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Abstract. In this research, we offer two new quantum integral equalities for recently defined qb-
integral and derivative, the derived equalities then used to prove quantum integral inequalities of
Simpson’s and Newton’s type for preinvex functions. We also considered the special cases of es-

tablished results and offer several new and existing results inside the literature of Simpson’s and
Newton’s type inequalities.

1. Introduction

A lot of research work has been carried out in the field of q-analysis, initially initiated by Euler. It
provides a suitable framework to study models in quantum computing q-calculus which appeared as
a connection between mathematics and physics. It has a lot of applications in different mathematical
areas such as number theory, combinatorics, orthogonal polynomials, basic hypergeometric functions,
and other disciplines such as quantum theory, mechanics, and the theory of relativity [12–14, 16, 18].
Apparently, Euler is the founder of this branch of mathematics, where the parameter q is used in
Newton’s work of infinite series. Later, Jackson was the first to develop q-calculus that is known as
”without limits calculus” in a systematic way [12]. In 1908-1909, Jackson defined the general q-integral
and q-difference operator [16]. In 1969, Agarwal [1] described the q-fractional derivative for the first
time . In 1966-1967, Al-Salam [2] introduced a q-analogs of the Riemann-Liouville fractional integral
operator and q-fractional integral operator. In 2004, Rajkovic [27] gave a definition of the Riemann-
type q-integral which was the generalizion of Jackson q-integral. In 2013, Tariboon introduced ε1Dq-
difference operator [4].

Many integral inequalities well known in classical analysis such as Hölder inequality, Simpson’s in-
equality, Newton’s inequality, Hermite-Hadamard inequality and Ostrowski inequality, Cauchy-Bunyakovsky-
Schwarz, Gruss, Gruss- Cebysev, and other integral inequalities have been proved and applied in the
setup of q-calculus using classical convexity. Many mathematicians have done studies in q-calculus
analysis, the interested reader can check [6–9,17,19,20,22–24,26,30].

Simpson’s rules provide useful technique for the numerical integration and the numerical estimations
of definite integrals. This method is known to be developed by Thomas Simpson (1710–1761). However,
Johannes Kepler used a similar approximation about 100 years ago, so this method is also known as
Kepler’s rule. Simpson’s rule includes the three-point Newton-Cotes quadrature rule, so estimations
based on three steps quadratic kernel is sometimes called as Newton type results. Note that,

1: Simpson’s 1/3 formula is given as

1

ε2 − ε1

∫ ε2

ε1

Φ(µ) dµ ≈ 1

6

[
Φ(ε1) + 4Φ

(
ε1 + ε2

2

)
+Φ(ε2)

]
.

2: Simpson’s 3/8 formula is given as follows

1

ε2 − ε1

∫ ε2

ε1

Φ(µ) dµ ≈ 1

8

[
Φ(ε1) + 3Φ

(
2ε1 + ε2

3

)
+ 3Φ

(
ε1 + 2ε2

3

)
+Φ(ε2)

]
.

There are a large number of estimations related to these quadrature rules in the literature, one of
them is the following estimations known as Simpson’s inequality:
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Theorem 1. Let Φ : [ε1, ε2] → R be a four times continuously differentiable function on (ε1, ε2), and∥∥∥Φ(4)
∥∥∥
∞

= sup
µ∈(ε1,ε2)

∣∣∣Φ(4) (µ)
∣∣∣ < ∞.

Then, we have the following inequality∣∣∣∣13
[
Φ(ε1) + Φ (ε2)

2
+ 2Φ

(
ε1 + ε2

2

)]
− 1

ε2 − ε1

∫ ε2

ε1

Φ(µ) dµ

∣∣∣∣ ≤ 1

2880

∥∥∥Φ(4)
∥∥∥
∞

(ε2 − ε1)
4
.

In recent years, many authors have considered Simpson’s type inequalities for various classes of
functions. Convex analysis provide effective and strong methods for solving a great number of problems
which arise different branches in pure and applied mathematics. Some mathematicians have worked on
Simpson’s and Newton’s type results for convex mappings. For example, Dragomir et al. [10] presented
new Simpson’s type results and their applications to quadrature formula in numerical integration.
Some Simpson’s type inequalities for s-convex functions are deduced by Alomari et al. [3]. Afterwards,
Sarikaya et al. [28] observed the variants of Simpson’s type inequalities based on convexity. Noor
et al. [21, 25] provided some Newton’s type inequalities for harmonic convex and p-harmonic convex
functions. Furthermore, some Newton’s type inequalities for functions whose local fractional derivatives
are generalized convex were obtained by Iftikhar et al. [15].

