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Abstract. We consider the reaction-diffusion equation for fractional Dirichlet-to-Neumann operator with subcritical
exponent motivated by electrical impedance tomography (EIT) and a need to overcome the Non-locality of a fractional
differential equation for modeling anomalous diffusion. We mainly deal with the asymptotic behavior of global solution
and the boundedness of global orbit which allows us to show that any global solution is classical solution using Moser
iteration technique.
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1. Introduction

This work is motivated by electrical impedance tomography (EIT), which is a new medical imaging
technology and classical Calderón problem, its basic principle is to inject a weak current to the electrodes on the
surface of an imaging domain such as the human thorax, and measure induced boundary voltages on other
electrodes, then according to the relationship between voltage and current, the change value of electric impedance
or electrical impedance inside the imaging domain can be reconstructed. Unlike CT technology using X-ray or
ultrasonic beam, EIT has no damage to human body, can measure repeatedly, and the imaging speed is fast, the
cost is low, no special working environment is required, all these determine the broad application prospect of EIT,
and the necessity of its research is self-evident. In modelling idealized EIT imaging problems, there are several
premises as follows. (1) Due to the low permeability of biological organs and tissues, the magnetic field effect can
be ignored, we only consider the electric field characteristics. (2) Assume the medium is isotropic, then
conduction current density J and electric field intensity vector E satisfy

J = γE, (1.1)

where γ represents conductivity (scalar function). (3) According to Ampere’s law and Faraday’s induction law,

conduction current density J and magnetic field intensity vector H satisfy ∇ ×H = J +
∂D
∂t

, magnetic induction

intensity B and electric field intensity E satisfy ∇ × E = −
∂B
∂t

. Since we employ a low frequency injection current
(weak current excitation) in EIT, it follows that induced electric field is far less than Coulomb electric field, and

displacement current is far less than conduction current, which indicates
∂B
∂t

and
∂D
∂t

are negligible, then we have

∇ ×H = J, (1.2)

∇ × E = 0, (1.3)
The basic equation (1.3) implies E is a irrotational field, which gives that electric field intensity E and potential
function v satisfy

E = −∇v. (1.4)
Taking divergence in the both sides of (1.2), and substituting (1.4) into (1.1) gives

0 = ∇ · (∇ ×H) = ∇ · J = −∇ · (γ∇v),

which is the basic equation for the potential [1].
Given a potential function f on the surface of imaging domain and v solves{

− ∇ · (γ∇v) = 0, x ∈ Ω,

v = f , x ∈ ∂Ω,

the Dirichlet-to-Neumann operator (DtN), or voltage-to-current map DNγ is defined as

DNγ( f ) = γ
∂v
∂ν

∣∣∣∣∣
∂Ω

,
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DNγ( f ) is exactly the current density flowing into the field, and ν represents the external normal vector to the
surface of the medium. The DtN operator is well-known and has been widely studied in [2, 3, 4] and their
references. It plays a fundamental role in EIT problem [5], one can recover γ from DtN operator DNγ by
measuring the current through the boundary caused by a family of potential functions f .

When γ = y1−2s(s ∈ (0, 1)), the corresponding Dirichlet problem is given by−div
(
y1−2s∇v(x, y)

)
= 0, (x, y) ∈ RN+1

+ ,

v(x, y) = f , (x, y) ∈ RN ,
(1.5)

where RN+1
+ = {Z = (x, y) = (x1, x2, · · · , xn, y) ∈ RN+1|y > 0}. In such case, we introduce fractional DtN operator

DNs [6]. It has been showed in [7] and [8] that

DNs( f ) = Asv = ∂s
νv := ks lim

y→0
y1−2s ∂v

∂ν
= −ks lim

y→0
y1−2s ∂v

∂y
,

where the unit exterior normal vector ν = (0, · · · , 0,−1) ∈ RN+1, ks =
Γ(s)

21−2sΓ(1 − s)
, and As(0 < s < 1) represents

the spectral fractional Laplacian operator.
Let Ω be a bounded smooth domain in RN(N > 2s), denote half-cylinder C = {(x, y)|(x, y) ∈ Ω × (0, ∞)},

whose lateral boundary is ∂LC = ∂Ω × [0, ∞), and p < 2∗s, here 2∗s =
2N

N − 2s
is critical exponent of Sobolev trace

embedding inequality. We are concerned in this paper with the following nonlinear reaction-diffusion equation for
the fractional DtN operator with critical exponent

−div
(
y1−2s∇v(x, y, t)

)
= 0, t ∈ R+, (x, y) ∈ C,

v(x, y, t) = 0, t ∈ R+, (x, y) ∈ ∂LC,

∂s
νv(x, y, t) = −

∂v(x, y, t)
∂t

+ |v|p−2v, t ∈ R+, (x, y) ∈ Ω × {0},

v(x, y, 0) = v0, (x, y) ∈ C.

(1.6)

The energy functional of (1.6) can be defined via

E(v(t)) =
1
2

∫
C

ksy1−2s|∇v(t)|2dxdy −
1
p

∫
Ω×{0}

|v(t)|pdx, v ∈ Hs
0,L(C), (1.7)

here

Hs
0,L(C) =

{
v
∣∣∣ v ∈ L2(C) : v = 0 a.e. on ∂LC,

∫
C

ksy1−2s|∇v|2dxdy < ∞
}
, (1.8)

with norm ‖v‖ =
(∫
C

ksy1−2s|∇v|2dxdy
) 1

2 .
Actually, the Euler-Lagrange equation E′(v) = 0 by means of variational method is corresponding to

stationary equation of (1.6). For every v, φ ∈ Hs
0,L(C), ε ∈ R, we have

0 =
d
dε

(E(v + εφ))
∣∣∣∣∣
ε=0

=

(∫
C

ksy1−2s∇(v + εφ) · ∇φdxdy −
∫

Ω×{0}
|v + εφ|p−2(v + εφ)φdx

) ∣∣∣∣∣
ε=0

=

∫
C

ksy1−2s∇v · ∇φdxdy −
∫

Ω×{0}
|v|p−2vφdx =: 〈E′(v), φ〉.

