REFERENCES
Seger N, Soll R. Animal derived surfactant extract for treatment of
respiratory distress syndrome. Cochrane Database Syst Rev 2009;
(2): CD007836.
Rojas-Reyes MX, Morley CJ, Soll R. Pro- phylactic versus selective use
of surfactant in preventing morbidity and mortality in preterm infants.Cochrane Database Syst Rev. 2012; 3(3): CD000510.
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, et al.
European Consensus Guidelines on the Management of Respiratory Distress
Syndrome - 2019 Update. Neonatology. 2019;115(4):432-50.
Permall DL, Pasha AB, Chen XQ. Current insights in non-invasive
ventilation for the treatment of neonatal respiratory disease.Ital J Pediatr . 2019;45(1):105.
Li J, Li X, Huang X, Zhang Z. Noninvasive high-frequency oscillatory
ventilation as respiratory support in preterm infants: a meta-analysis
of randomized controlled trials. Respir Res . 2019;20(1):58
Wilkinson D, Andersen C, O’Donnell CP, De Paoli AG, Manley BJ. High flow
nasal cannula for respiratory support in preterm infants. Cochrane
Database Syst Rev. 2016;2:Cd006405.
Hong H, Li XX, Li J, Zhang ZQ. High-flow nasal cannula versus nasal
continuous positive airway pressure for respiratory support in preterm
infants: a meta-analysis of randomized controlled trials. J Matern
Fetal Neonatal Med . 2019:1-8.
Fleeman N, Dundar Y, Shah PS, Shaw BN. Heated Humidified High-Flow Nasal
Cannula for Preterm Infants: An Updated Systematic Review and
Meta-analysis. Int J Technol Assess Health Care.2019;35(4):298-306.
Lemyre B, Laughon M, Bose C, Davis PG. Early nasal intermittent positive
pressure ventilation (NIPPV) versus early nasal continuous positive
airway pressure (NCPAP) for preterm infants. Cochrane Database
Syst Rev. 2016;12:Cd005384.
Isayama T, Iwami H, McDonald S, Beyene J. Association of Noninvasive
Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia
Among Preterm Infants: A Systematic Review and Meta-analysis.Jama. 2016;316(6):611-24.
Viraraghavan V R, Kiran More, B. H. Prathik, Charles Roehr. Efficacy of
non-invasive modalities of primary respiratory support in preterm
neonates with RDS: systematic review and network meta-analysis.
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=177474.
Accessed May 30 2020.
Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et
al. The PRISMA extension statement for reporting of systematic reviews
incorporating network meta-analyses of health care interventions:
checklist and explanations. Annals of internal medicine. 2015;
162(11):777–84.
Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of
subependymal and intraventricular hemorrhage: a study of infants with
birth weights less than 1500 gm. J Pediatr . 1978;92 (4):529-534.
Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing
enterocolitis: therapeutic decisions based upon clinical staging.Ann Surg . 1978;187(1):1-7.
International Committee for the Classification of Retinopathy of
Prematurity. The International Classification of Retinopathy of
Prematurity revisited. Arch Ophthalmol . 2005;123(7):991-999.
Higgins J, Green S. Cochrane Handbook for Systematic Reviews of
Interventions Version 5.1.0 [updated March 2011]. The Cochrane
Collaboration, 2011. http://handbook.cochrane.org. Accessed April 26,
2020.
Shim SR, Kim SJ, Lee J, Rucker G. Network meta-analysis: application and
practice using R software. Epidemiol Health. 2019;41:e2019013.
Béliveau A, Boyne DJ, Slater J, Brenner D, Arora P. BUGSnet: an R
package to facilitate the conduct and reporting of Bayesian network
Meta-analyses. BMC Med Res Methodol . 2019;19(1):196.
Brooks S, Gelman A. General methods for monitoring convergence of
iterative simulations. J Comput Graph Stat . 1998;7(4):434-455.
Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed
treatment comparison meta-analysis. Stat Med . 2010;29(7-8):
932-944.
Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical
summaries for presenting results from multiple-treatment meta-analysis:
an overview and tutorial. J Clin Epidemiol . 2011;64(2): 163-171.
Puhan MA, Schünemann HJ, Murad MH, et al; GRADE Working Group. A GRADE
Working Group approach for rating the quality of treatment effect
estimates from network meta-analysis. BMJ . 2014; 349:g5630.
Nair G, Karna P. Comparison of the effects of Vapotherm and nasal CPAP
in respiratory distress. Pediatric Academic Societies Meeting; 2005 May
14-17; Washington, DC; http://www.abstracts2view.com/pas/ (accessed
April 2020): E– PAS2005:57:2054.
Iranpour R, Sadeghnia A, Hesaraki M. High-flow nasal cannula versus
nasal continuous positive airway pressure in the management of
respiratory distress syndrome. Journal of Isfahan Medical School2011; 29(143):1.
Yoder BA, Stoddard RA, Li M, King J, Dirnberger DR, Abbasi S. Heated,
humidified high-flow nasal cannula versus nasal CPAP for respiratory
support in neonates. Pediatrics 2013; 131: e1482–90.