The main objective of this paper is to study Newton’s and Simpson’s type inequalities for preinvex
functions by using the notions of quantum calculus.

2. Preliminaries and Definitions of q-Calculus

The basic notions and findings which are needed in the sequel to prove our crucial results are
reviewed in this section. Throughout this paper, we assume that ε1 < ε2 and 0 < q < 1. Let ω be a
nonempty closed set in Rn, Φ : ω → R a continuous function and η (., .) : ω× ω → Rn be a continuous
bifunction.

Definition 1. [9] A set ω is said to be invex set with respect to bifunction η (., .) if

ε2 + tη (ε1, ε2) ∈ ω, ∀ ε1, ε2 ∈ ω, t ∈ [0, 1] .

The invex set ω is also known as η-connected set.

Definition 2. [9] A mapping Φ is said to be preinvex with respect to an arbitrary bifunction η (., .) if
the following inequality holds:

Φ(ε2 + tη (ε1, ε2)) ≤ tΦ (ε1) + (1− t)Φ (ε2) , ∀ ε1, ε2 ∈ ω, t ∈ [0, 1] .

The function Φ is called preconcave if −Φ is preinvex.

Remark 1. If we set η (ε1, ε2) = ε1 − ε2, then the definition of preinvex functions reduces to the
definition of a convex functions given below;

Φ(ε2 + t (ε1 − ε2)) ≤ tΦ(ε1) + (1− t)Φ (ε2) , ∀ ε1, ε2 ∈ ω, t ∈ [0, 1] .

Now we present some well known concepts and theorems for q- derivative and q- integral of a function
Φ on [ε1, ε2].

Definition 3. [4,18] For a continuous function Φ : [ε1, ε2] → R, the qε1- derivative of Φ at µ ∈ [ε1, ε2]
is characterized by the expression

(2.1) ε1DqΦ(µ) =
Φ (µ)− Φ(qµ+ (1− q) ε1)

(1− q) (µ− ε1)
, µ ̸= ε1.

Since Φ : [ε1, ε2] → R is a continuous function, thus we can define

ε1DqΦ(ε1) = lim
µ→ε1

ε1DqΦ(µ) .

The function Φ is said to be qε1- differentiable on [ε1, ε2] if ε1DqΦ(µ) exists for all µ ∈ [ε1, ε2].

If ε1 = 0 in (2.1), then 0DqΦ(µ) = DqΦ(µ) , where DqΦ(µ) is the familiar q-derivative of Φ at
µ ∈ [ε1, ε2] defined as follows ( see, [18]);

(2.2) DqΦ(µ) =
Φ (µ)− Φ(qµ)

(1− q)µ
, µ ̸= 0.
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Definition 4. [29] Let Φ : [ε1, ε2] → R be a continuous function. Then, the qε1-definite integral on
[ε1, ε2] is defined by

(2.3)

µ∫
ε1

Φ(s) ε1dqs = (1− q) (µ− ε1)

∞∑
n=0

qnΦ(qnµ+ (1− qn) ε1) , µ ∈ [ε1, ε2] .

Remark 2. If ε1 = 0 in (2.3), then
µ∫
0

Φ(s) 0dqs =
µ∫
0

Φ(s) dqs , where
µ∫
0

Φ (s) dqs is the familiar

q-definite integral (see, [18]) on [0, µ] defined by

(2.4)

µ∫
0

Φ(s) 0dqs =

µ∫
0

Φ(s) dqs = (1− q)µ

∞∑
n=0

qnΦ(qnµ) .

Definition 5. If c ∈ (ε1, µ), then the q- definite integral on [c, µ] is expressed as

(2.5)

µ∫
c

Φ(s) ε1dqs =

µ∫
ε1

Φ(s) ε1dqs −
c∫

ε1

Φ(s) ε1dqs .

Alp et al. [4] proved the following q-Hermite-Hadamard inequality:

Theorem 2. (qε1-Hermite-Hadamard inequality) Let Φ : [ε1, ε2] → R be a convex differentiable func-
tion on [ε1, ε2] and 0 < q < 1. Then we have

Φ

(
qε1 + ε2
1 + q

)
≤ 1

ε2 − ε1

ε2∫
ε1

Φ(µ) ε1dqµ ≤ qΦ(ε1) + Φ (ε2)

1 + q
.

