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Abstract 8 

Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by 9 

the novel severe acute respiratory syndrome coronavirus 2, is taking a heavy toll on society and 10 

planetary health, and illustrates the threat emerging coronaviruses can pose to the wellbeing of humans 11 

and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and 12 

expanding their host range. In the last few decades, several novel coronaviruses have emerged in 13 

humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or 14 

wild populations, raising conservation concerns. The evolution and emergence of novel viruses is 15 

enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses’ 16 

potential for infecting different host species, and to identify the circumstances under which cross-17 

species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly 18 

across several mammalian host species) up-to-date knowledge of host range and circumstances 19 

concerning reported cross-species transmission events of emerging coronaviruses in humans and 20 

common domestic mammals. All of these coronaviruses had similar host ranges, were closely related 21 

(indicative of rapid diversification and spread), and their emergence was likely associated with high-22 

host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) 23 

and the health or wellbeing of animals as end- and/or intermediate spillover hosts. Further research is 24 

needed to identify mechanisms of the cross-species transmission events that have ultimately led to a 25 

surge of emerging coronaviruses in multiple species in a relatively short period of time in a world 26 

undergoing rapid environmental change.    27 
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1 Introduction 28 

Coronaviruses (CoVs) cause respiratory and digestive diseases in humans and other animals, and are 29 

responsible for several emerging diseases. The severe acute respiratory syndrome (SARS) outbreak in 30 

2002–2003 resulted in 8422 human cases and 916 deaths in 33 countries (1). In 2012, Middle East 31 

respiratory syndrome (MERS) emerged, and over time has resulted in over 2,500 human cases and 866 32 

deaths in 27 countries (2,3). As of mid-2021, the novel coronavirus disease 2019 (COVID-19) 33 

pandemic has resulted in 4.2 million human deaths and 196.2 million cases in 221 countries and 34 

territories (4). Other animals have also been affected by these and other emerging coronaviruses, all of 35 

which resulted from cross-species transmission, and demonstrate the serious threat coronaviruses can 36 

pose to humans and other animals globally.  37 

Named after their crown-shaped spike surface proteins, coronaviruses are enveloped, positive-38 

sense single-stranded RNA viruses that belong to the family Coronaviridae, subfamily 39 

Orthocoronavirinae (5,6). They split into four genera: Alphacoronavirus, Betacoronavirus, 40 

Deltacoronavirus, and Gammacoronavirus (5). The first two genera infect mammals primarily, 41 

whereas Gammacoronaviruses infect birds, and Deltacoronaviruses infect both mammals and birds 42 

(7). Coronaviruses further split into species; however, they exist as quasispecies due to the rapid 43 

evolution driven by their high mutation rates and homologous RNA recombination (8). Coronaviruses 44 

have the largest genomes (26.4–31.7 kilobases) of all known RNA viruses; thus, their genomes are 45 

especially prone to accumulation of mutations and recombined segments over time, which contributes 46 

to their diverse host range and potential for disease emergence (9). 47 

Bats are considered reservoirs for most Alpha- and Betacoronaviruses, while wild birds are 48 

probable reservoirs for Gamma- and Deltacoronaviruses (10). Coronavirus spillover from reservoirs 49 

to other species, and subsequent cross-species transmission, is primarily mediated by recombination in 50 

the receptor-binding domain (RBD) of the spike protein (S) gene (11). RBD enables coronaviruses to 51 

infect hosts by binding to a host receptor, e.g., angiotensin-converting enzyme 2 (ACE2) in the case of 52 

SARS coronaviruses, for cell entry (7,12,13). Although research has revealed reservoirs and molecular 53 

mechanisms enabling cross-species transmission, and that viral evolution is facilitated by frequent 54 

cross-species transmission events (14), less is known about the environments favoring emerging 55 

coronavirus evolution in non-reservoir hosts.  56 

Agriculture and industrialization expanded the global abundance of humans and domestic 57 

mammals (i.e., livestock and pets). Today, their combined biomass makes up 96% of all mammalian 58 

biomass on Earth (15). This may be the primary reason for disease emergence in humans and other 59 

animals (16). To help curb coronavirus disease emergence, it is important to identify current host 60 