(1.9)

Since the domain C is unbounded and the solution maybe only is Hölder continuous near y = 0, and when s >
1
2

,

y = 0 is probably a singularity of y1−2s∇v, so we take a approximate domain Cδ := Ω × (δ,∞)(δ > 0), where we
have

〈E′(v), φ〉 = lim
δ→0

(∫
Cδ

ksy1−2s∇v · ∇φdxdy −
∫

Ω×{y=δ}

|v|p−2vφdx
)

= lim
δ→0

(
ks

∫
Cδ

div
(
φy1−2s∇v

)
dxdy − ks

∫
Cδ
φdiv(y1−2s∇v)dxdy −

∫
Ω×{y=δ}

|v|p−2vφdx
)

= lim
δ→0

(
ks

∫
Ω×{y=δ}

φy1−2s ∂v
∂ν

dx − ks

∫
Cδ
φdiv(y1−2s∇v)dxdy −

∫
Ω×{y=δ}

|v|p−2vφdx
)

= −ks

∫
C

φdiv(y1−2s∇v)dxdy −
∫

Ω×{0}
(|v|p−2v − ∂s

νv)φdx,
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by the arbitrariness of φ, it follows that
div

(
(y1−2s∇v

)
= 0, in C,

∂s
νv = |v|p−2v, in Ω × {0}.

By the same token, taking a approximate domain Cδ, and then timing vt and integrating in the domain the
both sides of equation (1.6) in Cδ gives

0 =

∫
Cδ
−div

(
y1−2s∇v

)
vtdxdy

= −

∫
∂Cδ

vty1−2s∇v · ndσ +

∫
Cδ

y1−2s∇v · ∇vtdxdy

= −

∫
∂LC

δ

vty1−2s∇v · ν′dσ −
∫

Ω×{y=δ}

vty1−2s∇v · νdx +

∫
Cδ

y1−2s∇v · ∇vtdxdy

= −

∫
Ω×{y=δ}

vty1−2s∇v · νdx +

∫
Cδ

y1−2s∇v · ∇vtdxdy,

where ν′ = (νΩ, 0), νΩ is unit exterior normal vector to ∂Ω, and ν = (0, · · · , 0,−1).
Letting δ→ 0 leads to

0 = −
1
ks

∫
Ω×{y=0}

vt∂
s
νvdx +

∫
C

y1−2s∇v · ∇vtdxdy,

thus we obtain
dE(v(t))

dt
=

∫
C

ksy1−2s∇v · ∇vtdxdy −
∫

Ω×{0}
|v(t)|p−2vvtdx = −

∫
Ω×{0}

v2
t dx ≤ 0, (1.10)

which implies functional E(v) monotonically decreases in t, namely, E(v) is Lyapunov functional.
Moreover, notice that

E(v(t) − E(v(t0)) =

∫ t

t0

dE(v)
dτ

dτ = −

∫ t

t0

∫
Ω×{0}

v2
τdxdτ,

we consequently arrive at the energy inequality

E(v(t0)) = E(v(t)) +

∫ t

t0

∫
Ω×{0}

v2
τdxdτ. (1.11)

There is another motivation for us to observe problem (1.6). Using the extend method of spectral
decomposition or the Caffarelli-Silvestre extension method [7] to let v : Ω × (0, ∞)→ R be an extension function
of u : Ω→ R, we can see that equations (1.6) equivalent to the following problem with fractional Laplacian
operator 

Asu = −
∂u
∂t

+ |u|p−2u, (x, t) ∈ Ω × (0,∞),

u = 0, (x, t) ∈ (RN \Ω) × [0,∞),
u(x, 0) = u0, x ∈ Ω,

(1.12)

In recent years, on account of the better accuracy in describing practical problems compared with the classical
Laplacian operator, the spectral fractional Laplacian operator As has attracted considerable attention of
mathematics and physicists. The fractional Laplacian operator was first proposed in observation of Levy
stationary diffusion process in physics, later also used to describe the phenomena such as plasma anomalous
diffusion, stochastic analysis and fluid dynamics, etc. There have been extensive studies of the nonlinear
fractional Laplacian problem, especially the semilinear elliptic problem with fractional Laplacian, e.g. [9, 10, 11].
While the fractional parabolic equation is more complicated than the elliptic case, the literature involved is
relatively limited. The pioneering result about parabolic equation is obtained by Sugitani [12]. He investigated the
heat equation ∂tu + Asu = up−1(0 < s ≤ 1) in the whole space RN , here As(0 < s < 1) denotes spectral fractional

Laplacian operator, p ≤ 2 + p∗F < 2∗s, p∗F =
2s
N

is Fujita exponent of the corresponding fractional equations. The
study produced that nonnegative solution of the equation blows up in finite time. A. Fino and G. Karch [13]
observed that the large time asymptotic behavior with relation to the equation’s system mass M(t) =

∫
RN u(x, t)dx.

Specifically, if p ≤ 2 + p∗F , then lim
t→∞

M(t) = 0, while if p > 2 + P∗F , then lim
t→∞

M(t) = M∞ > 0. We can further
consider the case of subcritical growth p < 2∗s. The main difficulty of fractional problem is owing to the fact that
the fractional Laplacian operator is nonlocal, to overcome this, we turn to investigate its equivalent problem (1.6)
so that we can use variational technique.
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In fact, let {λk, φk}
∞
k=1 be the eigenvalues and its corresponding normal eigenfunctions of negative Laplacian

operator −∆ in Ω with zero Dirichlet boundary condition, i.e.{
−∆φk = λkφk, in Ω,

φk = 0, on Ω,
(1.13)

{φk} constitute the complete orthonormal basis of L2(Ω), which gives the spectral decomposition of operator −∆.
Set

V0(Ω) =

{
u(t) = u(t)(x) = u(x, t) =

∞∑
k=1

ck(t)φk(x) ∈ L2(Ω)
∣∣∣ ∞∑

k=1

c2
k(t)λs

k < +∞

}
,

then for each u(t) ∈ V0(Ω), As can be defined as

As : V0(Ω)→V∗0(Ω)

u(x, t) =

∞∑
k=1

ck(t)φk(x) 7→ Asu =

∞∑
k=1

ck(t)λs
kφk(x),

here ck(t) =
∫

Ω
u(x, t)φk(x)dx, V∗0(Ω) is dual space ofV0(Ω).

