References
Alharbi, W., & Petrovskii, S. (2019). Effect of complex landscape geometry on the invasive species spread: Invasion with stepping stones.Journal of Theoretical Biology, 464 , 85-97. doi:10.1016/j.jtbi.2018.12.019
Allan, G. M., Prelypchan, C. J., & Gregory, P. T. (2006). Population profile of an introduced species, the common wall lizard (Podarcis muralis ), on Vancouver Island, Canada. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 84 (1), 51-57. doi:10.1139/Z05-176
Andrew, M. E., & Ustin, S. L. (2010). The effects of temporally variable dispersal and landscape structure on invasive species spread.Ecological Applications, 20 (3), 593-608. doi:Doi 10.1890/09-0034.1
Arim, M., Abades, S. R., Neill, P. E., Lima, M., & Marquet, P. A. (2006). Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America, 103 (2), 374-378. doi:10.1073/pnas.0504272102
Bacher, S., Blackburn, T. M., Essl, F., Genovesi, P., Heikkila, J., Jeschke, J. M., . . . Kumschick, S. (2018). Socio-economic impact classification of alien taxa (SEICAT). Methods in Ecology and Evolution, 9 (1), 159-168. doi:10.1111/2041-210X.12844
Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., & Turlure, C. (2013). Individual dispersal, landscape connectivity and ecological networks. Biol Rev Camb Philos Soc, 88 (2), 310-326. doi:10.1111/brv.12000
Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling, 216 (1), 47-59. doi:10.1016/j.ecolmodel.2008.04.010
Bergelson, J., Newman, J. A., & Floresroux, E. M. (1993). Rate of weed spread in spatially heterogeneous environments. Ecology, 74 (4), 999-1011. doi:Doi 10.2307/1940470
Bertram, N. A. (2004). Ecology of the Introduced European Wall Lizard, Podarcis muralis, near Victoria, British Columbia (MSc), University of Victoria,
Blackburn, T. M., Pysek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarosik, V., . . . Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26 (7), 333-339. doi:10.1016/j.tree.2011.03.023
Bocedi, G., Palmer, S. C. F., Pe’er, G., Heikkinen, R. K., Matsinos, Y. G., Watts, K., & Travis, J. M. J. (2014). RangeShifter: a platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods in Ecology and Evolution, 5 (4), 388-396. doi:10.1111/2041-210X.12162
Bocedi, G., Zurell, D., Reineking, B., & Travis, J. M. J. (2014). Mechanistic modelling of animal dispersal offers new insights into range expansion dynamics across fragmented landscapes. Ecography, 37 (12), 1240-1253. doi:10.1111/ecog.01041
Bomford, M., Kraus, F., Barry, S. C., & Lawrence, E. (2009). Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biological Invasions, 11 (3), 713-724. doi:10.1007/s10530-008-9285-3
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., . . . Travis, J. M. (2012). Costs of dispersal. Biol Rev Camb Philos Soc, 87 (2), 290-312. doi:10.1111/j.1469-185X.2011.00201.x
Brown, G. P., Phillips, B. L., Webb, J. K., & Shine, R. (2006). Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus ) at an invasion front in tropical Australia. Biological Conservation, 133 (1), 88-94. doi:10.1016/j.biocon.2006.05.020
Brown, R. M., Gist, D. H., & Taylor, D. H. (1995). Home-range ecology of an introduced population of the European wall lizard Podarcis muralis (Lacertilia; Lacertidae) in Cincinnati, Ohio. American Midland Naturalist (133), 344-359.
Burke, R. L., Hussain, A. A., Storey, J. M., & Storey, K. B. (2002). Freeze tolerance and supercooling ability in the Italian wall lizard,Podarcis sicula, introduced to Long Island, New York.Copeia (3), 836-842.
Centre for Ecology Environment and Conservation. (2018). Phase One survey toolkit [Mobile Application software]. In. Oxford Brookes University
Claussen, D. L., Townsley, M. D., & Bausch, R. G. (1990). Supercooling and freeze-tolerance in the European wall lizard, Podarcis muralis , with a revisional history of the discovery of freeze-tolerance in vertebrates. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 160 (2), 137-143. doi:Doi 10.1007/Bf00300945
Covaciu - Markov, S.-D., Bogdan, H. V., & Ferenti, S. (2006). Notes regarding the presence of some Podarcis muralis (Laurenti 1768) populations on the railroads of western Romania. North-Western Journal of Zoology, 2 , 126-130.