Kadivar MM, Mosayebi ZM, Razi NM, Nariman SM, Sangsari RM .High flow
nasal cannulae versus nasal continuous positive airway pressure in
neonates with respiratory distress syndrome managed with insure method:
a randomized clinical trial. Iran J Med Sci 2016; 41: 494–500.
Roberts CT, Owen LS, Manley BJ, et al. (2016) Nasal high-flow therapy
for primary respiratory support in preterm infants. N Engl J Med2016; 375: 1142–1151.
Shin J, Park K, Lee EH, Choi BM. Humidified High Flow Nasal Cannula
versus Nasal Continuous Positive Airway Pressure as an Initial
Respiratory Support in Preterm Infants with Respiratory Distress: A
Randomized, Controlled Non- Inferiority Trial. J Korean Med Sci2017; 32:650-5.
Murki S, Singh J, Khant C, et al. High-Flow Nasal Cannula versus Nasal
Continuous Positive Airway Pressure for Primary Respiratory Support in
Preterm Infants with Respiratory Distress: A Randomized Controlled
Trial. Neonatology 2018; 113:235-41.
Shokouhi M, Basiri B, Sabzehei M K, Mahdiankhoo M , Pirdehghan A.
Efficacy and Complications of Humidified High-Flow Nasal Cannula Versus
Nasal Continuous Positive Airway Pressure in Neonates with Respiratory
Distress Syndrome After Surfactant Therapy, Iran Red Crescent Med
J . 2019 ; 21(2):e83615.
Sharma P, Poonia A, Bansal R. Comparison of efficacy of nasal continuous
positive airway pressure and heated humidified high-flow nasal cannula
as a primary mode of respiratory support in preterm infants.Journal of Clinical Neonatology . 2019;8(2):102-5
Demirel G, Vatansever B, Tastekin A.High Flow Nasal
Cannula versus Nasal Continuous Positive Airway Pressure for Primary
Respiratory Support in Preterm Infants: A Prospective Randomized Study.American Journal of Perinatology. 2019; https://doi.org/
10.1055/s-0039-1696673.
Lista G, Castoldi F, Fontana P, Daniele I, Cavigioli F, Rossi S, et al.
Nasal continuous positive airway pressure (CPAP) versus bi-level nasal
CPAP in preterm babies with respiratory distress syndrome: a randomised
control trial. Archives of Disease in Childhood. Fetal and
Neonatal Edition. 2009;95(2):F85–9.
Kong LK, Kong XY, Li LH, et al. Comparative study on application of duo
positive airway pressure and continuous positive airway pressure in
preterm neonates with respiratory distress syndrome. Zhongguo Dang
Dai Er Ke Za Zhi . 2012;14(12):888-892.
Wood FE, Gupta S, Tin W, Sinha S. Randomised controlled trial of
synchronised intermittent positive airway pressure (SiPAP) versus
continuous positive airway pressure (CPAP) as a primary mode of
respiratory support in preterm infants with respiratory distress
syndrome. Archives of Disease in Childhood 2013;98(Suppl
1):A1–117.
Gao X, Yang B, Hei M, Cui X, Wang J, Zhou G, et al. Application of three
kinds of non-invasive positive pressure ventilation as a primary mode of
ventilation in premature infants with respiratory distress syndrome: a
randomized controlled trial.Zhonghua Er Ke Za Zhi. 2014;52(1):34-40.
Aguiar T, Macedo I, Voutsen O, et al. Nasal bilevel vs continuous
positive airway pressure in preterm infants: a randomized controlled
trial. J Clin Trials . 2015;5(3):221.
B. Zhou, J.-F. Zhai, H.-X. Jiang, Y. Liu, B. Jin, Y.-Y. Zhang, J.-B. Wu.
Usefulness of DuoPAP in the treatment of very low birth weight preterm
infants with neonatal respiratory distress syndrome. Eur Rev Med
Pharmacol Sci. 2015; 19(4): 573-577
Sadeghnia A, Barekateyn B, Badiei Z, Hosseini SM. Analysis and
comparison of the effects of N-BiPAP and Bubble-CPAP in treatment of
preterm newborns with the weight of below 1500 grams affiliated with
respiratory distress syndrome: A randomised clinical trial. Adv
Biomed Res . 2016;5:3.
Lee MJ, Choi EK, Park KH, Shin J, Choi BM. Effectiveness of nCPAP for
moderate preterm infants compared to BiPAP: A Randomized, Controlled
Non-Inferiority Trial. Pediatr Int. 2020;62(1):59-64.
Bisceglia M, Belcastro A, Poerio V, Raimondi F, Mesuraca L, Crugliano C,
et al. A comparison of nasal intermittent versus continuous positive
pressure delivery for the treatment of moderate respiratory distress
syndrome in preterm infants. Minerva Pediatrica 2007;59(2):91–5.
Sai Sunil Kishore M, Dutta S, Kumar P. Early nasal intermittent positive
pressure ventilation versus continuous positive airway pressure for
respiratory distress syndrome. Acta Paediatrica2009;98(9):1412–5.
