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This article considers the hydrodynamic problem of an oblique flow of a viscous
incompressible fluid around the tip of a dendritic crystal. Approximate analytical
solutions of Oseen’s hydrodynamic equations are obtained in 2D and 3D cases using
special curvilinear coordinates. It is shown that the projections of the fluid velocity
change significantlywith a change in the flow slope andReynolds number. The theory
developed in this work has a limiting transition to the previously known solutions for
the rectilinear (without tilt) fluid flow around a dendrite.
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1 INTRODUCTION

It is well known that the dendritic shape of crystals is one of the most common growth forms in the processes of phase transfor-
mations from metastable solutions and melts.1−10 As this takes place, the shape of the dendrite vertex is described by a power
function close to a parabola (paraboloid) at distances of the order of several radii of curvature of its tip.11 Quite often, in nature,
technological processes, and laboratory experiments, dendrites grow in the oncoming convective flow of a viscous liquid (melt
or solution).12−15 In addition, such a liquid flow can be directed at an angle to the direction of crystal growth or change its direc-
tion during crystallization. This fluid flow, as is known, leads to a redistribution of temperature and impurities dissolved in the
fluid (the fluid flow rate is involved in the equations of convective heat conduction and diffusion of impurities, as well as in the
boundary conditions to them). Therefore, it becomes necessary to solve the hydrodynamic problem of an oblique flow of a vis-
cous fluid around a dendrite growing in a metastable fluid. The solution of such a hydrodynamic problem is also in demand in
the theory of selecting a stable mode of dendritic growth in inclined flows of an undercooled (supersaturated) liquid.16−18
Taking into account the above-described practical relevance, in this article, a solution to the hydrodynamic problem of an

oblique flow of a viscous fluid around a two-dimensional (three-dimensional) dendritic crystal is derived. Since the Navier-
Stokes equations for this flow geometry do not have exact solutions, we use here the Oseen hydrodynamic equations.19−21 Strictly
speaking, the Oseen system of equations takes place at low Reynolds numbers. However, in some cases, these equations describe
fluid flows at Reynolds numbers of the order of unity.21
This paper is organized as follows. The governing equations for an oblique flow occurring around two- and three-dimensional

dendritic crystals are formulated and analytically solved in Section 2. Here the solution is also rewritten in the reference frame
connected with a growing dendrite. A behaviour of hydrodynamic solutions under consideration as well as the main outcomes
and future developments of the theory are given in Section 3.
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2 GOVERNING EQUATIONS

(a) (b) (c)

FIGURE 1 A tip region of dendritic crystal in an oblique flow of a viscous fluid (a) and the coordinate systems of a parabolic
cylinder (b) and a paraboloid of revolution (c) describing its growth.

2.1 Parabolic/paraboloidal reference frames
Suppose the vertex of a dendritic crystal is parabolic/paraboloidal. This makes it possible to use the following curvilinear
coordinates when describing two- and three-dimensional fluid flows around dendrites (see figure 1 ).

The parabolic cylinder reference frame � and � (two-dimensional dendrite) is related to the Cartesian reference frame x, y
and z as follows

z
�
= Z =

�2 − �2

2
,
y
�
= Y = Y , x

�
= X = ��, (1)

where � - stands for the dendrite tip diameter. Note that the crystal surface in parabolic coordinates (1) takes the form � = 1. As
this takes place, the fluid is in the domain 0 ≤ � <∞ and 1 < � <∞.
The unit vectors in both coordinate sytems read as

ez =
�eξ − �eη
√

�2 + �2
, ex =

�eξ + �eη
√

�2 + �2
. (2)

To find the partial derivatives in hydrodynamic equations, we use the Lamé coefficients

ℎ� = ℎ� = �
√

�2 + �2, ℎy = �. (3)

Using (2) and (3) one can get the following expressions
)
)Z

=
�

�2 + �2
)
)�
−

�
�2 + �2

)
)�
, )
)X

=
�

�2 + �2
)
)�
+

�
�2 + �2

)
)�
. (4)

The paraboloid of revolution reference frame �, � and ' (three-dimensional dendrite) is related to the Cartesian reference
frame x, y and z as follows

z
�
= Z =

�2 − �2

2
,
y
�
= Y = �� sin', x

�
= X = �� cos'. (5)
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As before, the crystal surface is given by � = 1, and the fluid is in the domain 0 ≤ � <∞, 1 < � <∞ and 0 ≤ ' < 2�.
The unit vectors and Lamé coefficients have the form

ez =
�eξ − �eη
√

�2 + �2
, ey =

� sin'eξ + � sin'eη
√

�2 + �2
− cos'eφ, ex =

� cos'eξ + � cos'eη
√

�2 + �2
+ sin'eφ, (6)