ranges of existing coronaviruses in humans and domestic animals, and the circumstances associated 61 

with their cross-species transmission. 62 

This review provides an updated succinct summary of known host ranges and cross-species 63 

transmissions of recently emerged coronaviruses in humans and domestic mammals. Moreover, I 64 

discuss commonalities among the ecological circumstances related to spillover and emergence of 65 

several coronaviruses in various mammalian hosts, and how these may inform One Health 66 

interventions for preventing disease emergence.  67 

2 Emerging human coronaviruses 68 

There are seven known human coronaviruses: the Betacoronaviruses SARS-CoV-1, MERS-CoV, and 69 

SARS-CoV-2, which caused SARS, MERS, and COVID-19, respectively, and the Alphacoronaviruses 70 
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NL63 and 229E and Betacoronaviruses OC43 and HKU1, which cause the common cold in humans 71 

(17). The latter four may not be labeled as recently emerging coronaviruses, although they have spilled 72 

over at some point in the past. Bats are considered reservoirs for NL63 and 229E, whereas rodents are 73 

putative reservoirs for OC43 and HKU1 (17–19). NL63 possibly emerged several hundred years ago 74 

from recombination between ancestors to 229E in hipposiderid bats and coronaviruses circulating in 75 

African trident bats (19,20). Based on phylogenetic analyses, cattle and camelids have been identified 76 

as probable intermediate spillover hosts for OC43 and 229E emergence one and two centuries ago, 77 

respectively (17,18,20). The bovine-to-human spillover that led to OC43 emergence likely coincided 78 

with a pandemic in 1890 (17,21,22). Indeed, OC43 and bovine coronavirus share 96% global 79 

nucleotide identity (23). Finally, extant lineages of HKU1 trace their most recent common ancestor to 80 

the 1950s, when it possibly spilled over from rodents (20).  81 

Next, this section covers plausible spillover events—from reservoirs to humans via potential 82 

intermediate host species—that generated the recent SARS-CoV-1, MERS-CoV, and SARS-CoV-2, 83 

and their cross-species transmission potential. 84 

2.1 SARS-CoV-1 85 

SARS emerged in Guangdong, China, and caused the devastating 2000–2003 outbreak in several 86 

countries (1). Successful efforts curbed the epidemic: only a few cases occurred in late 2003 and early 87 

2004 (24). There have been no known SARS-CoV-1-related cases since.  88 

Based on genetic and epidemiologic investigations, the first SARS-CoV-1-infected individuals 89 

likely contracted the virus from masked palm civets or other wildlife in wet markets (24–27). Civet 90 

isolates revealed ongoing adaptation, suggesting that they were not reservoir hosts, but intermediate 91 

spillover hosts that contracted the virus from horseshoe bats (26–30). Substantial evidence confirms 92 

bats as SARS reservoirs (26,28,29,31,32).  93 

Wildlife samples from a market in Shenzhen revealed that SARS-CoV-1 shared 99.8% 94 

nucleotide identity with isolates from civets and a raccoon dog, and that a ferret badger had 95 

seroconverted against SARS-CoV-1 (24,26). Initial human cases reported direct or indirect contact 96 

with these animals via handling, killing, meat serving, or residing near wet markets (33). Surveys 97 

showed that animal (especially civet) traders, although asymptomatic, had disproportionately high 98 

seroconversion against SARS-CoV-1, suggesting they have been exposed to SARS-CoV-related 99 

viruses for several years before the SARS epidemic (24,26). Intermediate spillover hosts were not 100 

necessarily required for the evolution of SARS-CoV-1, since a bat SARS-like coronavirus is able to 101 

bind to ACE2 in humans and civets for cell entry (34). Nonetheless, civets may have amplified the 102 

virus and brought it closer to humans (35). 103 

 Additional mammals are susceptible to SARS-CoV-1 infection. Cats, ferrets, guinea pigs, 104 

golden hamsters, common marmosets, grivets, and cynomolgus and rhesus macaques can be infected 105 

under experimental inoculation, seroconvert, and display similar pathological signs as humans, and the 106 

monkeys and guinea pigs usually display mild clinical signs, while cats and golden hamsters show no 107 

clinical signs (36–44). In two studies, inoculated ferrets only exhibited signs of lethargy (36,37). 108 