Denote

I =

{
q(y)

∣∣∣ q(y) satisfies
∫ ∞

0

(
|q′(y)|2 + |q(y)|2

)
y1−2sdy < ∞, and q(0) = 1, q(∞) = 0

}
,

Consider following minimum functional problem in the function space I,

J(q) = inf
{ ∫ ∞

0

(
|q′(y)|2 + |q(y)|2

)
y1−2sdy

}
.

We can show that, for each u(t) ∈ V0(Ω), there is a unique extension

v(x, y, t) =

∞∑
k=1

ck(t)φk(x)q(
√
λky), (x, y) ∈ C,

such that ∫
C

y1−2s|∇v|2dxdy =

∫ ∞

0
y1−2s

∫
Ω

(
|
∂v
∂y
|2 +

N∑
j=1

|
∂v
∂x j
|2
)
dxdy = ks

∞∑
k=1

c2
k(t)λs

k.

In fact, assume function q is a minimizer of functional J(q), we have∫ ∞

0

(
|ϕ′(y)|2 + |ϕ(y)|2

)
y1−2sdy < ∞, and q(0) = q(∞) = 0,

for every function ϕ.
Taking derivative of following one variable function

j(ε) = J(q + εϕ) =

∫ ∞

0

(
|q′ + εϕ′|2 + |q + εϕ|2

)
y1−2sdy,

one has

j′(ε)
∣∣∣
ε=0 =

∫ ∞

0

[
2(q′ + εϕ′)ϕ′ + 2(q + εϕ)ϕ

]
y1−2sdy

∣∣∣∣∣
ε=0

=

∫ ∞

0

(
2q′ϕ′ + 2qϕ

)
y1−2sdy

= −

∫ ∞

0
2ϕy1−2s(q′′ + 1 − 2s

y
q′ − q

)
dy = 0.

By the arbitrariness of function ϕ, it follows that the minimizer function q solves exactly the following Bessel
equation [14, 15]  q′′ +

1 − 2s
y

q′ − q = 0,

q(0) = 1, q(∞) = 0.
(1.14)

Conversely, if function q is a solution to equation (1.14), then for all h(y) ∈ I,

j(h) =

∫ ∞

0
y1−2s(|h′|2 + h2)dy

≥

∫ ∞

0
y1−2s(|q′|2 + 2q′(h′ − q′) + q2 + 2q(h − q)

)
dy
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=

∫ ∞

0
y1−2s(|q′|2 + q2)dy,

which indicates function q is a minimizer of functional J.
In the subcritical case, the coerciveness and weak lower semi-continuity of functional J guarantee the

uniqueness of q.
We can now verify that

div(y1−2s∇v) = ∆xv + vyy +
1 − 2s

y
vy

= ck(t)∆φk(x)q(
√
λky) + ck(t)φk(x)

(
λkq′′(

√
λky) +

1 − 2s
y

√
λkq′(

√
λky)

)
= ck(t)φk(x)λk

[
− q(

√
λky) + q′′(

√
λky) +

1 − 2s
y

√
1 − 2s

√
λkyq′(

√
λky)

]
= 0,

and ∫ ∞

0
y1−2s

∫
Ω

|∇v|2dxdy =

∫ ∞

0
y1−2s

∫
Ω

[
c2

k(t)|∇ϕk(x)|2q2(
√
λky) + c2

k(t)ϕ2
k(x)

(
q′(

√
λky)

)2
]
dxdy

= c2
k(t)λk

∫ ∞

0
y1−2s

[
q2(

√
λky) +

∣∣∣q′( √λky)
∣∣∣2]dy

= c2
k(t)λk

∫ ∞

0
(

z
√
λk

)1−2s
[
q2(z) +

∣∣∣q′(z)
∣∣∣2] 1
√
λk

dz

= c2
k(t)λs

k

∫ ∞

0
y1−2s

(
q2(y) +

∣∣∣q′(y)
∣∣∣2)dy < +∞

in light of ∫
Ω

|ϕk(x)|2dx = 1,
∫

Ω

|∇ϕk(x)|2dx = λk.

In addition, from [14] we get
Asv = Asu = ck(t)λs

kφk(x)

∂s
νv := −ks lim

y→0
y1−2s ∂v

∂y

= ksck(t)ϕk(x) lim
y→0
−y1−2s

√
λkq′(

√
λky)

= ksck(t)ϕk(x)
1
ks
λs

k = ck(t)λs
kφk(x)

(1.15)

in Ω × {0}. We complete the proof of the equivalence between the equation (1.12) and (1.6).
It should be remarked that As is just the fractional Laplacian operator (−∆)s when Ω = RN .
Next, we are going to explain following notations and definitions for the rest of the article.
Denote norm of space Lp and strong(weak) convergency in the relate space as ‖ · ‖p and→ (⇀) respectively.

Definition 1.1. The function v = v(x, y, t) is referred to as a weak solution of equation (1.6) in CT = C × (0,T ), iff

v ∈ L2([0,T ]; Hs
0,L(C)),

vt ∈ L2(ΩT ) = L2([0,T ]; L2(Ω)),
and satisfies the equation (1.6) in the distributional sense, namely∫ T

0

∫
C

ksy1−2s∇v · ∇ϕdxdydt +

∫ T

0

∫
Ω×{0}

(
vt − |v|p−2v

)
ϕdxdt = 0,

for every test function ϕ ∈ C1
0([0,T ]; Hs

0,L(C)).

Definition 1.2. If sequence {vn} satisfies supn |E(vn)| < ∞(E(vn)→ c), E′(vn)→ 0(n→ ∞), in the function space
H−s

0,L(C), then it’s referred to as Palais − S male(PS )((PS )c) sequence; And the energy functional of a stationary
equation satisfies (PS )((PS )c) condition, which means every (PS )((PS )c) sequence {vn} has (strong) convergent
subsequence.

