References
Afre, R.A., Sharma, N., Sharon, M. & Sharo, M. (2018). Transparent Conducting Oxide Films for Various Applications: A Review. Reviews on Advanced Materials Science, 53(1), 79-89. doi:10.1515/rams-2018-0006
Betz, Т., Bakowsky, U., Müller, M.R., Lehr, C.M. & Bernhardt, I. (2007). Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry, 70(1), 122-126. doi:10.1016/j.bioelechem.2006.03.019
Bi, Y.G., Liu, Y.F., Zhang, X.L., Yin, D., Wang, W.Q., Feng, J. & Sun, H.B. (2019). Ultrathin Metal Films as the Transparent Electrode in ITO‐Free Organic Optoelectronic Devices. Advanced Optical Materials, 7(6), Article 1800778. doi:10.1002/adom.201800778
Bifano, E.M., Novak, T.S. & Freedman, J.C. (1984). Relationship between the shape and the membrane potential of human red blood cells. The Journal of Membrane Biology, 82(1), 1-13. doi:10.1007/bf01870727
Bond, D.R. & Lovley, D.R. (2003). Electricity production byGeobacter sulfurreducens attached to electrodes. Applied and environmental microbiology, 69(3), 1548-1555. doi:10.1128/AEM.69.3.1548-1555.2003
Busalmen, J.P. & de Sánchez, S.R. (2005). Electrochemical Polarization-Induced Changes in the Growth of Individual Cells and Biofilms of Pseudomonas fluorescens (ATCC 17552). Applied and Environmental Microbiology, 71(10), 6235-6240. doi:10.1128/AEM.71.10.6235-6240.2005
Cao, W., Li, J., Chen, H. & Xue, J. (2014). Transparent electrodes for organic optoelectronic devices: a review. Journal of Photonics for Energy, 4(1), Article 040990. doi:10.1117/1.JPE.4.040990
Choi, C.K., English, A.E., Jun, S.I., Kihm, K.D., Rack, P.D. (2007). An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosensors and Bioelectronics, 22(11), 2585-2590. doi:10.1016/j.bios.2006.10.006
Choi, C.K., English, A.E., Kihm, K.D. & Margraves, C.H. (2007). Simultaneous dynamic optical and electrical properties of endothelial cell attachment on indium tin oxide bioelectrodes. Journal of Biomedical Optics, 12(6), Article 064028. doi:10.1117/1.2821407
Djokić, S. (Ed.). (2016). Biomedical and Pharmaceutical Applications of Electrochemistry. Springer International Publishing. doi:10.1007/978-3-319-31849-3
Ellmer, K. (2012). Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics, 6, 809-817. DOI: 10.1038/nphoton.2012.282
Enomoto, J., Mochizuki, N., Ebisawa, K., Osaki, T., Kageyama, T., Myasnikova, D., … Fukuda, J. (2016). Engineering thick cell sheets by electrochemical desorption of oligopeptides on membrane substrates. Regenerative therapy, 3, 24-31. doi:10.1016/j.reth.2015.12.003
Gingell, D. & Fornes, J.A. (1976). Interaction of red blood cells with a polarized electrode: evidence of long-range intermolecular forces.Biophysical journal, 16(10), 1131-1153. doi:10.1016/S0006-3495(76)85763-3
Glaser, R. (1993). Mechanisms of electromechanical coupling in membranes demonstrated by transmembrane potential-dependent shape transformations of human erythrocytes. Bioelectrochemistry and Bioenergetics, 30,103-109. doi:10.1016/0302-4598(93)80067-5
Goldin, M.M., Volkov, A.G., Goldfarb, Y.S. & Goldin, Michael M. (2006). Electrochemical Aspects of Hemosorption. Journal of Electrochemical Society, 153(8), J91-J99. doi:10.1149/1.2208910
Goldin, Mark M., Goroncharovskaya, I.V., Evseev, A.K., Shabanov, A.K., Goldin, Mikhael M. & Petrikov S.S. (2019). Electrochemical Properties of Erythrocytes as a Reflection of Their Morphology and Interaction with Foreign Electrically Conductive Materials. In K. Jorissen (Ed.),Erythrocytes: Structure, Functions and Clinical Aspects (pp. 133-160). NY: Nova Science Publishers.