Furthermore, cats and ferrets can shed SARS-CoV-1 and transmit the virus within each species (36). 109 

Cats have also been naturally infected by SARS-CoV-1 in an apartment block where residents had 110 

SARS, suggesting possible human-to-cat transmission (36). Although swine are susceptible to SARS-111 

CoV-1 both experimentally and naturally, viral replication in (and shedding from) swine is poor (45–112 

47). Mice and poultry are not susceptible to SARS-CoV-1 infection (45,48,49). Thus, SARS-CoV-1 113 

was not uniquely adapted to humans, yet likely restricted to mammals. 114 
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2.2 MERS-CoV 115 

MERS cases are still being reported since it became endemic in the Arabian peninsula. MERS does 116 

sporadically spread to other parts of the world, although with limited human-to-human transmission 117 

(50,51). Most outbreaks originate from independent spillover events. 118 

 Bats are putative reservoirs for MERS, while dromedary camels and other camelids are 119 

intermediate spillover hosts (52–54). Although rare, camel-to-human transmission does occur (51,55). 120 

Infected camels shed MERS-CoV via bodily fluids, especially nasal secretions, and exhibit sneezing, 121 

coughing, fever, and loss of appetite (56,57). Camel care-takers or consumers of camel products are at 122 

risk of contracting MERS-CoV (51). People in direct or indirect contact with camels have 123 

disproportionately high seroconversion against MERS-CoV (58). Surveys from 2010–2013 in Saudi 124 

Arabia show that 90% of 310 and 74% of 203 camels were MERS-CoV seropositive (59,60). Historical 125 

seropositive samples and phylogenetic analyses suggest that MERS-like coronaviruses have been 126 

circulating in camels for at least a few decades before MERS recently emerged in humans (52,60–63). 127 

Camel markets with both live and dead animals are believed to serve as hotspots for MERS-CoV 128 

transmission (64). 129 

MERS-CoV may infect additional species. Rhesus macaques, common marmosets, swine, 130 

llamas, rabbits, and alpacas have been infected experimentally, and the monkeys developed mild-to-131 

moderate and moderate-to-severe disease, respectively, swine and llamas displayed rhinorrhea, while 132 

rabbits and alpacas showed no clinical signs, although alpacas shed MERS-CoV and transmitted it 133 

within its species (65–68). A virological survey found MERS-CoV in sheep, goats, donkeys, and a 134 

cow, but not in buffaloes, mules, or horses (69). A serological study confirms that equids might not be 135 

susceptible to MERS-CoV infection, although in vitro inoculation suggests otherwise (70). However, 136 

in an experimental inoculation study, sheep and horses did not show evidence of viral replication or 137 

seroconversion (68). Mice, golden hamsters, ferrets, and poultry are not considered susceptible to 138 

MERS-CoV infection, mainly because of their low host receptor homology with that of the MERS-139 

CoV-susceptible species (67,71). 140 

2.3 SARS-CoV-2 141 

The current COVID-19 pandemic was initially reported in Wuhan, China in 2019 (72,73), although the 142 

origin of its pathogen, SARS-CoV-2, is still unclear. Its ancestor probably originated in bats, since 143 

SARS-CoV-2 is most closely related to the 2013 and 2019 isolates from horseshoe bats in Yunnan, 144 

China at the genome level, although not at the RBD level, suggesting neither might bind to human 145 

ACE2, and are thus not immediate ancestors of SARS-CoV-2 (72,74,75). 146 

Conversely, isolates (pangolin-CoVs) from smuggled and diseased pangolins in Guangdong 147 

(2018–2019) are closely related to SARS-CoV-2 in the RBD region (76–80). Molecular binding 148 

simulations show that S proteins of SARS-CoV-2 and pangolin-CoVs can potentially recognize ACE2 149 

in both humans and pangolins, suggesting possible pangolin-to-human spillover (76,77). However, 150 

because pangolin-CoVs (including strains from Guangxi) are not the closest relatives to SARS-CoV-2 151 

at the genome level, they are likely not direct ancestors of SARS-CoV-2 (76,78,79). Nevertheless, a 152 