We focus on blow-up behavior of local solution, the asymptotic profile of global solution, namely the
relationship between global solution and stationary solution. Furthermore, we deal with the boundedness of
global orbit in function space Hs

0,L(C), based upon this result, it can be shown that any global solution is classical
solution with Moser iteration technique. The main results in this paper are as follows.
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Theorem 1.1. If v = v(x, y, t; v0) is a global solution of equation (1.6), then the ω-limit set of v0, which is defined
as

ω(v0) = {ω ∈ Hs
0,L(C) : ∃tn → +∞, vn = v(x, y, tn, u0) ⇀ w in Hs

0,L(C)},
contains a stationary solution w.

Theorem 1.2. If v = v(x, y, t; v0) is a global solution of equation (1.6), and uniformly bounded in the function
space HS

0,L(C) with respect to t, then for every sequence tn → ∞, there exists a stationary solution w, such that
v(x, y, tn; v0) ⇀ w in Hs

0,L(C).

Theorem 1.3. If v(x, y, t; v0) is a global solution of equation (1.6), then the global orbit is bounded in Hs
0,L(C),

that is
sup
t≥0

∫
C

ksy1−2s|∇v(x, y)|2dxdy < ∞.

Theorem 1.4. If v(x, y, t; v0) is a global solution of equation (1.6), then for every q(1 ≤ q < ∞), t0 > 0, one has

v ∈ Lq(Ω × {0} × [t0,∞))

and
‖v‖Lq(Ω×{0}×(t0,∞)) ≤ C,

where C depends on N, q and t0. Moreover, v(x, y, t; v0) is a classical solution.

We conclude this section with presenting the inequality of fractional Sobolev trace embedding
Hs

0,L(C) ⊂ Lp(Ω × {0})(1 ≤ p ≤ 2∗s) [16, 17, 18]:
Suppose v ∈ Hs

0,L(C), then there is a constant C = C(p,N, s, |Ω|) > 0, such that
‖v(x, 0)‖p ≤ C‖v‖, 1 ≤ p ≤ 2∗s, i.e.(∫

Ω×{0}
|v(x, 0)|pdx

) 1
p

≤ C
(∫
C

ksy1−2s|∇v(x, y)|2dxdy
) 1

2

. (1.16)

And we refer to S as the best constant for the inequality above means that

S = inf


∫
C

ksy1−2s|∇v(x, y)|2dxdy(∫
Ω×{0} |v(x, 0)|2∗s dx

) 2
2∗s

: v ∈ Hs
0,L(C)

 . (1.17)

2. Proof of theorems

Before performing the proof of Theorem 1.1, let us first show the following lemma.

Lemma 2.1. Provided there exists t0 ≥ 0 such that E(v(t0)) ≤ 0, then function v blows up in finite time.

Proof of Lemma 2.1. There are several methods to prove the finite time blowup of solutions: comparison
method, eigenfunction method, energy method, and concave function method (see [19, 20]) which we adopt here.

The proof is by contradiction. Assume that T = tmax = ∞, put f (t) =
1
2

∫ t
t0

∫
Ω×{0} v

2dxdτ, taking derivative
directly gives

f ′(t) =
1
2

∫
Ω×{0}

v2dx =
1
2
‖v(t0)‖22 +

∫ t

t0

∫
Ω×{0}

vvτdxdτ,

f ′′(t) =

∫
Ω×{0}

vvtdx.

On the other hand, timing v and then integrating both sides of equation (1.6) in C can also lead to the first and
second derivative of function f (t) as follows

f ′(t) =
1
2
‖v(t0)‖22 +

∫ t

t0

∫
C

−ksy1−2s|∇v|2dxdydτ +

∫ t

t0

∫
Ω×{0}

|v|pdxdτ, (2.1)

f ′′(t) =

∫
C

−ksy1−2s|∇v|2dxdy +

∫
Ω×{0}

|v|pdx, (2.2)

Multiplying both sides of the energy inequality (1.11) by p and adding it to (2.2) derives

f ′′(t) =

( p
2
− 1

) ∫
C

ksy1−2s|∇v|2dxdy + p
∫ t

t0

∫
Ω×{0}

v2
τdxdτ − pE(v(t0)). (2.3)

By the assumption E(v(t0)) ≤ 0, and
p
2
− 1 > 0, it follows that( p

2
− 1

) ∫
C

ksy1−2s|∇v|2dxdy − pE(v(t0)) > 0, (2.4)
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for all t ≥ t0. Then we get

f ′′(t) > p
∫ t

t0

∫
Ω×{0}

v2
τdxdτ, (2.5)

Further applying the Höider inequality, we have

f (t) f ′′(t) >
p
2

∫ t

t0
‖v(τ)‖22dτ ·

∫ t

t0
‖vτ(τ)‖22dτ

≥
p
2

(∫ t

t0

∫
Ω×{0}

vvτdxdτ
)2

=
p
2

(∫ t

t0
f ′′(t)dτ

)2

=
p
2

( f ′(t) − f ′(t0))2.

Set α =
p
2
− 1 > 0, from (2.5), it is clear that f ′′(t) > 0, so we have f ′(t) > f ′(t1) > f ′(t0) for t > t1 > t0, and

f (t) − f (t1) =

∫ t

t1
f ′(τ)dτ ≥ f ′(t1)(t − t1)→ 0,

as t → ∞, and accordingly obtain

f ′(t) f ′′(t) > (1 + 2α)( f ′(t) − f ′(t0))2 f ′(t)
f (t)

> (1 + 2α)( f ′(t1) − f ′(t0))2 f ′(t)
f (t)

for t > t1. Therefore, integrating both sides yields
1
2

( f ′(t))2|tt1 > (1 + 2α)( f ′(t1) − f ′(t0))2 ln f (t)|tt1 → ∞,

which implies lim
t→∞

f ′(t) = ∞, then there is a t2 > t1, such that

f (t) f ′′(t) > (1 + α)( f ′(t))2

for t > t2.
Let J(t) = f (t)−α, we have J′′(t) = −α f (t)−α−2

(
(1 + α)( f ′(t))2 − f (t) f ′′(t)

)
< 0 (t > t2). Clearly, lim

t→∞
J(t) = 0,

which means there is a t3 > t2, such that J(t) < J(t3) < 0 for t > t3, then we further have

0 < J(t) < J(t3) + J′(t3)(t − t3)→ −∞(t → ∞),

a contradiction£Thereby we conclude v blows up in finite time.