On the other hand, Bermudo et al. [5] gave the following new definitions of quantum integral and
derivative. In the same paper authors proved a new variant of quantum Hermite-Hadamard type
inequality linked with their newly defined quantum integral:

Definition 6. [5] Let Φ : [ε1, ε2] → R be a continuous function. Then, the qε2-definite integral on
[ε1, ε2] is given by

ε2∫
ε1

Φ(µ) ε2dqµ = (1− q) (ε2 − ε1)
∞∑

n=0

qnΦ(qnε1 + (1− qn) ε2) = (ε2 − ε1)

1∫
0

Φ(sε1 + (1− s) ε2) dqs .

Definition 7. [5] Let Φ : [ε1, ε2] → R be a continuous function. The qε2-derivative of Φ at µ ∈ [ε1, ε2]
is given by

ε2DqΦ(µ) =
Φ (qµ+ (1− q) ε2)− Φ(µ)

(1− q) (ε2 − µ)
, µ ̸= ε2.

Theorem 3. [5] (qε2-Hermite-Hadamard inequality) If Φ : [ε1, ε2] → R is a convex differentiable
function on [ε1, ε2] and 0 < q < 1. Then, qε2-Hermite-Hadamard inequalities are given as follows:

(2.6) Φ

(
ε1 + qε2
1 + q

)
≤ 1

ε2 − ε1

ε2∫
ε1

Φ(µ) ε2dqµ ≤ Φ(ε1) + qΦ(ε2)

1 + q
.

Let us set the following notations:

[n]q =

 qn−1
q−1 =

n−1∑
i=0

qi, n ∈ N

qn−1
q−1 , n ∈ C

,

and

(2.7) (1− s)
n
q = (s, q)n =

n−1∏
i=0

(
1− qis

)
.
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Lemma 1. [4] For α ∈ R\ {−1}, the following formula holds:

(2.8)

µ∫
ε1

(s− ε1)
α

ε1dqs =
(µ− ε1)

α+1

[α+ 1]q
.

3. Quantum Integral Identities

In this section, we will prove two equalities which will help us to obtain our main results.

Lemma 2. Let Φ : I = [ε2 + η (ε1, ε2) , ε2] → R be a differentiable function on I◦(interior of I) with
−η (ε1, ε2) = η (ε2, ε1) > 0. Then the following identity holds for qε2-integrals:

1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ− 1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]
(3.1)

= η (ε2, ε1)

∫ 1

0

ϖq (t)
ε2DqΦ(ε2 + tη (ε1, ε2)) dqt

where

ϖq (t) =

 qt− 1
6 , if 0 ≤ t < 1

2 ,

qt− 5
6 , if 1

2 ≤ t ≤ 1.

Proof. Using the basic properties of q-integral and definition of ϖq (t), we have∫ 1

0

ϖq (t)
ε2DqΦ(ε2 + tη (ε1, ε2)) dqt(3.2)

=
2

3

∫ 1
2

0

ε2DqΦ(ε2 + tη (ε1, ε2)) dqt+

∫ 1

0

qt ε2DqΦ(ε2 + tη (ε1, ε2)) dqt

−5

6

∫ 1

0

ε2DqΦ(ε2 + tη (ε1, ε2)) dqt.

From Definition 7, we have

ε2DqΦ(ε2 + tη (ε1, ε2)) =
Φ (ε2 + tqη (ε1, ε2))− Φ(ε2 + tη (ε1, ε2))

(1− q) tη (ε2, ε1)
.

We now compute the integrals on the right side of (3.2). Using Definition 6, we obtain that∫ 1
2

0

ε2DqΦ(ε2 + tη (ε1, ε2)) dqt(3.3)

=

∫ 1
2

0

Φ(ε2 + tqη (ε1, ε2))− Φ(ε2 + tη (ε1, ε2))

(1− q) tη (ε2, ε1)
dqt

=
1

η (ε2, ε1)

[ ∞∑
n=0

Φ

(
ε2 +

qn+1

2
η (ε1, ε2)

)
−

∞∑
n=0

Φ

(
ε2 +

qn

2
η (ε1, ε2)

)]

=
1

η (ε2, ε1)

[
Φ(ε2)− Φ

(
2ε2 + η (ε1, ε2)

2

)]
,

∫ 1

0

ε2DqΦ(ε2 + tη (ε1, ε2)) dqt(3.4)

=
1

η (ε2, ε1)
[Φ (ε2)− Φ(ε2 + η (ε1, ε2))]
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and ∫ 1

0

qt ε2DqΦ(ε2 + tη (ε1, ε2)) dqt(3.5)

=

∫ 1

0

q
Φ(ε2 + tqη (ε1, ε2))− Φ(ε2 + tη (ε1, ε2))

(1− q) η (ε2, ε1)
dqt

=
1

η (ε2, ε1)

[
(1− q)

∞∑
n=0

qnΦ(ε2 + qnη (ε1, ε2))− Φ (ε2 + η (ε1, ε2))

]

=
1

η (ε2, ε1)

[
1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ− Φ(ε2 + η (ε1, ε2))

]
.