2019 pangolin-CoV isolate from Guangdong displayed high genome-wide similarity with both SARS-153 

CoV-2 and SARS-CoV-2’s closest relative (from bats), suggesting SARS-CoV-2 may have originated 154 

from recombination among coronaviruses present in bats and other wildlife (76,77,79,81).  155 

Like SARS-CoV-1, SARS-CoV-2 infects species with high ACE2 homology. Cats, ferrets, 156 

golden hamsters, tree shrews, common marmosets, grivets, and cynomolgus and rhesus macaques have 157 
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been infected with SARS-CoV-2 experimentally, shed the virus, and displayed similar or milder 158 

clinical and pathological signs as humans, although cats may not show signs of disease (82–91). 159 

Conversely, dogs have low susceptibility to SARS-CoV-2, and show lack of clinical signs or dog-to-160 

dog transmission, possibly due to their low levels of ACE2 in the respiratory tract (82,91–93). Yet, cat-161 

to-cat, ferret-to-ferret, hamster-to-hamster, and bat-to-bat transmission of SARS-CoV-2 have been 162 

confirmed experimentally (82,90,91,94). However, mice, swine and poultry are not susceptible to 163 

SARS-CoV-2 infection (49,71,82).  164 

Accumulating evidence supports naturally occurring human-to-cat SARS-CoV-2 transmission, 165 

such as multiple reports worldwide of SARS-CoV-2-positive cats from confirmed or suspected SARS-166 

CoV-2-positive owners (95). Natural human-to-dog transmission may be possible, as was confirmed 167 

by seroconversion and SARS-CoV-2 presence in two out of 15 dogs in close contact with COVID-19 168 

patients, where the viral sequences from each dog-and-owner pair were identical (92). Serological and 169 

virological surveys, conducted several months after the pandemic started, indicate that SARS-CoV-2 170 

prevalence is much lower in pet and street cats and dogs than in humans, even if pet owners had 171 

suspected or confirmed SARS-CoV-2 infection (96–100). Thus, cats and dogs can get infected under 172 

natural conditions, but rarely. However, certain environments might amplify natural infections and 173 

cross-species transmission. Human-to-mink, mink-to-mink, and mink-to-human transmission of 174 

SARS-CoV-2 have occurred on fur farms in several countries (95,101–104). SARS-CoV-2 has also 175 

been transmitted to tigers, lions, and gorillas in zoos, raising concern for wildlife conservation (105).  176 

Apart from the mink farm outbreaks, evidence so far suggests limited SARS-CoV-2 177 

maintenance in domestic mammals or risk for secondary zoonoses (104). However, the panzootic 178 

potential of SARS-CoV-2 necessitates expanding veterinary surveillance (104,106), especially if 179 

domestic and/or wild animals were to maintain SARS-CoV-2 as the human population undergoes 180 

vaccination, making COVID-19 control more difficult. 181 

3 Emerging coronaviruses in domestic mammals 182 

Since the advent of agriculture (~8,000 BC), several spillover events have led to the emergence of 183 

novel pathogens in humans and domesticated animals (16). Genetic analyses place the common 184 

ancestor to all known coronaviruses at around 8,000 BC, and those of each genus at around 2,400–185 

3,300BC (10). Like humans, domestic mammals have been experiencing an increasing rate of novel 186 

coronavirus emergence, especially within the last century. 187 

 Bovine coronavirus (BCoV) likely emerged from rodent-CoVs around 1400 AD (17,107). 188 

BCoV is transmitted via the fecal–oral route, causing bloody diarrhea and respiratory infections in 189 

cattle (108–110). BCoV-like viruses have also been detected in other domestic and wild ruminants 190 

(108). BCoV can infect dogs experimentally, although subclinically (111). Turkeys show clinical signs 191 

of enteritis when infected with BCoV experimentally, but chickens are not susceptible (112). Equine-192 

CoV, discovered in 1999, plausibly also descended from BCoV and causes enteritis in horses (113–193 

115).  194 

There are two dog coronaviruses: an Alphacoronavirus called canine enteric coronavirus 195 