Indeed, the equation f (t) f ′′(t) − (1 + α)( f ′(t))2 > 0 can be rewritten to
d
dt

(
f ′(t)

f α+1(t)

)
> 0, which leads to

f ′(t)
f α+1(t)

>
f ′(0)

f α+1(0)
:= A,

integrating both sides with respect to t from 0 to t gives

1
α

(
1

f α(0)
−

1
f α(t)

)
> At ⇒ f α(t) >

f α(0)
1 − f α(0)αAt

→ ∞ (t →
1

f α(0)αA
).

�

In the same manner used above, we can carry out the proof of following corollary,

Corollary 2.1. If
∫
C

ksy1−2s|∇v|2dxdy→ ∞ when t → tmax, then tmax(v0) < ∞.

We are now in a position to prove theorems.

Proof of Theorem 1.1 . According to Lemma 2.1, if there is a t0 ≥ 0 such that E(v(t0)) ≤ 0, then function v
blows up in finite time, so v is a global solution implies E(v(t)) > 0 for all t ≥ 0. Combining with the energy
inequality (1.11), we have

0 < E(v(t)) ≤ E(v0), (2.6)
and ∫ ∞

0

∫
Ω×{0}

v2
τdxdτ ≤ C < ∞, (2.7)

then it can be seen that there is a time sequence {tn} satisfying tn → ∞ as n→ ∞, such that∫
Ω×{0}

vτ(x, y, tn; v0)2dx→ 0, (2.8)
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if not, suppose
∫

Ω×{0} vτ(x, y, tn; v0)2dx→ a , 0, then there would get∫ ∞

0

∫
Ω×{0}

v2
τdxdτ =

∫ ∞

0
adτ = ∞,

which contradicts (2.7).
The formula (2.6) and (2.8) indicates E(vn) is bounded and E′(vn)→ 0 respectively, which because

dE(v(t))
dt

=

∫
C

ksy1−2s∇v · 5vtdxdy −
∫

Ω×{0}
|v(t)|p−2vvtdx = 〈E′(v), vt〉 = −

∫
Ω×{0}

v2
t dx,

it follows that {vn : tn → ∞} is PS sequence of the stationary equation corresponding to equation (1.6). Further,
we can show that ‖vn‖ is bounded, namely, there is a constant C < +∞ such that∫

C

|∇vn|
2dx ≤ C.

In view of the weak compactness of reflexive space, that is bounded sequence must has convergent subsequence,
there exists a subsequence of vn (not relabeled) and a function w such that

vn ⇀ w, in Hs
0,L(C),

vn → w, in Lp(Ω × {0}) (2 ≤ p < 2∗s).
�

Proof of Theorem 1.2 . For every sequence tn → ∞, let vn = v(x, y, tn; v0), since {vn} is uniformly bounded under
the norm of Hs

0,L(C), using the same argument as in the proof of Theorem 1.1, there is a subsequence {vn} and a
function w such that

vn ⇀ v in Hs
0,L(C),

vn → v in Lp(Ω × {0}),
vn → v in a.e. Ω × {0}.

Now we choose a test function

ϕ(x, y, t) =

{
ρ(t − tn)ψ(x, y), for t > tn, x ∈ Ω̄,
0, for 0 ≤ t ≤ tn, x ∈ Ω̄,

(2.9)

where ψ ∈ Hs
0,L(C), ρ ∈ C2

0(0, 1), ρ ≥ 0,
∫ 1

0 ρ(s)ds = 1.
From the Definition 1.1, we have∫ T

0

∫
C

ksy1−2s∇v · ∇ϕdxdydt +

∫ T

0

∫
Ω×{0}

(
vt − |v|p−2v

)
ϕdxdt = 0,

plugging the chosen test function back into the above equation gives∫ tn+1

tn

[∫
C

−ρ(t − tn)ksy1−2s∇v · ∇ψdxdy −
∫

Ω×{0}
vtρ(t − tn)ψdx +

∫
Ω×{0}

|v|p−2vρ(t − tn)ψdx
]

dt = 0,

where ∫ tn+1

tn
vtρ(t − tn)ψdt = vρ(t − tn)ψ|tn+1

tn −

∫ tn+1

tn
vρ′(t − tn)ψdt

= −

∫ tn+1

tn
vρ′(t − tn)ψdt,

which follows from ρ(0) = ρ(1) = 0. Then we obtain∫ tn+1

tn

[∫
C

−ρ(t − tn)ksy1−2s∇v · ∇ψdxdy +

∫
Ω×{0}

(
vρ′(t − tn)ψ + |v|p−2vρ(t − tn)ψ

)
dx

]
dt = 0.

Performing a variable substitution δ = t − tn yields∫ 1

0

[∫
C

−ρ(δ)ksy1−2s∇v(tn + δ) · ∇ψdxdy

+

∫
Ω×{0}

(
v(tn + δ)ρ′(δ)ψ + |v(tn + δ)|p−2v(tn + δ)ρ(δ)ψ

)
dx

]
dδ = 0.