Finally, by substituting (3.3)-(3.5) in (3.2) and multiplying the resultant equality by η (ε2, ε1), we
obtain the required identity which completes the proof. �

Remark 3. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Lemma 2, then Lemma 2 reduces
to [8, Lemma 2].

Lemma 3. Let Φ : I = [ε2 + η (ε1, ε2) , ε2] → R be a differentiable function on I◦ (interior of I) with
−η (ε1, ε2) = η (ε2, ε1) > 0. Then the following identity holds for qε2-integrals:

1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ

−1

8

[
Φ(ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]
= η (ε2, ε1)

∫ 1

0

Πq (t)
ε2Dq (ε2 + tη (ε1, ε2)) dqt

where

Πq (t) =


qt− 1

8 , if 0 ≤ t < 1
3 ,

qt− 1
2 , if 1

3 ≤ t < 2
3 ,

qt− 7
8 , if 2

3 ≤ t ≤ 1.

Proof. By the fundamental properties of q-integrals and definition of Πq (t), we obtain that∫ 1

0

Πq (t)
ε2Dq (ε2 + tη (ε1, ε2)) dqt =

3

8

∫ 1
3

0

ε2Dq (ε2 + tη (ε1, ε2)) dqt+
3

8

∫ 2
3

0

ε2Dq (ε2 + tη (ε1, ε2)) dqt

+

∫ 1

0

(
qt− 7

8

)
ε2Dq (ε2 + tη (ε1, ε2)) dqt.

Following arguments similar to those in the proof of Lemma 2, the required identity can be proved. �

Remark 4. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Lemma 3, then Lemma 3
becomes [8, Lemma 3].

4. Simpson’s type inequalities for quantum Integrals

In this section, we present some new Simpson’s type inequalities for preinvex functions by using the
Lemma 2.
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Theorem 4. We assume that the conditions of Lemma 2 hold. If |ε2DqΦ| is preinvex and integrable
on I. Then, the following inequality holds for qε2-integrals:∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ

−1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]∣∣∣∣
≤ η (ε2, ε1) [A1 (q) +A3 (q) |ε2DqΦ (ε1)|+ (A2 (q) +A4 (q)) |ε2DqΦ(ε2)|]

where Ai, i = 1, 2, 3, 4 are defined by

A1 (q) =

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ tdqt =


1−2q−2q2

24(1+q)(1+q+q2) , if 0 < q < 1
3

18q2+18q−7
216(1+q)(1+q+q2) , if 1

3 ≤ q < 1,

A2 (q) =

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ (1− t) dqt =


1−4q3

24(1+q)(1+q+q2) , if 0 < q < 1
3

36q3+12q2+12q+1
216(1+q)(1+q+q2) , if 1

3 ≤ q < 1,

A3 (q) =

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ tdqt =


15−6q−6q2

24(1+q)(1+q+q2) , if 0 < q < 5
6

18q2+18q+25
216(1+q)(1+q+q2) , if 5

6 ≤ q < 1,

A4 (q) =

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ (1− t) dqt =


−5+8q+8q2−8q3

24(1+q)(1+q+q2) , if 0 < q < 5
6

12q2+12q+5
216(1+q)(1+q+q2) , if 5

6 ≤ q < 1.

Proof. On taking modulus on the right hand side of an identity in Lemma 2 and using the properties
of modulus , we obtain that∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ −1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]∣∣∣∣(4.1)

≤ η (ε2, ε1)

[∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ(ε2 + tη (ε1, ε2))| dqt

+

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ(ε2 + tη (ε1, ε2))| dqt

]
.

