References
1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol . 2020; doi: 10.1038/s41577-020-0311-8.
2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med . 2020; 382: 727–733.
3. Huang T, Wang YQ, Wang ZP, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis.J Med Virol . 2020; doi: 10.1002/jmv.25757.
4. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med . 2020;26(4):450-452.
5. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell . 2020; 181: 271-280.
6. Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020; doi: 10.1002/path.5471
7. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O2, Graham BS2, McLellan JS3. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science . 2020;367(6483):1260-1263.
8. Li F, Li W, Farzan M, and Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science2005; 309: 1864–1868.
9. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.EMBO J . 2005; 24: 1634–1643.
10. Dujif, P. H. G. (2020). Baseline Pulmonary Levels of CD8+ T Cells and NK Cells Inversely Correlate with Expression of the SARS-Cov-2 Entry Receptor ACE2. bioRxiv preprint. doi: https://doi.org/10.1101/2020.05.04.075291.
11. Zhou G, Chen S, Chen Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies.Front Med . 2020;14(2):117-125.
12. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty . 2020;9(1):45.
13. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med . 2020;26(5):681-687.
14. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell . 2020; doi: 10.1016/j.cell.2020.04.035.
15. Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci . 2020;12(1):11.
16. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol . 2010;10(7):514-526.
17. Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity (Silver Spring). 2020; doi: 10.1002/oby.22856.
18. Oberfeld B, Achanta A, Carpenter K, et al. SnapShot: COVID-19.Cell . 2020;14;181(4):954-954.
19. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic.Asian Pac J Allergy Immunol . 2020;38(1):1-9.
20. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int . 2020;139:105730.
21. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med . 2020;382(16):1564-1567.
22. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A . 2020; pii: 202006874. doi: 10.1073/pnas.2006874117.
23. Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med . 2020;172(9):577-582.
24. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA . 2020; doi: 10.1001/jama.2020.1585.
25. Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol . 2020;20(5):271-272.
26. Li X, Xu S, Yu M, et al. Risk Factors for Severity and Mortality in Adult COVID-19 Inpatients in Wuhan. J Allergy Clin Immunol . 2020;S0091-6749(20)30495-4.
27. Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors.Eur Heart J . 2020;41(19):1810-1817.
28. Dalpiaz PL, Lamas AZ, Caliman IF, et al. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats. PLoS One . 2015;10(5):e0127515.
29. La Vignera S, Cannarella R, Condorelli RA, Torre F, Aversa A, Calogero AE. Sex-Specific SARS-CoV-2 Mortality: Among Hormone-Modulated ACE2 Expression, Risk of Venous Thromboembolism and Hypovitaminosis D.Int J Mol Sci . 2020;21(8).
30. Peters MC, Sajuthi S, Deford P, et al. COVID-19 Related Genes in Sputum Cells in Asthma: Relationship to Demographic Features and Corticosteroids. Am J Respir Crit Care Med . 2020; doi: 10.1164/rccm.202003-0821OC.
31. Klein SL, Flanagan KL. Sex differences in immune responses.Nat Rev Immunol . 2016;16(10):626-638.
32. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol . 2008;8(9):737-744.
33. Rothberg MB, Haessler SD, Brown RB. Complications of viral influenza. Am J Med . 2008;121(4):258-264.
34. Chen Y, Li L. SARS-CoV-2: virus dynamics and host response.Lancet Infect Dis . 2020;20(5):515-516. doi: 10.1016/S1473-3099(20)30235-8.
35. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, Aziz B. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol . 2020; doi: 10.1002/jmv.25832.
36. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, Wen F, Huang X, Ning G, Wang W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations.Cell Discov . 2020;6:11.
37. Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol. 2008;8(7):512-522.
38. Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. T-cell immunosenescence: lessons learned from mouse models of aging.Trends Immunol . 2009;30(7):301-305.
39. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol . 2020; doi: 10.1111/jdv.16387.
40. Wollina U, Karadağ AS, Rowland-Payne C, Chiriac A, Lotti T. Cutaneous Signs in COVID-19 Patients: A Review. Dermatol Ther . 2020; doi: 10.1111/dth.13549.
41. Galván Casas C, Català A, Carretero Hernández G, et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol . 2020; doi: 10.1111/bjd.19163.
42. Joob B, Wiwanitkit V. COVID-19 can present with a rash and be mistaken for dengue. J Am Acad Dermatol. 2020;82(5):e177.
43. Tammaro A, Adebanjo GAR, Parisella FR, Pezzuto A, Rello J. Cutaneous manifestations in COVID-19: the experiences of Barcelona and Rome.J Eur Acad Dermatol Venereol . 2020; doi: 10.1111/jdv.16530.
44. Marzano AV, Genovese G, Fabbrocini G, et al. Varicella-like exanthem as a specific COVID-19-associated skin manifestation: multicenter case series of 22 patients. J Am Acad Dermatol . 2020; doi: 10.1016/j.jaad.2020.04.044.
45. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med . 2020;382(18):1708-1720.
46. Genovese G, Colonna C, Marzano AV. Varicella-like exanthem associated with COVID-19 in an 8-year-old girl: A diagnostic clue?Pediatr Dermatol . 2020; doi: 10.1111/pde.14201.
47. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res . 2020; doi: 10.1016/j.trsl.2020.04.007.
48. Landa N, Mendieta-Eckert M, Fonda-Pascual P, Aguirre T. Chilblain-like lesions on feet and hands during the COVID-19 Pandemic.Int J Dermatol . 2020;59(6):739-743.
49. Kolivras A, Dehavay F, Delplace D, et al. Coronavirus (COVID-19) infection-induced chilblains: A case report with histopathologic findings. JAAD Case Rep . 2020; doi: 10.1016/j.jdcr.2020.04.011.