(2.10)

Owing to the uniform boundedness of v(tn + δ)(0 ≤ δ ≤ 1) in Hs
0,L(C), we can choose the same subsequence of

{tn}, a function wδ and w satisfying
‖v(tn + δ) − wδ‖Lp(Ω×{0}) → 0,
‖v(tn) − w‖Lp(Ω×{0}) → 0.
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The following is to show that wδ = w a.e. in Ω × {0}. By the energy inequality (1.11), we know∫ t

0

∫
Ω×{0}

v2
τdxdτ < ∞, (2.11)

and then employing Hölder’s inequality, we acquire∫
Ω×{0}

|v(tn + δ) − v(tn)|2dx =

∫
Ω×{0}

|

∫ tn+δ

tn
vτdτ|2dx

≤

∫
Ω×{0}

|

(∫ tn+δ

tn
12dτ

) 1
2
(∫ tn+δ

tn
v2
τdτ

) 1
2

|2dx

= δ

∫ tn+δ

tn

∫
Ω×{0}

|vτ|2dxdτ→ 0, tn → ∞, 0 ≤ δ ≤ 1.

Consequently,
‖v(tn + δ) − v(tn)‖L2(Ω×{0}) → 0, tn → ∞

for 0 ≤ δ ≤ 1, namely, wδ equals w a.e. in Ω × {0}.
Now rearrange (2.10) to get∫ 1

0

[∫
C

−ρ(δ)ksy1−2s∇v(tn) · ∇ψdxdy +

∫
Ω×{0}

(
v(tn)ρ′(δ)ψ + |v|p−2v(tn)ρ(δ)ψ

)
dx

]
dδ

−

∫ 1

0

∫
C

ksy1−2s (∇v(tn + δ) − ∇v(tn)) ρ(δ) · ∇ψdxdydδ

+

∫ 1

0

∫
Ω×{0}

(v(tn + δ) − v(tn)) ρ′(δ)ψdxdδ

+

∫ 1

0

∫
Ω×{0}

(
|v|p−2v(tn + δ) − vp−2v(tn)

)
ρ(δ)ψdxdδ = 0. (2.12)

The last three terms of the left side of the above equation approach 0(tn → ∞) by Lebesgue dominated convergent
theorem. The second term

∫ 1
0

∫
Ω×{0} v(tn)ρ′(δ)ψdxdδ also approaches 0(tn → ∞), the reason is that∫ 1

0

∫
Ω×{0}

v(tn)ρ′(δ)ψdxdδ→
∫ 1

0

∫
Ω×{0}

wρ′(δ)ψdxdδ

=

∫
Ω×{0}

wψ
∫ 1

0
ρ′(δ)dδdx =

∫
Ω×{0}

wψ(ρ(1) − ρ(0))dx = 0.

Hence we obtain ∫ 1

0
ρ(δ)dδ

(∫
C

ksy1−2s∇v(tn) · ∇ψdxdy − |v|p−2v(tn)ψdx
)

= o(1)(n→ ∞).

Note that
∫ 1

0 ρ(δ)dδ = 1, we are finally led to∫
C

ksy1−2s∇v(tn) · ∇ψdxdy − |v|p−2v(tn)ψdx = o(1)(n→ ∞),

which indicates v(tn) approaches a solution of stationary equation in the weak sense. �

Before proceeding to prove Theorem 1.3, we first establish several lemmas.

Lemma 2.2. If v(x, y, t; v0) is a global solution of the equation (1.6), then for each 0 < A < B, there exists
τ = τ(A, B) > 0, and if

∫
Ω×{0} |v0|

pdx ≤ A, then as t ∈ [0, τ], one has
∫

Ω×{0} |v(x, y, t; v0)|pdx ≤ B.

Proof of Lemma 2.2 . For convenience, denote v(x, y, t; v0) as v. Assume
S (v0) = {t > 0,

∫
Ω×{0} |v(x, y, t; v0)|pdx = B} is not empty, set σ(v0) = inf S (v0), it suffices to show that there is

τ > 0 such that σ(v0) ≥ τ for every v0 satisfying
∫

Ω×{0} |v|
pdx ≤ A. Put the test function ϕ in Definition 1.1 be vp−1,

namely, ∫
C

ksy1−2s∇v · ∇(vp−1)dxdy +

∫
Ω×{0}

(
vt − |v|p−2v

)
vp−1dx = 0,

hereby we arrive at

1
p

d
dt

∫
Ω×{0}

vpdx = −

∫
C

ksy1−2s∇v · ∇(vp−1)dxdy +

∫
Ω×{0}

v2p−2dx
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= −
4(p − 1)

p2

∫
C

ksy1−2s|∇(v
p
2 )|2dxdy +

∫
Ω×{0}

v2p−2dx,

for almost all t ∈ (0, σ). Using Hölder’s inequality produces∫
Ω×{0}

v2p−2dx =

∫
Ω×{0}

v2p−2− N(p−2)
2s · v

N(p−2)
2s dx

≤

(∫
Ω×{0}

vpdx
) θ1

p
(∫

Ω×{0}
vγdx

) θ2
γ

= ‖v(x, 0)‖θ1
p ‖v(x, 0)‖θ2

γ ,

(2.13)

here

θ1 = 2p − 2 −
N(p − 2)

2s
, θ2 =

N(p − 2)
2s

, γ =
N p

N − 2s
.

According to the continuity of fractional Sobolev trace embedding Hs
0,L(C) ⊂ L2∗s (Ω × {0}), it follows that

‖v(x, 0)
p
2 ‖2∗s ≤ C

(∫
C

ksy1−2s|∇(v
p
2 )|2dxdy

) 1
2

,

rewriting the above inequality gives

‖v(x, 0)‖γ ≤ C
(∫
C

ksy1−2s|∇(v
p
2 )|2dxdy

) 1
p

. (2.14)

The condition p <
2N

N − 2s
ensures

θ2

p
< 1, then combine (2.13), (2.14) and Young inequality, we see that

d
dt

∫
Ω×{0}

vpdx ≤ C(B)

for almost all t ∈ (0, σ), the conclusion follows immediately. �

Lemma 2.3. If v(x, y, t; v0) is a global solution of the equation (1.6), and satisfies

lim inf
t→∞

‖v(x, y, t; v0)‖p = k < ∞,

lim sup
t→∞

‖v(x, y, t; v0)‖p = ∞,

then for each B > K, there is a stationary solution w ∈ ω(v0), such that ‖w‖p = B.