Since |ε2DqΦ| is preinvex function, we have∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ(tε1 + (1− t) ε2)| dqt(4.2)

≤ |ε2DqΦ(ε1)|
∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ tdqt+ |ε2DqΦ(ε2)|
∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ (1− t) dqt

= A1 (q) |ε2DqΦ(ε1)|+A2 (q) |ε2DqΦ(ε2)|
and ∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ(tε1 + (1− t) ε2)| dqt(4.3)

≤ |ε2DqΦ(ε1)|
∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ tdqt+ |ε2DqΦ(ε2)|
∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ (1− t) dqt

= A3 (q) |ε2DqΦ(ε1)|+A4 (q) |ε2DqΦ(ε2)| .
Finally, substituting (4.2) and (4.3) in (4.1), we obtain the desired inequality which completes the
proof. �
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Corollary 1. In Theorem 4, if we take limit q → 1−. Then, we have∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) dµ− 1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]∣∣∣∣∣
≤ 5η (ε2, ε1)

72
[|Φ′ (ε1)|+ |Φ′ (ε2)|]

which can be viewed as a special case of inequality derived in [11].

Therefore, we can deduce the following result for convex functions

Remark 5. If we set η (ε2, ε1) = ε2−ε1 and η (ε1, ε2) = ε1−ε2 in Theorem 4, then Theorem 4 reduces
to [8, Theorem 4].

Remark 6. If we set η (ε2, ε1) = ε2−ε1, η (ε1, ε2) = ε1−ε2, and q → 1− in Theorem 4, then Theorem
4 reduces to [3, Corollary 1].

Remark 7. In Theorem 4, if η (ε2, ε1) = ε2 − ε1, η (ε1, ε2) = ε1 − ε2, Φ(ε1) = Φ
(
ε1+ε2

2

)
= Φ(ε2),

and q → 1−. Then, Theorem 4 reduces to [3, Corollary 3].

The corresponding version of the Simpson’s inequality for powers in terms of the first q-derivative
is incorporated in the following result.

Theorem 5. We assume that the assumptions of Lemma 2 hold. If |ε2DqΦ|r is preinvex and integrable
on I where r > 1 with 1

r + 1
s = 1. Then, we have∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ− 1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]∣∣∣∣∣(4.4)

≤ 1

6
η (ε2, ε1)

[
21−

1
s

(
1

4 (1 + q)
|ε2DqΦ(ε1)|r +

2q + 1

4 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

+
(
5s − 2s−1

) 1
s

(
3

4 (1 + q)
|ε2DqΦ (ε1)|r +

2q − 1

4 (1 + q)
|ε2DqΦ(ε2)|r

) 1
r

]
.

Proof. Applying Hölder’s inequality on the first right integral of (4.1) and using the fact that |ε2DqΦ|r
is preinvex function, we have∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ(ε2 + tη (ε1, ε2))| dqt(4.5)

≤

(∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣s dqt

) 1
s
(
|ε2DqΦ(ε1)|r

∫ 1
2

0

tdqt+ |ε2DqΦ(ε2)|r
∫ 1

2

0

(1− t) dqt

) 1
r

.

Computing the integrals that appear on the right side of (4.5)∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣s dqt = (1− q)
1

2

∞∑
n=0

qn
∣∣∣∣qn+1

2
− 1

6

∣∣∣∣s
≤ (1− q)

1

2

∞∑
n=0

qn
∣∣∣∣12 − 1

6

∣∣∣∣s
≤ (1− q)

1

2

1

(1− q)

1

3s

≤ 1

2.3s
,∫ 1

2

0

tdqt = (1− q)
1

2

∞∑
n=0

q2n

2
=

1

4 (1 + q)

and ∫ 1
2

0

(1− t) dqt =
1 + 2q

4 (1 + q)
.
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So, we have ∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ (ε2 + tη (ε1, ε2))| dqt

≤
(

1

2.3s

) 1
s
[

1

4 (1 + q)
|ε2DqΦ(ε1)|r +

1 + 2q

4 (1 + q)
|ε2DqΦ(ε2)|r

] 1
r

.

Using the similar operations to the second integral on the right side of (4.1), we obtain that∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ(ε2 + tη (ε1, ε2))| dqt

≤
(
5s − 2s−1

6s

) 1
s
(

3

4 (1 + q)
|ε2DqΦ(ε1)|r +

2q − 1

4 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

.

Thus, the desired inequality can be easily obtained. �

Remark 8. If we set η (ε2, ε1) = ε2−ε1 and η (ε1, ε2) = ε1−ε2 in Theorem 5, then Theorem 5 reduces
to [8, Theorem 5].