Gratieri, T., Santer, V. & Kalia, Y.N. (2017). Basic principles and current status of transcorneal and transscleral iontophoresis.Expert Opinion on Drug Delivery, 14(9), 1091-1102. doi:10.1080/17425247.2017.1266334
Hofmann, A.I., Cloutet, E. & Hadziioannou, G. (2018). Materials for Transparent Electrodes: From Metal Oxides to Organic Alternatives.Advanced Optical Materials, 4(10), Article 1700412. doi:10.1002/aelm.201700412
Inaba, R., Khademhosseini, A., Suzuki, H. & Fukuda, J. (2019). Electrochemical desorption of self-assembled monolayers for engineering cellular tissues. Biomaterials, 30(21), 3573-3579. doi:10.1016/j.biomaterials.2009.03.045
Jahnke, H.G., Rothermel, A., Sternberger, I., Mack T.G.A., Kurz R.G., Pänke O., … Robitzki, A.A. (2009). An impedimetric microelectrode-based array sensor for label-free detection of tau hyperphosphorylation in human cells. Lab on a chip, 9(10),1422-1428. doi:10.1039/b819754g
Jahnke, H.G., Schmidt, S., Frank, R., Weigel, W., Prönnecke, C. & Robitzki, A.A. (2019). FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays. Biosensors and Bioelectronics, 129, 208-215. doi:10.1016/j.bios.2018.09.095
Jiang, X., Ferrigno, R., Mrksich, M. & Whitesides, G.M. (2003). Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. Journal of American Chemical Society, 125(9), 2366-2367. doi:10.1021/ja029485c
Jin, L.H., Yang, B.Y., Zhang, L., Lin, P.L., Cui, C. & Tang, J. (2009). Patterning of HeLa Cells on a Microfabricated Au-Coated ITO Substrate.Langmuir, 25(9), 5380-5383. doi:10.1021/la804297x
Khubutiya, M.Sh., Goldin, M.M., Stepanov, A.A., Kolesnikov, V.A. & Kruglikov S.S. (2012). The effect of electrochemically polymerized pyrrole on the physicochemical properties and biological activity of carbon materials. Carbon, 50(3), 1146-1151. doi:10.1016/j.carbon.2011.10.027
Kobayashi, Y., Cordonier, C.E.J., Noda, Y., Nagase, F., Enomoto, J., Kageyama, T., … Fukuda, J. (2019). Tailored cell sheet engineering using microstereolithography and electrochemical cell transfer. Scientific Reports, 9(1), Article 10415. doi:10.1038/s41598-019-46801-9
Kojima, J., Shinohara, H., Ikariyama, Y., Aizawa, M., Nagaike, K. & Morioka, S. (1991). Electrically controlled proliferation of human carcinoma cells cultured on the surface of an electrode. Journal of Biotechnology, 18(1-2), 129-139. doi:10.1016/0168-1656(91)90241-M
Kojima, J., Shinohara, H., Ikariyama, Y., Aizawa, M., Nagaike, K. & Morioka, S. (1992). Electrically promoted protein production by mammalian cells cultured on the electrode surface. Biotechnology and Bioengineering, 39(1), 27-32. doi:10.1002/bit.260390106
Koyama, S., Haruyama, T., Kobatake, E. & Aizawa, M. (1997). Electrically induced NGF production by astroglial cells. Nature Biotechnology, 15, 164-166. doi:10.1038/nbt0297-164
Koyama, S. (2011). Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode.Journal of Bioscience and Bioengineering, 111(5), 574-583. doi:10.1016/j.jbiosc.2010.12.027
Koyama, S., Tsubouchi, T., Usui, K., Uematsu, K., Tame, A., Nogi, Y., … Abe, F. (2015). Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells. FEMS Yeast Research, 15(6), Article fov064. doi:10.1093/femsyr/fov064
López-Naranjo, E.J., González-Ortiz, L.J., Apátiga, L.M., Rivera-Muñoz, E.M. & Manzano-Ramírez, A. (2016). Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials. Journal of Nanomaterials, 2016, Article 4928365. doi:10.1155/2016/4928365
Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A. & Bond, D.R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10),3968-3973. doi:10.1073/pnas.0710525105
Mukhopadhyay, M., Ghosh, U.U., Sarkar, D. & DasGupta, S. (2018). Surface Property Induced Morphological Alterations of Human Erythrocyte.Soft Matter, 14(36), 7335-7346. doi:10.1039/C8SM01146J