Crooks, J. A. (2005). Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience, 12 (3), 316-329. doi:DOI 10.2980/i1195-6860-12-3-316.1
Day, C. C., Landguth, E. L., Bearlin, A., Holden, Z. A., & Whiteley, A. R. (2018). Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication. Biological Conservation, 221 , 10-22. doi:10.1016/j.biocon.2018.01.017
Engelstoft, C., Robinson, J., Fraser, D., & Hanke, G. (2020). Recent rapid expansion of Common wall lizards (Podarcis muralis ) in British Columbia, Canada. Northwestern Naturalist, 101 , 50-55.
Ernst, R., Massemin, D., & Kowarik, I. (2011). Non-invasive invaders from the Caribbean: The status of Johnstone’s Whistling frog (Eleutherodactylus johnstonei ) ten years after its introduction to Western French Guiana. Biological Invasions, 13 , 1767-1777. doi:10.1007/s10530-010-9930-5
Ferrari, J. R., Preisser, E. L., & Fitzpatrick, M. C. (2014). Modeling the spread of invasive species using dynamic network models.Biological Invasions, 16 (4), 949-960. doi:10.1007/s10530-013-0552-6
Foster, J. (2015). Common wall lizard (Podarcis muralis) Risk assessment summary . Retrieved from
Fraser, E. J., Lambin, X., Travis, J. M. J., Harrington, L. A., Palmer, S. C. F., Bocedi, G., & Macdonald, D. W. (2015). Range expansion of an invasive species through a heterogeneous landscape - the case of American mink in Scotland. Diversity and Distributions, 21 (8), 888-900. doi:10.1111/ddi.12303
Gallien, L., Munkemuller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16 (3), 331-342. doi:10.1111/j.1472-4642.2010.00652.x
Gassert, F., Schulte, U., Husemann, M., Ulrich, W., Rodder, D., Hochkirch, A., . . . Habel, J. C. (2013). From southern refugia to the northern range margin: genetic population structure of the common wall lizard, Podarcis muralis . Journal of Biogeography, 40 (8), 1475-1489. doi:10.1111/jbi.12109
Genovesi, P. (2009). Invasive alien species in a changing world.Biodiversity, 10 (2-3), 3-4. doi:10.1080/14888386.2009.9712838
Gherghel, I., Strugariu, A., Sahlean, T. C., & Zamfirescu, O. (2009). Anthropogenic impact or anthropogenic accommodation? Distribution range expansion of the common wall lizard (Podarcis muralis ) by means of artificial habitats in the north-eastern limits of its distribution range. Acta Herpetologica, 4 (2), 183-189.
Glover-Kapfer, P. (2015). A training manual for habitat suitability and connectivity modeling using tigers (Panthera tigris) in Bhutan as example . Retrieved from https://www.researchgate.net/profile/Paul_Glover-Kapfer/publication/324842116_A_training_manual_for_habitat_suitability_and_connectivity_modeling_using_tigers_Panthera_tigris_in_Bhutan_as_example/links/5ae74151aca2725dabb2364f/A-training-manual-for-habitat-suitability-and-connectivity-modeling-using-tigers-Panthera-tigris-in-Bhutan-as-example.pdf
Grayson, K. L., & Johnson, D. M. (2018). Novel insights on population and range edge dynamics using an unparalleled spatiotemporal record of species invasion. Journal of Animal Ecology, 87 (3), 581-593. doi:10.1111/1365-2656.12755
Guichon, M. L., Benitez, V. V., Gozzi, A. C., Hertzriken, M., & Borgnia, M. (2015). From a lag in vector activity to a constant increase of translocations: invasion of Callosciurus squirrels in Argentina.Biological Invasions, 17 (9), 2597-2604. doi:10.1007/s10530-015-0897-0
Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf, S., Freestone, A., . . . Thomson, D. (2005). The spatial spread of invasions: new developments in theory and evidence. Ecol Lett, 8 (1), 91-101. doi:10.1111/j.1461-0248.2004.00687.x
Hedeen, S. E., & Hedeen, D. L. (1999). Railway aided dispersal of an introduced Podarcis muralis population. Herpetological Review, 30 (1), 57.