(CCoV), transmitted fecal-orally, with serotypes CCoV-I and CCoV-II, and a Betacoronavirus called 196 

canine respiratory coronavirus (CRCoV), which causes kennel cough (116). CRCoV was discovered 197 

in 2003 from a kennel outbreak (117). It was later also detected in samples from 1996 (118). It is 198 

closely related to BCoV and OC43, and genetic analyses suggest that CRCoV arose from a recent host-199 

species shift of BCoV from bovine to canine hosts (117,119). 200 
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CCoV was first isolated from an outbreak in military dogs in 1971 (116). Initially, CCoV 201 

infections were believed to be restricted to the enteric tract causing mild diarrheal disease (120), but 202 

an increasing number of lethal pantropic infections suggests that CCoV is responsible for an emerging 203 

infectious disease in canines (116). There are three proposed subtypes of CCoV-II: original CCoV-IIa, 204 

recombinant CCoV-IIb, and CCoV-IIc (116). The two biotypes of CCoV-IIa have different tissue 205 

tropism and pathogenicity: “classical” CCoV-IIa is restricted to the small intestine causing enteritis, 206 

but the emerging “pantropic” CCoV-IIa causes leukopenia and is often fatal (116,121). In 2019, an 207 

Asian pantropic CCoV-IIa strain was also isolated from a wolf in Italy (122), suggesting spillover to 208 

wildlife of imported strains (123). Cats and swine are also susceptible to CCoV (124–126). 209 

There are six porcine coronaviruses: four Alphacoronaviruses, transmissible gastroenteritis 210 

virus (TGEV), porcine respiratory coronavirus (PRCoV), porcine epidemic diarrhoea virus (PEDV), 211 

and swine acute diarrhea syndrome coronavirus (SADS-CoV), one Betacoronavirus, porcine 212 

haemagglutinating encephalomyelitis virus (PHEV), and one Deltacoronavirus, porcine 213 

deltacoronavirus (PDCoV) (127). TGEV, PEDV, SADS-CoV and PDCoV cause severe enteritis that 214 

are fatal in piglets, PHEV causes digestive and/or neurological disease, and PRCoV causes mild 215 

respiratory disease (127).  216 

 TGEV, discovered in 1946 (128), likely emerged from CCoV-II (129), and its less virulent 217 

descendent PRCoV was identified in 1984 (130). PHEV, first described in 1957, likely descended from 218 

BCoV (127). PEDV emerged in the 1970s in Europe and Asia, likely from bat-CoVs, and was 219 

introduced in North America in 2013 after a new PEDV strain emerged in China in 2010 (131–134). 220 

A serological study indicates that PEDV subsequently spilled over from domestic to feral swine 221 

populations in the US (135). PDCoV was first detected in swine samples from 2009 in Hong Kong 222 

(10,132). In 2014, PDCoV caused the first-reported outbreaks in USA and South Korea (136,137). It 223 

was proposed that the virus’ ancestor originated from recombination between sparrow-CoV and 224 

bulbul-CoV (138). PDCoV is most closely related to Deltacoronaviruses sampled from Asian leopard 225 

cats and ferret badgers in Guangdong and Guangxi markets (the first documented cases of 226 

Deltacoronaviruses in mammals) (139), suggesting that these species could have acted as intermediates 227 

for interspecies PDCoV spillover (140). In 2016, SADS outbreaks emerged in Guangdong with 228 

evidence strongly suggesting bat-to-swine spillover origin (141). 229 

There is one coronavirus that primarily infects cats: feline coronavirus (FCoV). This 230 

Alphacoronavirus exists in two serotypes: FCoV-I and FCoV-II (142). Both cause digestive diseases 231 

and are transmitted fecal-orally. FCoV-I is the most common type, but less virulent than FCoV-II 232 

(143,144). Comparative sequence studies indicate FCoV-I is genetically similar to CCoV-I, and FCoV-233 

II emerged from recombination between FCoV-I and CCoV-II (121,142,145,146). Conceivably, 234 

FCoV-I and CCoV-I evolved from a common ancestor, while CCoV-II and FCoV-II arose as more 235 

virulent recombinants (129). For each serotype, there are two biotypes with different pathogenicity: 236 

feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV usually causes 237 

mild diarrhea, whereas FIP is lethal. FIPV evolves from FECV via within-host mutations in the S gene 238 

that alter cell tropism, and emerges during persistent infection of FECV (142,147). However, a novel 239 