Another version of the Simpson’s inequality for powers in terms of the first q-derivative is obtained
as follows:

Theorem 6. Suppose that the assumptions of Lemma 2 hold. If |ε2DqΦ|r is preinvex and integrable
on I where r ≥ 1. Then, we have∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ− 1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]∣∣∣∣∣(4.6)

≤ η (ε2, ε1) (A5 (q))
1− 1

r [A1 (q) |ε2DqΦ(ε1)|r +A2 (q) |ε2DqΦ(ε2)|r]
1
r

+η (ε2, ε1) (A6 (q))
1− 1

r [A3 (q) |ε2DqΦ(ε1)|r +A4 (q) |ε2DqΦ (ε2)|r]
1
r

where Ai, i = 1, 2, 3, 4 are defined as in Theorem 4. Furthermore, A5 and A6 are defined by

A5 (q) =

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ dqt =


1−2q
12(1+q) , if 0 < q < 1

3

6q−1
36(1+q) , if 1

3 ≤ q < 1,

A6 (q) =

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ dqt =


5−4q
12(1+q) , if 0 < q < 5

6

5
36(1+q) , if 5

6 ≤ q < 1.

Proof. Applying power mean inequality on the first right integral of (4.1) and using the fact that
|ε2DqΦ|r is preinvex function, we have∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ(ε2 + tη (ε1, ε2))| dqt

≤

(∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ dqt
)1− 1

r
(∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ |ε2DqΦ(ε2 + tη (ε1, ε2))|r dqt

) 1
r

≤

(∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ dqt
)1− 1

r

×

[
|ε2DqΦ(ε1)|r

∫ 1
2

0

∣∣∣∣qt− 1

6

∣∣∣∣ tdqt+ |ε2DqΦ(ε2)|r
∫ 1

2

0

∣∣∣∣qt− 1

6

∣∣∣∣ (1− t) dqt

] 1
r

= (A5 (q))
1− 1

r [A1 (q) |ε2DqΦ(ε1)|r +A2 (q) |ε2DqΦ(ε2)|r]
1
r .
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If we use the same operations to the second integral on the right side of (4.1), we can compute that

∫ 1

1
2

∣∣∣∣qt− 5

6

∣∣∣∣ |ε2DqΦ(tε1 + (1− t) ε2)| dqt

≤ (A6 (q))
1− 1

r [A3 (q) |ε2DqΦ(ε1)|r +A4 (q) |ε2DqΦ (ε2)|r]
1
r .

Thus, the required inequality can be easily proved. �

Corollary 2. If we take limit q → 1− in Theorem 6, then we have following inequality

∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) dµ− 1

6

[
Φ(ε2 + η (ε1, ε2)) + 4Φ

(
2ε2 + η (ε1, ε2)

2

)
+Φ(ε2)

]∣∣∣∣∣
≤ 51−

1
r

72
η (ε2, ε1)

[(
29

18
|Φ′ (ε1)|

r
+

61

18
|Φ′ (ε2)|

r
) 1

r

+

(
61

18
|Φ′ (ε1)|

r
+

29

18
|Φ′ (ε2)|

r
) 1

r

]

which can be viewed as a special case of inequality derived in [11].

Remark 9. If we set η (ε2, ε1) = ε2−ε1 and η (ε1, ε2) = ε1−ε2 in Theorem 6, then Theorem 6 reduces
to [8, Theorem 6].

Remark 10. In Theorem 6, if we take η (ε2, ε1) = ε2 − ε1, η (ε1, ε2) = ε1 − ε2, and q → 1−. Then,
we have following inequality

∣∣∣∣16
[
Φ(ε1) + 4Φ

(
ε1 + ε2

2

)
+Φ(ε2)

]
− 1

ε2 − ε1

∫ ε2

ε1

Φ(µ) dµ

∣∣∣∣
≤ 51−

1
r

72
(ε2 − ε1)

[(
29

18
|Φ′ (ε1)|

r
+

61

18
|Φ′ (ε2)|

r
) 1

r

+

(
61

18
|Φ′ (ε1)|

r
+

29

18
|Φ′ (ε2)|

r
) 1

r

]

which can be proved as a special case of inequality derived in [3].

5. Newton’s type inequalities for quantum integrals

In this section, we prove some Newton’s type inequalities for preinvex functions using the Lemma
3.