Proof of Lemma 2.2 . Select a sequence {tn} with
∫

Ω×{0} |v(x, y, tn; v0)|pdx = B. By E(v(x, y, tn; v0)) ≤ E(v0), it can

easily be seen that
∫
C

ksy1−2s|∇v(x, y, tn; v0)|2dxdy is bounded. And compact trace embedding
Hs

0,L(C) ⊂ Lp(Ω × {0})(1 ≤ p < 2∗s) indicates that there is a subsequence v(x, y, tn; v0) (not relabelled), such that
v(x, y, tn; v0)→ w in Lp(Ω × {0}), similar to the proof of Theorem 1.2, it can immediately achieve w is a stationary
solution. �

Lemma 2.4. Suppose v(x, y, t; v0) is a global solution to the equation (1.6), and w ∈ ω(v0), then there is a positive
constant K = K(v0), such that

∫
C

ksy1−2s|∇w|2dxdy ≤ K.

Proof of Lemma 2.2 . We know E(w) ≤ E(v0) from the energy inequality, on account of w ∈ ω(v0), namely w is
a stationary solution, we have ∫

C

ksy1−2s|∇w|2dxdy =

∫
Ω×{0}

|w|pdx,

further we obtain ∫
C

ksy1−2s|∇w|2dxdy ≤ CE(v0).

�

With the help of the proceeding lemmas, we now can prove Theorem 1.3.

Proof of Theorem 1.3 . Assume

lim sup
t→∞

∫
C

ksy1−2s|∇v(x, y, t; v0)|2dxdy = ∞,

by the energy inequality, we see that
lim sup

t→∞
‖v(x, y, t; v0)‖p = ∞,
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If ‖v(x, y, t; v0)‖p → ∞ when t → ∞, then Sobolev trace embedding theorem implies that it contradicts Corollary
2.1. If lim inf

t→∞
‖v(x, y, t; v0)‖p is finite, then Lemma 2.3 yields ω(v0) contains a stationary solution with arbitrarily

large Lp(Ω × {0})− norm, however from Sobolev trace embedding theorem, we can derive that it contradicts
Lemma 2.4, which completes the proof. �

Proof of Theorem 1.4. As to the Lq estimate of solution, we adopt Moser iteration, which has been used to
establish the regularity for the weak solutions of semilinear heat equation with critical exponent and semilinear
elliptic equation with fractional Laplacian respectively [19, 21].

For arbitrary fixed t0 > 0 and T > 0, we choose a suitable cut-off function η ∈ C∞(0,T ) satisfying

0 ≤ η(t) ≤ 1, t ∈ (0,T ),
η(t) = 1, t ∈ [t0,T ],

η(t) = 0, t ∈ [0,
t0
2

],

|ηt | ≤
1
t0
.

Substituting φ = v2ρ+1η2 (ρ > 0, to be determined later) for the test function in Definition 1.1 gives∫ T

0

(∫
Ω×{0}

[
φvt − φ|v|p−2v

]
dx +

∫
C

ksy1−2s∇v · ∇φdxdy
)

dt = 0. (2.15)

Suppose v ∈ L2ρ+2(CT ), integrating the first term on the left-hand part of (2.15) by parts leads to∫ T

0

∫
Ω×{0}

φvtdxdt =

∫ T

0

∫
Ω×{0}

vtv2ρ+1η2dxdt

=
1

2(ρ + 1)

∫ T

0

∫
Ω×{0}

(v2ρ+2)tη
2dxdt

=
1

2(ρ + 1)

∫ T

0

∫
Ω×{0}

(v2ρ+2η2)tdxdt −
1

ρ + 1

∫ T

0

∫
Ω×{0}

v2ρ+2ηηtdxdt. (2.16)

Concerning the third term on the left-hand part of (2.15), we have the following estimates∫ T

0

∫
C

ksy1−2s∇v · ∇(v2ρ+1η2)dxdydt =

∫ T

0

∫
C

ksy1−2s∇v · ∇(v2ρ+1)η2dxdydt (2.17)

=
2ρ + 1

(ρ + 1)2

∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt

≥
1

ρ + 1

∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt. (2.18)

With regard to the second term on the left-hand part of (2.15), using Hölder’s inequality, we arrive at∫ T

0

∫
Ω×{0}

φvp−2vdxdt =

∫ T

0

∫
Ω×{0}

η2v2ρ+2vp−2vdxdt

=

∫ T

0
η2

(∫
{vp−2<M}∩Ω×{0}

v2ρ+2vp−2vdx +

∫
{vp−2≥M}∩Ω×{0}:=M

v2ρ+2vp−2vdx
)

dt

≤ M
∫ T

0

∫
Ω×{0}

η2v2ρ+2dxdt +

∫ T

0
η2

(∫
M

(vp−2)
1

1− 2
p dx

)1− 2
p
(∫
M

(v2ρ+2)
p
2 dx

) 2
p

dt

≤ M
∫ T

0

∫
Ω×{0}

η2v2ρ+2dxdt +

∫ T

0
η2

(∫
M

vpdx
)1− 2

p
(∫

Ω×{0}
(vρ+1)pdx

) 2
p

dt

≤ M
∫ T

0

∫
Ω×{0}

η2v2ρ+2dxdt +
1
S

sup
t

(∫
M

vpdx
)1− 2

p
∫ T

0
η2

∫
C

ksy1−2s|∇vρ+1|2dxdydt. (2.19)

Then by (2.15)–(2.19), we get

0 =

∫ T

0

∫
Ω×{0}

vtφdxdt −
∫ T

0

∫
Ω×{0}

|v|p−2vφdxdt +

∫ T

0

∫
C

ksy1−2s∇v · ∇φdxdydt

≥
1

2(ρ + 1)

∫ T

0

∫
Ω×{0}

(v2ρ+2η2)tdxdt −
1

ρ + 1

∫ T

0

∫
Ω×{0}

v2ρ+2ηηtdxdt
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+
1

ρ + 1

∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt − M
∫ T

0

∫
Ω×{0}

η2v2ρ+2dxdt

−
1
S

sup
t

(∫
M

vpdx
)1− 2

p
∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt

where it follows ∫ T

0

∫
Ω×{0}

(v2ρ+2η2)tdxdt =

∫ T

0

d
dt

(∫
Ω×{0}

v2ρ+2η2dx
)

dt

=

∫
Ω×{0}

v2ρ+2η2dx|t=T
t=0 =

∫
Ω×{0}

v(x, y,T )2ρ+2dx,

from η(0) = η(T ) = 0. Letting
1
β

= 1 −
2
p
, ε(M) = 1

S supt

(∫
M

vpdx
) 1
β , Theorem 1.3 implies ε(M) is finite.