Nilsson, E., von Euler, H., Berendson, J., Thörne, A., Wersäll, P., Näslund, I., …Olsson, J.M. (2000). Electrochemical treatment of tumours. Bioelectrochemistry, 51(1), 1-11. doi:10.1016/s0302-4598(99)00073-2
Pänke, O., Weigel, W., Schmidt, S., Steude, A. & Robitzki, A.A. (2011). A cell-based impedance assay for monitoring transient receptor potential (TRP) ion channel activity. Biosensors and Bioelectronics, 26(5),2376-2382. doi:10.1016/j.bios.2010.10.015
Sawyer, P.N., Srinivasan, S., Stanczewski, B., Ramasamy, N., & Ramsey, W. (1974). Electrochemical Aspects of Thrombogenesis—Bioelectrochemistry Old and New. Journal of The Electrochemical Society, 121(7), 221C-234C. doi:10.1149/1.2402384
Saywer, P.N., Brattain, W.H. & Boddy, P.J. (1964). Electrochemical precipitation of human blood cells and its possible relation to intravascular thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 51(3), 428-432. doi:10.1073/pnas.51.3.428
Schmitt, J.M., Baer, M., Meindl, J.D., Anderson, M.F. & Mihm, F.G. (1984). Inhibition of thrombus formation on intravascular sensors by electrical polarization. Journal of biomedical materials research, 18(7), 797-807. doi:10.1002/jbm.820180710
Scott, K. & Yu, E.H. (Eds.). (2015). Microbial Electrochemical and Fuel Cells. Fundamentals and Applications . Cambridge: Woodhead Publishing. doi:10.1016/C2014-0-01767-4
Sheets, M.P. & Singer, S.J. (1974). Biological membranes as bilayer couples. A mechanism of drug erythrocyte interaction. Proceedings of the National Academy of Sciences of the United States of America, 71(11), 4457-4461. doi:10.1073/pnas.71.11.4457
Sun, K., Jiang, B. & Jiang, X. (2011). Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. Journal of Electroanalytical Chemistry, 656(1-2),223-230. doi:10.1016/j.jelechem.2010.11.008
Tachev, K.D., Danov, K.D. & Kralchevsky, P.A. (2004). On the Mechanism of Stomatocyte-Echinocyte Transformations of Red Blood Cells: Experiment and Theoretical Model. Colloids and surfaces. B, Biointerfaces, 34(2), 123-140. doi:10.1016/j.colsurfb.2003.12.011
Tsivadze, A.Yu., Khubutiya, M.Sh., Goroncharovskaya, I.V., Evseev, A.K., Goldin, Michael M., Borovkova, N.V., … Goldin, Mark M. (2017). Electron transport and morphological changes in the electrode/erythrocyte system. Mendeleev Communications, 27(2),183-185. doi:10.1016/j.mencom.2017.03.026
Tsivadze, A.Yu., Khubutiya, M.Sh., Evseev, A.K., Goroncharovskaya, I.V., Borovkova, N.V., Shapiro, A.I., … Goldin, M.M. (2017). Electrochemical Activity and Morphology of Human Erythrocytes at Optically Transparent ITO Electrode. Doklady Physical Chemistry, 477(1), 201-204. doi:10.1134/S0012501617110021
Volfkovich, Yu.M., Goroncharovskaya, I.V., Evseev, A.K., Sosenkin, V.E. & Goldin, M.M. (2017). The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption. Russian Journal of Electrochemistry, 53(12), 1334-1344. doi:10.1134/S1023193517120126
Wong, J.Y., Langer, R. & Ingber D.E. (1994). Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3201-3204. doi:10.1073/pnas.91.8.3201
Woo, Y.S. (2019). Transparent Conductive Electrodes Based on Graphene-Related Materials. Micromachines (Basel), 10(1), Article 13. doi:10.3390/mi10010013
Yaoita, M., Aizawa, M. & Ikariyama, Y. (1989). Electrically Regulated Cellular Morphological and Cytoskeletal Changes on an Optically Transparent Electrode. Experimental Cell Biology, 57(1), 43-51. doi:10.1159/000163506
Yaoita, M., Ikariyama, Y., Aizawa, M. (1990). Electrical effects on the proliferation of living HeLa cells cultured on optically transparent electrode surface. Journal of Biotechnology, 14(3-4), 321-332. doi:10.1016/0168-1656(90)90116-S
Yaoita, M., Shinohara, H., Aizawa, M., Hayakawa, Y., Yamashita, T. & Ikariyama Y. (1988). Potential-controlled morphological change and lysis of HeLa cells cultured on an electrode surface.Bioelectrochemistry and Bioenergetics, 20(1-3), 169-177. doi:10.1016/S0302-4598(98)80014-7