50. Fernandez-Nieto D, Jimenez-Cauhe J, Suarez-Valle A, et al. Characterization of acute acro-ischemic lesions in non-hospitalized patients: a case series of 132 patients during the COVID-19 outbreak.J Am Acad Dermatol . 2020; doi: 10.1016/j.jaad.2020.04.093.
51. Drago F, Ciccarese G, Gasparini G, et al. Contemporary infectious exanthems: an update. Future Microbiol . 2017;12:171-193.
52. Keighley CL, Saunderson RB, Kok J, Dwyer DE. Viral exanthems.Curr Opin Infect Dis . 2015;28(2):139-150.
53. Molina-Ruiz AM, Santonja C, Rütten A, Cerroni L, Kutzner H, Requena L. Immunohistochemistry in the diagnosis of cutaneous viral infections–part I. Cutaneous viral infections by herpesviruses and papillomaviruses. Am J Dermatopathol . 2015;37(1):1-14.
54. Molina-Ruiz AM, Santonja C, Rütten A, Cerroni L, Kutzner H, Requena L. Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol . 2015;37(2):93-106.
55. Jimenez-Cauhe J, Ortega-Quijano D, Carretero-Barrio I, et al. Erythema multiforme-like eruption in patients with COVID-19 infection: clinical and histological findings. Clin Exp Dermatol . 2020. doi: 10.1111/ced.14281.
56. Janah H, Zinebi A, Elbenaye J. Atypical Erythema Multiforme Palmar Plaques Lesions Due to Sars-Cov-2. J Eur Acad Dermatol Venereol . 2020. doi: 10.1111/jdv.16623.
57. Torrelo A, Andina D, Santonja C, Noguera-Morel L, et al. Erythema multiforme-like lesions in children and COVID-19. Pediatr Dermatol . 2020. doi: 10.1111/pde.14246.
58. Robustelli Test E, Vezzoli P, Carugno A, Raponi F, Gianatti A, Rongioletti F, Sena P. Acute Generalized Exanthematous Pustulosis with Erythema Multiforme-Like lesions in a COVID-19 woman. J Eur Acad Dermatol Venereol . 2020. doi: 10.1111/jdv.16613..
59. Poonawalla T, Kelly B. Urticaria : a review. Am J Clin Dermatol. 2009;10(1):9-21.
60. Sharlala H, Adebajo A. Virus-induced vasculitis. Curr Rheumatol Rep. 2008;10(6):449-452.
61. Millikan LE, Flynn TC. Infectious etiologies of cutaneous vasculitis. Clin Dermatol . 1999;17(5):509-514.
62. Belizna CC, Hamidou MA, Levesque H, Guillevin L, Shoenfeld Y. Infection and vasculitis. Rheumatology (Oxford). 2009;48(5):475-482.
63. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet . 2020;395(10234):1417-1418.
64. Zulli A, Burrell LM, Buxton BF, Hare DL. ACE2 and AT4R are present in diseased human blood vessels. Eur J Histochem . 2008;52(1):39-44.
65. Lucio Verdoni, Angelo Mazza, Annalisa Gervasoni, et al. An Outbreak of Severe Kawasaki-like Disease at the Italian Epicentre of the SARS-CoV-2 Epidemic: An Observational Cohort Study. Lancet . 2020; doi: 10.1016/S0140-6736(20)31103-X.
66. Fernandez-Nieto D, Jimenez-Cauhe J, Suarez-Valle A, et al. Characterization of acute acro-ischemic lesions in non-hospitalized patients: a case series of 132 patients during the COVID-19 outbreak.J Am Acad Dermatol . 2020:S0190-9622(20)30709-X.
67. Andina D, Noguera-Morel L, Bascuas-Arribas M, et al. Chilblains in children in the setting of COVID-19 pandemic. Pediatr Dermatol . 2020; doi: 10.1111/pde.14215.
68. Locatelli AG, Robustelli Test E, Vezzoli P, et al. Histologic features of long lasting chilblain-like lesions in a pediatric COVID-19 patient. J Eur Acad Dermatol Venereol . 2020; doi: 10.1111/jdv.16617.
69. Shipley D, Ormerod AD. Drug-induced urticaria. Recognition and treatment. Am J Clin Dermatol . 2001;2(3):151-158.
70. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA . 1998;279(15):1200-1205.
71. Bigby M, Jick S, Jick H, Arndt K. Drug-induced cutaneous reactions. A report from the Boston Collaborative Drug Surveillance Program on 15,438 consecutive inpatients, 1975 to 1982. JAMA . 1986;256(24):3358-3363.
72. Singh S, Khandpur S, Arava S, Rath R, Ramam M, Singh M, Sharma VK, Kabra SK. Assessment of histopathological features of maculopapular viral exanthem and drug-induced exanthem. J Cutan Pathol . 2017 Dec;44(12):1038-1048.
73. Martínez-Cabriales SA, Rodríguez-Bolaños F, Shear NH. Drug Reaction With Eosinophilia and Systemic Symptoms (DReSS): How Far Have We Come?Am J Clin Dermatol . 2019;20(2):217-236.
74. ten Holder SM, Joy MS, Falk RJ. Cutaneous and systemic manifestations of drug-induced vasculitis. Ann Pharmacother . 2002;36(1):130-147.
75. Gómez E, Ruano M, Somoza ML, Fernández J, Blanca-López N. Role of T cells in non-immediate drug allergy reactions. Curr Opin Allergy Clin Immunol. 2019;19(4):294-301.
76. Khan DA. Cutaneous drug reactions. J Allergy Clin Immunol . 2012;130(5):1225-1225.