ℎ� = ℎ� = �
√

�2 + �2, ℎ' = ���. (7)
Taking (6) and (7) into account, we arrive at

)
)Z

=
�

�2 + �2
)
)�
−

�
�2 + �2

)
)�
, )
)Y

=
� sin'
�2 + �2

)
)�
+
� sin'
�2 + �2

)
)�
−
cos'
��

)
)'
, (8)

)
)X

=
� cos'
�2 + �2

)
)�
+
� cos'
�2 + �2

)
)�
+
sin'
��

)
)'
. (9)

2.2 The Oseen hydrodynamic equations
We describe the flow of a viscous incompressible fluid around a dendritic crystal using linear Oseen equations. Methods for
solving these equations are well-known in modern literature.19−22 We use here the approach developed by Dash and Gill.21 So,
the hydrodynamic model takes the form of

U ⋅ ∇u = − 1
�l
∇p + �∇2u, ∇ ⋅ u = 0. (10)

Here u = (u, v,w) is the fluid velocity with components u, v, w on the coordinate axes z, y, x, U = (Uz, Uy, Ux) stands for the
fluid velocity far from the solid surface � = 1with coordinates Uz, Uy, Ux, �l - is the density, p is the pressure, � is the kinematic
viscosity.
These equations should be supplemented with the following boundary conditions

u = v = w = 0, � = 1; u→ Uz, v→ Uy, w→ Ux, � →∞. (11)

For the convenience of solving the problem, we use the relative velocities

u′ = u − Uz, v′ = v − Uy, w′ = w − Ux, (12)

n = Uy∕Uz, l = Ux∕Uz and the Reynolds number Re = Uz�∕�. Taking these designations into account, we rewrite (10) as

Re )u
′

)Z
+ nRe)u

′

)Y
+ lRe )u

′

)X
= −

�
�l�

)p
)Z

+ )2u′

)Z2
+ )2u′

)Y 2
+ )2u′

)X2
, (13)

Re )v
′

)Z
+ nRe)v

′

)Y
+ lRe )v

′

)X
= −

�
�l�

)p
)Y

+ )2v′

)Z2
+ )2v′

)Y 2
+ )2v′

)X2
, (14)

Re)w
′

)Z
+ nRe)w

′

)Y
+ lRe)w

′

)X
= −

�
�l�

)p
)X

+ )2w′

)Z2
+ )2w′

)Y 2
+ )2w′

)X2
, (15)

)u′

)Z
+ )v′

)Y
+ )w′

)X
= 0. (16)

In addition, expressions (11) read as

u′ = −Uz, v′ = −Uy, w′ = −Ux, � = 1; u′ → 0, v′ → 0, w′ → 0, � →∞. (17)

2.3 Complete solutions of 2D and 3D models
For the convenience of finding analytical solutions, we introduce additional functionsM andN

u′ = )M
)Z

+ 1
Re

)N
)Z

−N, v′ = )M
)Y

+ 1
Re

)N
)Y

− nN, (18)

w′ = )M
)X

+ 1
Re

)N
)X

− lN, p = −
�l�
�
Re

()M
)Z

+ n)M
)Y

+ l )M
)X

)

. (19)

In the two-dimensional case, v′ = 0 andM is independent on Y .
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Substitution of (18) and (19) into (13)-(16) leads to
)2M
)Z2

+ )2M
)Y 2

+ )2M
)X2

= 0, )
2N
)Z2

+ )2N
)Y 2

+ )2N
)X2

− Re
()N
)Z

+ n)N
)Y

+ l )N
)X

)

= 0. (20)

An important point is that we consider the problem in the vicinity of the dendritic tip where � is small. Keeping this in mind,
assumingM =M(�) andN = N(�), we rewrite (20) with the help of (4), (8), (9), and arrive at

2D case ∶ d
2M
d�2

= 0, d
2N
d�2

+ Re� dN
d�

= 0, (21)

3D case ∶ d
2M
d�2

+ 1
�
dM
d�

= 0, 1
�
d
d�

(

� dN
d�

)

+ Re� dN
d�

= 0. (22)

The solution of equations (21) and (22) has the form

2D case ∶M(�) = A1� + B1, N(�) = C1

�

∫
1

exp
(

−Ret
2

2

)

dt + C2, (23)

3D case ∶M(�) = A2 ln � + B2, N(�) = D1

�

∫
1

exp
(

−Ret
2

2

)

dt
t
+D2. (24)

Substitution of (23) and (24) into (17), (18) and (19) enables us to find the arbitrary constants

A1 = A2 = −
C1 exp(−Re∕2)

Re
, C−11 = −C−12

∞

∫
1

exp
(

−Ret
2

2

)

dt, (25)