Hulbert, A. C., Hall, J. M., Mitchell, T. S., & Warner, D. A. (2020). Use of human-made structures facilitates persistence of a non-native ectotherm. Biological Invasions , 15. doi:10.1007/s10530-020-02236-2
Hunter-Ayad, J., & Hassall, C. (2020). An empirical, cross-taxon evaluation of landscape-scale connectivity. Biodiversity and Conservation, 29 (4), 1339-1359. doi:10.1007/s10531-020-01938-2
Ingenloff, K., Hensz, C. M., Anamza, T., Barve, V., Campbell, L. P., Cooper, J. C., . . . Soberon, J. (2017). Predictable invasion dynamics in North American populations of the Eurasian collared doveStreptopelia decaocto . Proceedings of the Royal Society B-Biological Sciences, 284 (1862), 9. doi:10.1098/rspb.2017.1157
Jimenez-Valverde, A., & Lobo, J. M. (2007). Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica-International Journal of Ecology, 31 (3), 361-369. doi:10.1016/j.actao.2007.02.001
Kadoya, T., & Washitani, I. (2010). Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris ) using a stochastic spatio-temporal model. Biological Conservation, 143 (5), 1228-1235. doi:10.1016/j.biocon.2010.02.030
Keller, R. P., Geist, J., Jeschke, J. M., & Kühn, I. (2011). Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe, 23 (1), 23. doi:10.1186/2190-4715-23-23
Kinezaki, N., Kawasaki, K., & Shigesada, N. (2010). The effect of the spatial configuration of habitat fragmentation on invasive spread.Theoretical Population Biology, 78 (4), 298-308. doi:https://doi.org/10.1016/j.tpb.2010.09.002
Kolar, C. S., & Lodge, D. M. (2001). Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution, 16 (4), 199-204. doi:10.1016/s0169-5347(01)02101-2
Kühnis, J., & Schmocker, H. (2008). Zur Situation der Mauereidechse (Podarcis muralis ) im Fürstentum Liechtenstein und im schweizerischen Alpenrheintal. Zeitschrift für Feldherpetologie, 15 , 43-48.
Langham, S. (2019). ”The Wall Lizard Project” Surrey Amphibian and Reptile Group. Retrieved from http://surrey-arg.org.uk/SARGWEB
Langton, T., S., Atkins, W., & Herbert, C. (2011). On the distribution, ecology and management of non-native reptiles and amphibians in the London Area. Part 1. Distribution and predator/prey impacts. The London Naturalist, 90 , 83 - 156.
Litmer, A. R., & Murray, C. M. (2019). Critical thermal tolerance of invasion: Comparative niche breadth of two invasive lizards.Journal of Thermal Biology, 86 , 8. doi:10.1016/j.jtherbio.2019.102432
Liwanag, H. E. M., Haro, D., Callejas, B., Labib, G., & Pauly, G. B. (2018). Thermal tolerance varies with age and sex for the nonnative Italian Wall Lizard (Podarcis siculus ) in Southern California.Journal of Thermal Biology, 78 , 263-269. doi:10.1016/j.jtherbio.2018.10.010
Locey, K. J., & Stone, P. A. (2006). Factors affecting range expansion in the introduced Mediterranean Gecko, Hemidactylus turcicus .Journal of Herpetology, 40 (4), 526-530. doi:10.1670/0022-1511(2006)40[526:Fareit]2.0.Co;2
Lustig, A., Worner, S. P., Pitt, J. P. W., Doscher, C., Stouffer, D. B., & Senay, S. D. (2017). A modeling framework for the establishment and spread of invasive species in heterogeneous environments. Ecology and Evolution, 7 (20), 8338-8348. doi:10.1002/ece3.2915
Mahoney, P. J., Beard, K. H., Durso, A. M., Tallian, A. G., Long, A. L., Kindermann, R. J., . . . Mohn, H. E. (2015). Introduction effort, climate matching and species traits as predictors of global establishment success in non-native reptiles. Diversity and Distributions, 21 (1), 64-74. doi:10.1111/ddi.12240
Mang, T., Essl, F., Moser, D., Kleinbauer, I., & Dullinger, S. (2018). An integrated, spatio-temporal modelling framework for analysing biological invasions. Diversity and Distributions, 24 (5), 652-665. doi:10.1111/ddi.12707