FIPV strain may have been transmitted horizontally (144). In 2004, a disease resembling FIP was also 240 

discovered in ferrets caused by an emerging ferret systemic coronavirus, a decade after the first and 241 

less virulent ferret coronavirus (enteric) was discovered (148). FIP likely emerged in the late 1950s, 242 

within a decade after the first TGE cases in swine in USA (128,149). Thus, FCoV is closely related to 243 

TGEV and CCoV, and recombinants among all three have emerged (150–152), probably because all 244 

three can cross-infect cats, swine, and dogs (125,151,153–155).  245 
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4 Discussion 246 

Coronaviruses in humans and domestic animals are closely related (Figure 1), and have emerged 247 

recently and at an increasing rate. The circumstances associated with their emergence are high-animal-248 

density environments that favor interspecies interactions, such as kennels, shelters, farms, and markets 249 

(Table 1), which increase disease prevalence and promote cross-species transmission. Indeed, studies 250 

show that seroprevalence of CCoV is higher in kennels compared to the rest of the dog population, and 251 

shelters co-housing dogs with cats harbor recombinant canine-feline coronaviruses (116,151,153,156). 252 

Further, commercial agriculture has led to large numbers of domestic animals living in close proximity 253 

to humans, possibly driving the emergence of OC43 from cattle, and 229E and MERS from camelids.  254 

Additionally, animals kept under poor conditions or exposed to stress (e.g., during transport) 255 

suffer from poor health and suppressed immune systems, rendering them more susceptible to infections 256 

(64,157). For example, mink fur farms, where animals are usually kept in small, unhygienic enclosures, 257 

generated new strains of SARS-CoV-2 causing secondary zoonoses (95,101–103). The wildlife trade 258 

and wet markets are conducive to disease emergence as well, since animals are transported and kept in 259 

small, unhygienic cages next to many different animal species (157). Indeed, a study showed that civets 260 

in markets were disproportionately positive for SARS-CoV-1 compared to civets on the supplying 261 

farms (30). Further, SARS-CoV-1 isolates from a civet and a racoon dog at the same market, but from 262 

different regions of China, had an identical S-gene sequence, which differed from that of the other civet 263 

isolates, indicating the occurrence of cross-species transmission at the market (26). Accordingly, the 264 

concept of One Health is important for suppressing coronavirus emergence. 265 

Little is still known about host ranges and cross-species transmissions of coronaviruses. Most 266 

studies on this topic have been motivated by finding appropriate animal models for vaccine 267 

development, or identifying potential host species enabling viral persistence. However, future studies 268 

should expand their surveys beyond domestic, captive or common laboratory animals for a fuller 269 

comprehension of coronavirus emergence and the extent of its radiation (Figure 1a). Surveillance 270 

efforts of coronaviruses in the wild are underway (e.g., PREDICT, Global Virome Genome) (158,159), 271 

which are important for identifying new coronaviruses with zoonotic potential (reviewed in (160)), 272 

tracking spillover pathways, and potentially filling in the host range gaps of known coronaviruses in 273 

humans and domestic mammals.  274 

Concurrently with the global expansion of humans and domestic mammals, various 275 

coronaviruses have emerged as a result of cross-species transmission among humans, and domestic 276 

and wild animals. Conceivably, the human and domestic mammal population increase yielded a large 277 

enough susceptible population to maintain coronavirus circulation, provided more opportunities for 278 

novel coronavirus emergence via spillover among different species, and brought humans and domestic 279 

animals in closer contact with wild reservoirs (161–163). The mechanisms governing the surge and 280 

radiation of these recently emerged coronaviruses require further investigation. Actions reducing 281 

people’s dependency on domestic animals and demand for animal products, while improving the health 282 

of the animals remaining in captivity, may mitigate coronavirus emergence.  283 
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9 Figures and Tables 771 

