137.
Azzouz, A., Nistor, D., Miron, D., Ursu, A., Sajin, T., Monette, F., . .
. Hausler, R. (2006). Assessment of acid–base strength distribution of
ion-exchanged montmorillonites through NH3 and CO2-TPD measurements.Thermochimica Acta, 449 (1-2), 27-34.
Beltrao-Nunes, A.-P., Sennour, R., Arus, V.-A., Anoma, S., Pires, M.,
Bouazizi, N., . . . Azzouz, A. (2019). CO2 capture by coal ash-derived
zeolites-roles of the intrinsic basicity and hydrophilic character.Journal of Alloys and Compounds, 778 , 866-877.
Bragg, P., & Rainnie, D. (1974). The effect of silver ions on the
respiratory chain of Escherichia coli. Canadian journal of
microbiology, 20 (6), 883-889.
Carretero, M. I. (2002). Clay minerals and their beneficial effects upon
human health. A review. Applied Clay Science, 21 (3-4), 155-163.
Chatterjee, A. K., Chakraborty, R., & Basu, T. (2014). Mechanism of
antibacterial activity of copper nanoparticles. Nanotechnology,
25 (13), 135101.
Chudobová, D., & Kizek, R. (2015). Nanotechnology in diagnosis,
treatment and prophylaxis of infectious diseases. Journal of
Metallomics and Nanotechnologies, 2 , 67-69.
Čı́k, G., Bujdáková, H., & Šeršeň, F. (2001). Study of fungicidal and
antibacterial effect of the Cu (II)-complexes of thiophene oligomers
synthesized in ZSM-5 zeolite channels. Chemosphere, 44 (3),
313-319.
Čík, G., Priesolová, S., Bujdáková, H., Šeršeň, F., Potheöová, T., &
Krištín, J. (2006). Inactivation of bacteria G+-S. aureus and G−-E. coli
by phototoxic polythiophene incorporated in ZSM-5 zeolite.Chemosphere, 63 (9), 1419-1426.
Costa, C., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011).
Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf
life of fresh fruit salad. International Journal of Food
Microbiology, 148 (3), 164-167.
Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing
source of novel drug leads. Biochimica et Biophysica Acta
(BBA)-General Subjects, 1830 (6), 3670-3695.
Crooks, R. M., Zhao, M., Sun, L., Chechik, V., & Yeung, L. K. (2001).
Dendrimer-encapsulated metal nanoparticles: synthesis, characterization,
and applications to catalysis. Accounts of chemical research,
34 (3), 181-190.
Dakal, T., Kumar, A., Majumdar, R., & Yadav, V. (2016). Mechanistic
basis of antimicrobial actions of silver nanoparticles. Front Microbiol.
2016; 7: 1831. In.
Dizman, B., Badger, J. C., Elasri, M. O., & Mathias, L. J. (2007).
Antibacterial fluoromicas: a novel delivery medium. Applied Clay
Science, 38 (1-2), 57-63.
El Badawy, A. M., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M.
T., & Tolaymat, T. M. (2011). Surface charge-dependent toxicity of
silver nanoparticles. Environmental science & technology, 45 (1),
283-287.
España, V. A. A., Sarkar, B., Biswas, B., Rusmin, R., & Naidu, R.
(2019). Environmental applications of thermally modified and acid
activated clay minerals: current status of the art. Environmental
Technology & Innovation, 13 , 383-397.
Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J.
(2007). Effect of a fullerene water suspension on bacterial
phospholipids and membrane phase behavior. Environmental science
& technology, 41 (7), 2636-2642.
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J., & Zhang, L.
(2015). Construction of cellulose based ZnO nanocomposite films with
antibacterial properties through one-step coagulation. ACS applied
materials & interfaces, 7 (4), 2597-2606.
Gordon, O., Slenters, T. V., Brunetto, P. S., Villaruz, A. E.,
Sturdevant, D. E., Otto, M., . . . Fromm, K. M. (2010). Silver
coordination polymers for prevention of implant infection: thiol
interaction, impact on respiratory chain enzymes, and hydroxyl radical
induction. Antimicrobial agents and chemotherapy, 54 (10),
4208-4218.
Gupta, A., Maynes, M., & Silver, S. (1998). Effects of halides on
plasmid-mediated silver resistance in Escherichia coli. Appl.
Environ. Microbiol., 64 (12), 5042-5045.
Hellmann, J., Hamano, M., Karthaus, O., Ijiro, K., Shimomura, M., &
Irie, M. (1998). Aggregation of dendrimers with a photochromic
dithienylethene core group on the mica surface-atomic force microscopic
imaging. Japanese journal of applied physics, 37 (7A), L816.
Herrera, P., Burghardt, R., & Phillips, T. (2000). Adsorption of
Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite
clays. Veterinary microbiology, 74 (3), 259-272.
Joshi, M., Purwar, R., Udakhe, J. S., & Sreedevi, R. (2015).