Theorem 7. We assume that the assumptions of Lemma 3 hold. If |ε2DqΦ| is preinvex and integrable
on I. Then, the following inequality holds for qε2-integrals:

∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ(5.1)

−1

8

[
Φ(ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]∣∣∣∣
≤ η (ε2, ε1) [(Ψ1 (q) + Ψ3 (q) + Ψ5 (q)) |ε2DqΦ(ε1)|+ (Ψ2 (q) + Ψ4 (q) + Ψ6 (q)) |ε2DqΦ(ε2)|]
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where

Ψ1 (q) =

∫ 1
3

0

∣∣∣∣qt− 1

8

∣∣∣∣ tdqt =


3−5q−5q2

216(1+q)(1+q+q2) 0 < q < 3
8

160q2+160q−69
6912(1+q)(1+q+q2)

3
8 < q < 1,

Ψ2 (q) =

∫ 1
3

0

∣∣∣∣qt− 1

8

∣∣∣∣ (1− t) dqt =


6−q−q2−15q3

216(1+q)(1+q+q2) 0 < q < 3
8

480q3+248q2+248q−3
6912(1+q)(1+q+q2)

3
8 < q < 1,

Ψ3 (q) =

∫ 2
3

1
3

∣∣∣∣qt− 1

2

∣∣∣∣ tdqt =


9−5q−5q2

54(1+q)(1+q+q2) 0 < q < 3
4

6q2+6q−3
108(1+q)(1+q+q2)

3
4 < q < 1,

Ψ4 (q) =

∫ 2
3

1
3

∣∣∣∣qt− 1

2

∣∣∣∣ (1− t) dqt =


5q+5q2−9q3

54(1+q)(1+q+q2) 0 < q < 3
4

6q3+3
108(1+q)(1+q+q2)

3
4 < q < 1,

Ψ5 (q) =

∫ 1

2
3

∣∣∣∣qt− 7

8

∣∣∣∣ tdqt =


105−47q−47q2

216(1+q)(1+q+q2) 0 < q < 7
8

224q2+224q+525
6912(1+q)(1+q+q2)

7
8 < q < 1,

Ψ6 (q) =

∫ 1

2
3

∣∣∣∣qt− 7

8

∣∣∣∣ (1− t) dqt =


−42+53q+53q2−57q3

216(1+q)(1+q+q2) 0 < q < 7
8

−96q3+184q2+184q−21
6912(1+q)(1+q+q2)

7
8 < q < 1.

Proof. Following arguments similar to those in the proof of Theorem 4 by taking into account the
Lemma 3, the desired inequality (5.1) is attained. �

Corollary 3. If we take q → 1− in Theorem 7, then we have following inequality∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) dµ

−1

8

[
Φ(ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]∣∣∣∣
≤ 25η (ε2, ε1)

576
[|Φ′ (ε1)|+ |Φ′ (ε2)|]

which can be viewed a special cases of inequality given in [11].

Remark 11. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 7, then Theorem 7
reduces to [8, Theorem 7].

Remark 12. If we set η (ε2, ε1) = ε2 − ε1, η (ε1, ε2) = ε1 − ε2, and q → 1− in Theorem 7, then we
have following inequality ∣∣∣∣ 1

ε2 − ε1

∫ ε2

ε1

Φ (µ) dµ

−1

8

[
Φ(ε1) + 3Φ

(
ε1 + 2ε2

3

)
+ 3Φ

(
2ε1 + ε2

3

)
+Φ(ε2)

]∣∣∣∣
≤ 25 (ε2 − ε1)

576
[|Φ′ (ε1)|+ |Φ′ (ε2)|]

which was derived as special case of an inequality proved in [15].
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Theorem 8. We assume that the assumptions of Lemma 3 hold. If |ε2DqΦ|r is preinvex and integrable
on I where r > 1 with 1

r + 1
s = 1. Then, we have

∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ(5.2)

−1

8

[
Φ(ε2 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]∣∣∣∣
≤ η (ε2, ε1)

[(
5s

3.8s

) 1
s
(

1

9 (1 + q)
|ε2DqΦ(ε1)|r +

3q + 2

9 (1 + q)
|ε2DqΦ(ε2)|r

) 1
r

+

(
2.3s − 1

3.6s

) 1
s
(

3

9 (1 + q)
|ε2DqΦ(ε1)|r +

3q

9 (1 + q)
|ε2DqΦ (ε2)|r

) 1
r

+

(
3.7s − 2

3.8s

) 1
s
(

5

9 (1 + q)
|ε2DqΦ (ε1)|r +

3q − 2

9 (1 + q)
|ε2DqΦ(ε2)|r

) 1
r

]
.