Marvier, M., Kareiva, P., & Neubert, M. G. (2004). Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Analysis, 24 (4), 869-878. doi:10.1111/j.0272-4332.2004.00485.x
McGarigal, K., Cushman, S., & Ene, E. (2002). FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst. Retrieved from http://www.umass.edu/landeco/research/fragstats/fragstats.html
Met Office. (2018). UKCP09: Met Office gridded land surface climate observations - long term averages at 5km resolution. Retrieved from http://catalogue.ceda.ac.uk/uuid/620f6ed379d543098be1126769111007
Michaelides, S. N., While, G. M., Bell, C., & Uller, T. (2013). Human introductions create opportunities for intra-specific hybridization in an alien lizard. Biological Invasions, 15 (5), 1101-1112. doi:10.1007/s10530-012-0353-3
Michaelides, S. N., While, G. M., Zajac, N., & Uller, T. (2015). Widespread primary, but geographically restricted secondary, human introductions of wall lizards, Podarcis muralis . Mol Ecol, 24 (11), 2702-2714. doi:10.1111/mec.13206
Mole, S. (2010). Changes in relative abundance of the western green lizard Lacerta bilineata and the common wall lizardPodarcis muralis introduced onto Boscombe Cliffs, Dorset, UK.The Herpetological Journal, 15 (2), 6.
Münch, D. (2001). Do allochthone Common Wall Lizards jeopardize autochtone Sand and Viviparous Lizards? Dortmunder Beiträge zur Landesskunde, 35 , 187-190.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3), 231-259. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pysek, P., Jarosik, V., Hulme, P. E., Kuhn, I., Wild, J., Arianoutsou, M., . . . Winter, M. (2010). Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 107 (27), 12157-12162. doi:10.1073/pnas.1002314107
R Core Team. (2017). R: A language and environment for statistical computing. In. Vienna, Austria.: R Foundation for Statistical Computing.
Ricciardi, A., & Cohen, J. (2007). The invasiveness of an introduced species does not predict its impact. Biological Invasions, 9 (3), 309-315. doi:10.1007/s10530-006-9034-4
Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D. M., Carpintero, S., . . . Worner, S. P. (2011). Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences of the United States of America, 108 (1), 220-225. doi:10.1073/pnas.1011723108
Roy, H. E., Bacher, S., Essl, F., Adriaens, T., Aldridge, D. C., Bishop, J. D. D., . . . Rabitsch, W. (2019). Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Global Change Biology, 25 (3), 1032-1048. doi:10.1111/gcb.14527
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., . . . Weller, S. G. (2001). The population biology of invasive species. Annual Review of Ecology and Systematics, 32 , 305-332. doi:DOI 10.1146/annurev.ecolsys.32.081501.114037
Salgado, I. (2018). Is the raccoon (Procyon lotor ) out of control in Europe? Biodiversity and Conservation, 27 (9), 2243-2256. doi:10.1007/s10531-018-1535-9
Samson, E., Hirsch, P. E., Palmer, S. C. F., Behrens, J. W., Brodin, T., & Travis, J. M. J. (2017). Early engagement of stakeholders with individual-based modeling can inform research for improving invasive species management: The round goby as a case study. Frontiers in Ecology and Evolution, 5 (149). doi:10.3389/fevo.2017.00149
Šandera, M. (Producer). (2017, 2017-10-12). Map of distribution ofPodarcis muralis in the Czech Republic. Retrieved from https://www.biolib.cz/en/taxonmap/id113/
Schulte, U. (2009). Expansion einer allochthonen Mauereidechsen-Population bei Leipzig. Jahresschrift für Feldherpetologie und Ichthyofaunistik Sachsen, 11 , 2-10.