Antimicrobial nanocomposite compositions, fibers and films. In: Google
Patents.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., . .
. Hwang, C.-Y. (2007). Antimicrobial effects of silver nanoparticles.Nanomedicine: Nanotechnology, Biology and Medicine, 3 (1), 95-101.
Komadel, P. (2016). Acid activated clays: Materials in continuous
demand. Applied Clay Science, 131 , 84-99.
Levy, S. B. (1998). The challenge of antibiotic resistance.Scientific American, 278 (3), 46-53.
Losasso, C., Belluco, S., Cibin, V., Zavagnin, P., Mičetić, I.,
Gallocchio, F., . . . Ricci, A. (2014). Antibacterial activity of silver
nanoparticles: sensitivity of different Salmonella serovars.Frontiers in microbiology, 5 , 227.
Martin, S., & Griswold, W. (2009). Human health effects of heavy
metals. Environmental Science and Technology briefs for citizens,
15 , 1-6.
Nabil, B., Christine, C., Julien, V., & Abdelkrim, A. (2018).
Polyfunctional cotton fabrics with catalytic activity and antibacterial
capacity. Chemical Engineering Journal, 351 , 328-339.
Nadziakiewicza, M., Kehoe, S., & Micek, P. (2019). Physico-Chemical
Properties of Clay Minerals and Their Use as a Health Promoting Feed
Additive. Animals, 9 (10), 714.
Potera, C. (2012). Understanding the germicidal effects of silver
nanoparticles. In: National Institute of Environmental Health Sciences.
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new
generation of antimicrobials. Biotechnology advances, 27 (1),
76-83.
Rees, N. V., Zhou, Y. G., & Compton, R. G. (2011). The aggregation of
silver nanoparticles in aqueous solution investigated via anodic
particle coulometry. ChemPhysChem, 12 (9), 1645-1647.
Sistemática, D. d. C. R. R., Gabriela, S.-S., Daniela, F.-R., & Helia,
B.-T. (2016). Copper Nanoparticles as Potential Antimicrobial Agent in
Disinfecting Root Canals. A Systematic Review. Int. J.
Odontostomat, 10 (3), 547-554.
Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal
nanoparticles: understanding the mechanisms behind antibacterial
activity. Journal of nanobiotechnology, 15 (1), 65.
Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as
antimicrobial agent: a case study on E. coli as a model for
Gram-negative bacteria. Journal of colloid and interface science,
275 (1), 177-182.
Stavitskaya, A., Batasheva, S., Vinokurov, V., Fakhrullina, G.,
Sangarov, V., Lvov, Y., & Fakhrullin, R. (2019). Antimicrobial
applications of clay nanotube-based composites. Nanomaterials,
9 (5), 708.
Stensberg, M. C., Wei, Q., McLamore, E. S., Porterfield, D. M., Wei, A.,
& Sepúlveda, M. S. (2011). Toxicological studies on silver
nanoparticles: challenges and opportunities in assessment, monitoring
and imaging. Nanomedicine, 6 (5), 879-898.
Sulpizi, M., Gaigeot, M. P., & Sprik, M. (2012). The Silica-Water
Interface: How the Silanols Determine the Surface Acidity and Modulate
the Water Properties. J Chem Theory Comput, 8 (3), 1037-1047.
doi:10.1021/ct2007154
Terrab, I., Boukoussa, B., Hamacha, R., Bouchiba, N., Roy, R.,
Bengueddach, A., & Azzouz, A. (2016). Insights in CO2 interaction on
zeolite omega-supported polyol dendrimers. Thermochimica Acta,
624 , 95-101.
Thuc, C.-N. H., Grillet, A.-C., Reinert, L., Ohashi, F., Thuc, H. H., &
Duclaux, L. (2010). Separation and purification of montmorillonite and
polyethylene oxide modified montmorillonite from Vietnamese bentonites.Applied Clay Science, 49 (3), 229-238.
Vdović, N., Jurina, I., Škapin, S. D., & Sondi, I. (2010). The surface
properties of clay minerals modified by intensive dry
milling—revisited. Applied Clay Science, 48 (4), 575-580.
Vincent, M., Duval, R. E., Hartemann, P., & Engels‐Deutsch, M. (2018).
Contact killing and antimicrobial properties of copper. Journal of
Applied microbiology, 124 (5), 1032-1046.
Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A.
G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a
natural clay antibacterial? Environmental science & technology,
45 (8), 3768-3773.
Yuan, P., Ding, X., Yang, Y. Y., & Xu, Q. H. (2018). Metal
nanoparticles for diagnosis and therapy of bacterial infection.Advanced healthcare materials, 7 (13), 1701392.
Yun’an Qing, L. C., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., . .
. Qin, Y. (2018). Potential antibacterial mechanism of silver
nanoparticles and the optimization of orthopedic implants by advanced
modification technologies. International journal of nanomedicine,
13 , 3311.