D−1
1 = −D−1

2

∞

∫
1

exp
(

−Ret
2

2

)

dt
t
, C2 = D2 = Uz. (26)

Let us especially highlight that expressions (18) and (19) do not include B1 and B2 since the components u′, v′ and w′ are
the functions ofM(�)-derivatives only. Taking (12), (18), (19), (25), and (26) into account, we come to

u = Uz

⎧

⎪

⎨

⎪

⎩

1 −
erfc

(

√

Re∕2�
)

erfc
(

√

Re∕2
) −

�
[

exp (−Re∕2) − exp
(

−Reη2∕2
)]

√

�Re∕2
(

�2 + �2
)

erfc
(

√

Re∕2
)

⎫

⎪

⎬

⎪

⎭

, (27)

w = Uz

⎧

⎪

⎨

⎪

⎩

l

⎡

⎢

⎢

⎢

⎣

1 −
erfc

(

√

Re∕2�
)

erfc
(

√

Re∕2
)

⎤

⎥

⎥

⎥

⎦

+
�
[

exp (−Re∕2) − exp
(

−Reη2∕2
)]

√

�Re∕2
(

�2 + �2
)

erfc
(

√

Re∕2
)

⎫

⎪

⎬

⎪

⎭

(28)

in 2D geometry and

u = Uz

{

1 −
E1

(

Re�2∕2
)

E1 (Re∕2)
−
2
[

exp (−Re∕2) − exp
(

−Reη2∕2
)]

Re
(

�2 + �2
)

E1 (Re∕2)

}

, (29)

v = Uz

{

n

[

1 −
E1

(

Re�2∕2
)

E1 (Re∕2)

]

+
2� sin'

[

exp (−Re∕2) − exp
(

−Reη2∕2
)]

Re
(

�2 + �2
)

�E1 (Re∕2)

}

, (30)

w = Uz

{

l

[

1 −
E1

(

Re�2∕2
)

E1 (Re∕2)

]

+
2� cos'

[

exp (−Re∕2) − exp
(

−Reη2∕2
)]

Re
(

�2 + �2
)

�E1 (Re∕2)

}

(31)

in 3D geometry. Note that

erfc(q) = 2
√

�

∞

∫
q

exp
(

−�2
)

d�, E1(q) =

∞

∫
q

exp (−�)
�

d�.

An important point is that this solution contains the previously studied case of symmetric flow: n = l = 0. Indeed, (27)-(31)
lead to formulas (68) and (69)21 if n = l = 0.
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Representing the velocity vector in component-wise form u = uez + vey +wex = u�eξ + u�eη + u'eφ and taking (2) and (6)
into consideration, we arrive at

u� =
Uz (� + l�)
√

�2 + �2

⎛

⎜

⎜

⎜

⎝

1 −
erfc

(

√

Re∕2�
)

erfc
(

√

Re∕2
)

⎞

⎟

⎟

⎟

⎠

, (32)

u� =
Uz

√

�2 + �2

⎧

⎪

⎨

⎪

⎩

(l� − �)

⎡

⎢

⎢

⎢

⎣

1 −
erfc

(

√

Re∕2�
)

erfc
(

√

Re∕2
)

⎤

⎥

⎥

⎥

⎦

+
exp (−Re∕2) − exp

(

−Reη2∕2
)

√

�Re∕2 erfc
(

√

Re∕2
)

⎫

⎪

⎬

⎪

⎭

(33)

in 2D geometry and

u� =
Uz (� + n� sin' + l� cos')

√

�2 + �2

(

1 −
E1

(

Re�2∕2
)

E1 (Re∕2)

)

, (34)

u� =
Uz

√

�2 + �2

[

(n� sin' + l� cos' − �)

(

1 −
E1

(

Re�2∕2
)

E1 (Re∕2)

)

+
2
[

exp (−Re∕2) − exp
(

−Reη2∕2
)]

Re �E1 (Re∕2)

]

,

(35)

u' = Uz (l sin' − n cos')

(

1 −
E1

(

Re�2∕2
)

E1 (Re∕2)

)

(36)

in 3D geometry. Let us again note that (32)-(36) are identical to (70)-(75)21 if l = n = 0.