Schulte, U., Gassert, F., Geniez, P., Veith, M., & Hochkirch, A. (2012). Origin and genetic diversity of an introduced wall lizard population and its cryptic congener. Amphibia-Reptilia, 33 (1), 129-140. doi:10.1163/156853812X626160
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., . . . Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8 , 9. doi:10.1038/ncomms14435
Shigesada, N., Kawasaki, K., & Takeda, Y. (1995). Modeling Stratified Diffusion in Biological Invasions. American Naturalist, 146 (2), 229-251. doi:Doi 10.1086/285796
Sibly, R. M., & Hone, J. (2002). Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357 (1425), 1153-1170. doi:10.1098/rstb.2002.1117
Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., . . . Vila, M. (2013). Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, 28 (1), 58-66. doi:10.1016/j.tree.2012.07.013
Skellam, J. G. (1951). Random Dispersal in Theoretical Populations.Biometrika, 38 (1-2), 196-218. doi:DOI 10.1093/biomet/38.1-2.196
Sprouffske, K. (2018). growthcurver: Simple metrics to summarize growth curves. R package version 0.3.0.
Strugariu, A., Gherghel, I., & Zamfirescu, Ş. (2008). Conquering new ground: On the presence of Podarcis muralis (Reptilia: Lacertidae) in Bucharest, the capital city of Romania.Herpetologica Romanica, 2 , 47-50.
Suarez, A. V., Holway, D. A., & Case, T. J. (2001). Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants. Proceedings of the National Academy of Sciences of the United States of America, 98 (3), 1095-1100. doi:DOI 10.1073/pnas.98.3.1095
Suzuki-Ohno, Y., Morita, K., Nagata, N., Mori, H., Abe, S., Makino, T., & Kawata, M. (2017). Factors restricting the range expansion of the invasive green anole Anolis carolinensis on Okinawa Island, Japan. Ecology and Evolution, 7 (12), 4357-4366. doi:10.1002/ece3.3002
Trajer, A., Mlinarik, L., Juhasz, P., & Bede-Fazekas, A. (2014). The combined impact of urban heat island, thermal bridge effect of buildings and future climate change on the potential overwintering of Phlebotomus species in a Central European metropolis. Applied Ecology and Environmental Research, 12 (4), 887-908. doi:DOI 10.15666/aeer/1204_887908
Travis, J. M. J., Harris, C. M., Park, K. J., & Bullock, J. M. (2011). Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches. Methods in Ecology and Evolution, 2 (5), 477-488. doi:10.1111/j.2041-210X.2011.00104.x
Urban, M. C., Phillips, B. L., Skelly, D. K., & Shine, R. (2008). A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. American Naturalist, 171 (3), E134-E148. doi:10.1086/527494
Vila, M., Basnou, C., Pysek, P., Josefsson, M., Genovesi, P., Gollasch, S., . . . Partners, D. (2010). How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Frontiers in Ecology and the Environment, 8 (3), 135-144. doi:10.1890/080083
Villalobos-Jimenez, G., & Hassall, C. (2017). Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61 (7), 1337-1346. doi:10.1007/s00484-017-1311-7
While, G. M., Williamson, J., Prescott, G., Horvathova, T., Fresnillo, B., Beeton, N. J., . . . Uller, T. (2015). Adaptive responses to cool climate promotes persistence of a non-native lizard. Proceedings of the Royal Society B-Biological Sciences, 282 (1803). doi:Artn 20142638
10.1098/Rspb.2014.2638
Williams, R. J., Dunn, A. M., Quinn, C. H., & Hassall, C. (2019). Stakeholder discourse and opinion towards a charismatic non-native lizard species: Potential invasive problem or a welcome addition?People and Nature, 1 (2), 152-166. doi:10.1002/pan3.18
Wirga, M., & Majtyka, T. (2015). Do climatic requirements explain the northern range of European reptiles? Common wall lizard Podarcis muralis (Laur.) (Squamata, Lacertidae) as an example.North-Western Journal of Zoology, 11 (2), 296-303.
With, K. A. (2002). The landscape ecology of invasive spread.Conservation Biology, 16 (5), 1192-1203. doi:DOI 10.1046/j.1523-1739.2002.01064.x
Table 1 Details of variables and their data source used in MaxEnt models of P. muralis probability of occurrence.