Meneses J, Bhandari V, Alves JG, Herrmann D. Noninvasive ventilation for
respiratory distress syndrome: a randomized controlled trial.Pediatrics 2011;127(2):300–7.
Fu CH, Xia SW. [Clinical application of nasal intermittent positive
pressure ventilation in initial treatment of neonatal respiratory
distress syndrome]. Zhongguo Dang Dai Er Ke Za Zhi. 2014;16(5):460-4.
Sasi A, Skariah T, Lewis L. Early nasal intermittent mandatory
ventilation (NIMV) versus nasal continuous positive airway pressure
(NCPAP) for respiratory distress syndrome (RDS) in infants 28 to 36
weeks gestation - a randomized controlled trial. Journal of
Paediatrics and Child Health 2013;49(Suppl 2):34–5.
Armanian AM, Badiee Z, Heidari G, Feizi A, Salehimehr N. Initial
treatment of respiratory distress syndrome with nasal intermittent
mandatory ventilation versus nasal continuous positive airway pressure:
a randomized controlled trial. International Journal of Preventive
Medicine 2014;5(12): 1543–51. ; PUBMED: 25709790
Shi Y, Tang S, Zhao J, Shen J. A prospective, randomized, controlled
study of NIPPV versus nCPAP in preterm and term infants with respiratory
distress syndrome. Pediatr Pulmonol. 2014;49(7):673-8.
Salama GS, Ayyash FF, Al-Rabadi AJ, Alquran ML, Shakkoury AG. Nasal-IMV
versus nasal-CPAP as an initial mode of respiratory support for
premature infants with RDS: a prospective randomized clinical trial.Rawal Journal Medical 2015;40(2):197–202.
Chen L, Wang L, Li J, Wang N, Shi Y. Noninvasive Ventilation for Preterm
Twin Neonates with Respiratory Distress Syndrome: A Randomized
Controlled Trial. Sci Rep . 2015;5:14483.
Oncel MY, Arayici S, Uras N, Alyamac-Dizdar E, Sari FN, Karahan S, et
al. Nasal continuous positive airway pressure versus nasal intermittent
positive-pressure ventilation within the minimally invasive surfactant
therapy approach in preterm infants: a randomised controlled trial.Arch Dis Child Fetal Neonatal Ed. 2016;101(4):F323-8.
Dursun M, Uslu S, Bulbul A, Celik M, Zubarioglu U, Bas EK. Comparison of
Early Nasal Intermittent Positive Pressure Ventilation and Nasal
Continuous Positive Airway Pressure in Preterm Infants with Respiratory
Distress Syndrome. J Trop Pediatr. 2019;65(4):352-60.
Gharehbaghi MM, Hosseini MB, Eivazi G, Yasrebinia S. Comparing the
Efficacy of Nasal Continuous Positive Airway Pressure and Nasal
Intermittent Positive Pressure Ventilation in Early Management of
Respiratory Distress Syndrome in Preterm Infants. Oman Med J.
2019;34(2):99-104.
Ann Skariah T, Edward Lewis L. Early Nasal Intermittent Positive
Pressure Ventilation (NIPPV) versus Nasal Continuous Positive Airway
Pressure (NCPAP) for Respiratory Distress Syndrome (RDS) in Infants of
28-36 weeks gestational age: a Randomized Controlled Trial.Iranian Journal of Neonatology IJN. 2019;10(2):1-8.
Kugelman A, Riskin A, Said W, Shoris I, Mor F, Bader D. A randomized
pilot study comparing heated humidified high-flow nasal cannulae with
NIPPV for RDS. Pediatric Pulmonology 2015;50(6):576–83. ;
PUBMED: 24619945
Wang Z, Xiang JW, Gao WW, Shen YZ, Zhou WJ, Chen J, et al. Comparison of
clinical efficacy of two noninvasive respiratory support therapies for
respiratory distress syndrome in very low birth weight preterm infants.Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(8):603-7
Salvo V, Lista G, Lupo E, Ricotti A, Zimmermann LJI, Gavilanes AWD, et
al. Noninvasive Ventilation Strategies for Early Treatment of RDS in
Preterm Infants: An RCT. Pediatrics. 2015;135(3):444-51.
Millar D, Lemyre B, Kirpalani H, Chiu A, Yoder BA, Roberts RS. A
comparison of bilevel and ventilator-delivered non-invasive respiratory
support. Arch Dis Child Fetal Neonatal Ed. 2016;101(1):F21-5.
Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE. NICE Decision
Support Unit Technical Support Documents. NICE DSU Technical Support
Document 4: Inconsistency in Networks of Evidence Based on Randomised
Controlled Trials. London: National Institute for Health and Care
Excellence (NICE). Apr 2014.
Roberts CT, Davis PG, Owen LS. Neonatal non-invasive respiratory
support: synchronised NIPPV, non-synchronised NIPPV or bi-level CPAP:
what is the evidence in 2013? Neonatology . 2013;104(3):203-9.
Reiterer F, Polin RA (2016) Non-invasive Ventilation in Preterm Infants:
A Clinical Review. Int J Pediatr Neonat Care. 2016; 2: 118.