Arranging the above, we see that

1
2(ρ + 1)

∫
Ω×{0}

v(T )2ρ+2dx +
1

ρ + 1

∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt

≤
1

ρ + 1

∫ T

0

∫
Ω×{0}

η|ηt |v2ρ+2dxdt + M
∫ T

0

∫
Ω×{0}

η2v2ρ+2dxdt

+ ε(M)
∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt. (2.20)

Let ρ0 = 0, ρi + 1 = (ρi−1 + 1)(1 + 1
β
), i ≥ 1. It’s easy to see that for arbitrary fixed q (1 ≤ q < ∞), there is

always a i0 such that 2(ρi0−1 + 1) < q ≤ 2(ρi0 + 1) = 2(ρi0−1 + 1)(1 + 1
β
). Take suitable M to satisfy

ε(M) =
1
q
<

1
2(ρi0−1 + 1)

.

Then by (2.20), we have

1
2(ρ + 1)

∫
Ω×{0}

v(T )2ρ+2dx +

(
1

ρ + 1
−

1
q

) ∫ T

0

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt

≤
1

2(ρ + 1)

∫ T

0

∫
Ω×{0}

η|ηt |v2ρ+2dxdt + M
∫ T

0

∫
Ω×{0}

η2v2ρ+2dxdt. (2.21)

And in view of η(t) = 1(t ∈ [t0,T ]), η(t) = 0(t ∈ [0, t0
2 ]), along with Hölder’s inequality and Sobolev trace

inequality, we obtain ∫ T

t0

∫
Ω×{0}

v(2ρ+2)(1+ 1
β )η2(1+ 1

β )dxdt

≤

∫ T

t0
2

∫
Ω×{0}

v(2ρ+2)(1+ 1
β )η2(1+ 1

β )dxdt

≤

∫ T

t0
2

∫
Ω×{0}

(
v(2ρ+2)η2

) 1
β β dxdt

 1
β
∫ T

t0
2

∫
Ω×{0}

(
v(2ρ+2)η2

) 1
1− 1

β dxdt
1− 1

β

=

∫ T

t0
2

∫
Ω×{0}

v(2ρ+2)η2dxdt
 1
β
∫ T

t0
2

∫
Ω×{0}

(
v(2ρ+2)η2

)p
dxdt

 2
p

≤ C
∫ T

t0
2

∫
Ω×{0}

v(2ρ+2)η2dxdt
 1
β
∫ T

t0
2

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt.

Combining (2.21) and |ηt | ≤
1
t0
, η(t) ≤ 1, we derive(

1
ρ + 1

−
1
q

) ∫ T

t0
2

∫
C

ksy1−2s|∇vρ+1|2η2dxdydt

≤
1

t0(ρ + 1)

∫ T

t0
2

∫
Ω×{0}

v(2ρ+2)ηdxdt + M
∫ T

t0
2

∫
Ω×{0}

v(2ρ+2)ηdxdt

≤

(
1

t0(ρ + 1)
+ M

) ∫ T

t0
2

∫
Ω×{0}

v(2ρ+2)dxdt.
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From the above, it turns out that ∫ T

t0

∫
Ω×{0}

v(2ρ+2)(1+ 1
β )dxdt

≤ C

1
t0(ρ + 1)

+ M

1
ρ + 1

−
1
q

∫ T

t0
2

∫
Ω×{0}

v2ρ+2dxdt
1+ 1

β

= C
∫ T

t0
2

∫
Ω×{0}

v2ρ+2dxdt
1+ 1

β

, (2.22)

where C = C(N, s, q, t0).
Plugging ρ = ρi−1 back into (2.22),(∫ T

t0

∫
Ω×{0}

v2(ρi−1+1)(1+ 1
β )dxdt

) 1
(ρi−1+1)(1+ 1

β )

≤ C
∫ T

t0
2

∫
Ω×{0}

v2(ρi−1+1)dxdt
 1
ρi−1+1

,

that is (∫ T

t0

∫
Ω×{0}

v2(ρi+1)dxdt
) 1

(ρi+1)

≤ C
∫ T

t0
2

∫
Ω×{0}

v2(ρi−1+1)dxdt
 1
ρi−1+1

≤ Ci

∫ T

t0
2i

∫
Ω×{0}

v2(ρ0+1)dxdt


1

ρ0+1

= Ci
∫ T

t0
2i

∫
Ω×{0}

v2dxdt → C0

∫ T

0

∫
Ω×{0}

v2dxdt(i→ ∞).

Therefore u ∈ W2s,1
q (Q∞) = Lq([t0,∞); W2s

q (Ω × {0}))
⋂

W1
q ([t0,∞); Lq(Ω × {0})) for any 1 ≤ q < ∞, where

Q∞ = Ω × {0} × [t0,∞), and by the embedding of anisotropic spaces [22, 23], it follows that

u ∈ BUC([t0,∞); BUCγ(Ω × {0})), where 0 < γ ≤ 2s −
N + 2s

q
, and BUCγ(Ω × {0}) is the Banach space of

bounded Hölder continuous functions of order γ on Ω × {0} for γ ∈ R+\N, while for γ ∈ N0, BUCγ(Ω × {0}) is the
Banach space of γ-times bounded uniformly continuously differentiable functions on Ω × {0} (see [23] A.4).
Furthermore, applying the standard bootstrap argument [24] we finally obtain u(x, t) is a classical solution for all
t ≥ t0 > 0, which completes the proof of Theorem 1.4.

�
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