Proof. If the techniques used in the proof of Theorem 5 are applied by taking into account the Lemma
3, the desired inequality (5.2) can be attained. �

Corollary 4. In Theorem 8, if we take limit q → 1−, then we have following inequality

∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) dµ(5.3)

−1

8

[
Φ(ε1 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]∣∣∣∣
≤ η (ε2, ε1)

3

[
5

8

(
|Φ′ (ε1)|r + 5 |Φ′ (ε2)|r

6

) 1
r

+

(
2.3s − 1

6s

) 1
s
(
|Φ′ (ε1)|r + |Φ′ (ε2)|r

2

) 1
r

+

(
3.7s − 2

8s

) 1
s
(
5 |Φ′ (ε1)|r + |Φ′ (ε2)|r

6

) 1
r

]
.

Remark 13. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in (5.3), then inequality (5.3)
reduces to inequality presented in [8, Remark 4].

Remark 14. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 8, then Theorem 8
reduces to [8, Theorem 8].

Theorem 9. Suppose that the assumptions of Lemma 3 hold. If |ε2DqΦ|r is preinvex and integrable
on I where r ≥ 1. Then, we have

∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) ε2dqµ(5.4)

−1

8

[
Φ(ε1 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]∣∣∣∣
≤ η (ε2, ε1) (Ψ7 (q))

1− 1
r [Ψ1 (q) |ε2DqΦ (ε1)|r +Ψ2 (q) |ε2DqΦ(ε2)|r]

1
r

+η (ε2, ε1) (Ψ8 (q))
1− 1

r [Ψ3 (q) |ε2DqΦ(ε1)|r +Ψ4 (q) |ε2DqΦ(ε2)|r]
1
r

+η (ε2, ε1) (Ψ9 (q))
1− 1

r [Ψ5 (q) |ε2DqΦ(ε1)|r +Ψ6 (q) |ε2DqΦ(ε2)|r]
1
r
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where Ψi : i = 1, 2, ...6 are defined as in Theorem 7 . Moreover, Ψ7, Ψ8, Ψ9 are defined as

Ψ7 (q) =

∫ 1
3

0

∣∣∣∣qt− 1

8

∣∣∣∣ dqt =


3−5q
72(1+q) 0 < q < 3

8

20q−3
288(1+q)

3
8 ≤ q < 1,

Ψ8 (q) =

∫ 2
3

1
3

∣∣∣∣qt− 1

2

∣∣∣∣ dqt =


3−3q
18(1+q) 0 < q < 3

4

q
18(1+q)

3
4 ≤ q < 1,

Ψ9 (q) =

∫ 1

2
3

∣∣∣∣qt− 7

8

∣∣∣∣ dqt =


21−19q
72(1+q) 0 < q < 7

8

21−4q
288(1+q)

7
8 ≤ q < 1.

Proof. The proof follows on the same lines used in the proof of Theorem 6 by taking into account the
Lemma 3. �
Corollary 5. In Theorem 9, if we take limit q → 1−, then we have following inequality∣∣∣∣∣ 1

η (ε2, ε1)

∫ ε2

ε2+η(ε1,ε2)

Φ(µ) dµ(5.5)

−1

8

[
Φ(ε1 + η (ε1, ε2)) + 3Φ

(
3ε2 + η (ε1, ε2)

3

)
+ 3Φ

(
3ε2 + 2η (ε1, ε2)

3

)
+Φ(ε2)

]∣∣∣∣
≤ η (ε2, ε1)

36

[(
17

16

)1− 1
r
(

251

1152
|Φ′ (ε1)|

r
+

973

1152
|Φ′ (ε2)|

r
) 1

r

+

(
|Φ′ (ε1)|r + |Φ′ (ε2)|r

2

) 1
r

+

(
17

16

)1− 1
r
(

973

1152
|Φ′ (ε1)|

r
+

251

1152
|Φ′ (ε2)|

r
) 1

r

.

Remark 15. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in (5.5), then inequality (5.5)
reduces to inequality presented in [8, Remark 5].

Remark 16. If we set η (ε2, ε1) = ε2 − ε1 and η (ε1, ε2) = ε1 − ε2 in Theorem 9, then Theorem 9
reduces to [8, Theorem 9].

6. Concluding Remarks

In this paper, we proved some new inequalities of Simpson’s and Newton’s type for q-differentiable
preinvex functions by using the notions of qε2-integral. It is also shown that some classical results can
be obtained by the results presented in the current research by taking limit q → 1−. It will be an
interesting problem to prove similar inequalities for the functions of two variables.
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