2.4 Hydrodynamic solutions in the reference frame of a moving crystal
For the convenience of mathematical modeling of crystal growth, a frame of reference is often used that moves with the dendrite.
Let the origin of such a coordinate system coincides with the radius of curvature of the crystal tip. Also, we use below the
modified coordinates accordingly to many previous studies16,23−28

2D ∶ z =
�
2
(� − �) , x = �

√

��; 3D ∶ z =
�
2
(� − �) , y = �

√

�� sin', x = �
√

�� cos'. (37)

Let us introduce the opposite coordinate axis z of the dendrite evolving with an unchangeable rate V . In this case, one can get

u� =
V
√

�
√

� + �
+
Uz

(

√

� + l
√

�
)

√

� + �

⎛

⎜

⎜

⎜

⎝

1 −
erfc

(

√

Re�∕2
)

erfc
(

√

Re∕2
)

⎞

⎟

⎟

⎟

⎠

, (38)

u� = −
V
√

�
√

� + �
+

Uz
√

� + �

⎧

⎪

⎨

⎪

⎩

(

l
√

� −
√

�
)

⎡

⎢

⎢

⎢

⎣

1 −
erfc

(

√

Re�∕2
)

erfc
(

√

Re∕2
)

⎤

⎥

⎥

⎥

⎦

+
exp (−Re∕2) − exp (−Reη∕2)
√

�Re∕2 erfc
(

√

Re∕2
)

⎫

⎪

⎬

⎪

⎭

(39)

in the 2D case, and

u� =
V
√

�
√

� + �
+
Uz

(

√

� + n
√

� sin' + l
√

� cos'
)

√

� + �

(

1 −
E1 (Re�∕2)
E1 (Re∕2)

)

, (40)

u� = −
V
√

�
√

� + �
+

Uz
√

� + �

[

(

n
√

� sin' + l
√

� cos' −
√

�
)

(

1 −
E1 (Re�∕2)
E1 (Re∕2)

)

+
2
[

exp (−Re∕2) − exp (−Reη∕2)
]

Re
√

�E1 (Re∕2)

]

, (41)

u' = Uz (l sin' − n cos')
(

1 −
E1 (Re�∕2)
E1 (Re∕2)

)

(42)

in the 3D case. It is significant that expressions (38)-(42) transform to the corresponding solutions in the case of a direct (with
zero angle) liquid flow to the dendrite (l = n = 0).16,29
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3 DISCUSSION AND CONCLUSION

FIGURE 2 2D solutions. The modified velocities ū� = u�
√

� + �∕Uz (panels a, b) and ū� = u�
√

� + �∕Uz (panels c, d) versus
the spatial variables � (� = 0.2) and � (� = 2) accordingly to solutions (38) and (39) in cases of l = 0 (solid curves), l = 0.1
(dashed curves), and l = 0.2 (dotted curves); Re1 = 0.01, Re2 = 0.05, and V ∕Uz = 0.01.

Figures 2 and 3 illustrate the role of hydrodynamic flow slope l = Ux∕Uz and Reynolds number Re = Uz�∕� on mod-
ified velocity projections ū� = u�

√

� + �∕Uz and ū� = u�
√

� + �∕Uz in accordance with analytical solutions (38)-(41). Our
calculations demonstrate that both velocity projections change quite strongly with a slight change in the hydrodynamic slope.
As this takes place, small variations in Reynolds number also have a significant effect on the distribution of the components of
the hydrodynamic flow. Such significant changes in the distribution of the flow velocity must lead to a change in the tempera-
ture and concentration fields around the dendrite tip. This is caused by the corresponding changes in the convective terms in the
equations of heat conduction and diffusion of impurities.
Another important circumstance is the asymmetry of the inclined flow relative to the dendrite axis. This, obviously, should

lead to a change in the direction of its growth when the angle of inclination of the hydrodynamic flow changes. And this, in turn,
entails a change in the main parameters of stable growth of the dendritic vertex - its diameter and velocity. Therefore, one of the
directions of research development is to determine the criterion for stable dendritic growth in oblique hydrodynamic flows in the
spirit of the previously constructed theory4,15,16,29 for flows with a zero inclination coefficient to the axis of dendritic growth. In
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FIGURE 3 3D solutions. The modified velocities ū� = u�
√

� + �∕Uz (panels a, b) and ū� = u�
√

� + �∕Uz (panels c, d) versus
the spatial variables � (� = 0.2) and � (� = 2) accordingly to solutions (40) and (41) in cases of l = 0 (solid curves), l = 0.1
(dashed curves), and l = 0.2 (dotted curves); Re1 = 0.01, Re2 = 0.05, V ∕Uz = 0.01, n = 0.1, and ' = �∕4.

addition, oblique flows of supercooled melts and supersaturated solutions should lead to a more complex structure of secondary
branches of dendritic crystals in the phase transformation region. In general, growth forms in such a two-phase region in the
presence of inclined flows should differ significantly from the forming microstructure in the absence of a flow or the presence
of a rectilinear (non-oblique) fluid flow. The development of the theory of phase transformation in such a two-phase zone is also
an important direction of scientific research, which can be carried out by analogy with several existing theories.30−45
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