 772 

Figure 1. (a) The evolution and radiation of coronaviruses in humans and domestic mammals (via 773 

potential wild intermediate spillover host species). The radiation suggests there could be a vicious 774 

cycle of coronavirus emergence, whereby newly emerged viruses in new hosts increase the likelihood 775 

of producing more new recombinants. Red, blue and yellow arrows indicate the direction of spillover 776 

of coronavirus emergence for Alphacoronaviruses, Betacoronaviruses and Deltacoronaviruses, 777 

respectively. Solid arrows represent direct (confirmed or suspected) coronavirus transmission 778 

between host species (although indirect transmission via an unidentified intermediate host is not 779 

excluded), and dashed arrows represent suspected indirect transmission via an unidentified 780 

intermediate host (although direct transmission is not excluded) (10,17,104,127,139,141,164). Dotted 781 

arrows with a question mark indicate uncertain spillover events. (b) A simplified phylogeny of the 782 

coronaviruses covered in this review, drawn from published findings (5,129,165).  783 



  

Table 1. First reported outbreaks and probable host species involved in the cross-species transmission events of recently emerging 784 

coronaviruses (or new virulent strains of re-emerging coronaviruses) in humans and domestic mammals covered in this review. The entry 785 

“Unknown” may either suggest that an intermediate spillover host exists but it has not been identified, or that it may not exist. Question 786 

marks represent uncertainty. FCoV-I × CCoV-II denotes recombination between FCoV-I and CCoV-II.  787 

 788 

 789 

Primary 

host 

Emerging coronavirus 

(or new virulent strain) 

Year & location of 

first reported cases 

Intermediate spillover host 

or host of viral predecessor 

Potential reservoir 

host 

Environment associated 

with emergence 

References 

Human SARS-CoV-1 2002        

Guangdong, China 

Masked palm civet    

(Paguma larvata) 

Bat (Rhinolophus spp.) Wet market (1,24–30,164) 

MERS-CoV 2012                   

Saudi Arabia 

Dromedary camel    

(Camelus dromedarius) 

Bat               

(Taphozous perforatus,   

Rhinopoma hardwickii 

and Pipistrellus kuhlii) 

Camel farm and market (2,3,52–

54,64,164) 

SARS-CoV-2 2019               

Wuhan, China 

Malayan pangolin        

(Manis javanica)? 

Bat (Rhinolophus spp.) Wildlife trade and/or    

wet market? 

(72,73,75,79) 

Pig Porcine epidemic 

diarrhoea virus (PEDV) 

1978              

Belgium 

 

Unknown Bat (Scotophilus kuhlii) Swine farm (164) 

New virulent PEDV 

strain 

2010             

Southern China 

Unknown Bat (Scotophilus kuhlii) Swine farm (132) 

Porcine deltacoronavirus 

(PDCoV) 

2009                   

Hong Kong 

Asian leopard cat 

(Prionailurus bengalensis)?       

Ferret badger           

(Melogale moschata)? 

Avian,                 

sparrow and bulbul 

Illegal live-animal 

market? 

(132,138–

140) 

Swine acute diarrhea 

syndrome coronavirus 

(SADS-CoV) 

2016         

Guangdong, China 

Unknown Bat (Rhinolophus spp.) Swine farm (141,164) 
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Dog Canine respiratory 

coronavirus (CRCoV) 

2003                 

United Kingdom 

Cattle (BCoV) Rodents? Bats? Kennel (10,17,106, 

115,116,118) 

Canine enteric 

coronavirus (CCoV) 

1971             

Germany  

Unknown Bat (Rhinolophus spp.?) Military dog kennel (10,115,126, 

164) 

Pantropic CCoV-IIa 2005                    

Italy 

Unknown Bat (Rhinolophus spp.?) Pet shop (10,115,120, 

126) 

Cat Feline coronavirus 

(FCoV)  

1963                 

United States 

FCoV-I: Unknown                      

FCoV-II: Cat and/or dog 

(FCoV-I × CCoV-II) 

Bat (Rhinolophus spp.?) Shelters and catteries (10,127,149) 

Horizontally-transmitted 

FIP FCoV-II 

2011                

Taiwan 

Cat and/or dog            

(FCoV-I × CCoV-II) 

Bat (Rhinolophus spp.?) Shelter (10,127,144) 
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