References
Alharbi, W., & Petrovskii, S. (2019). Effect of complex landscape
geometry on the invasive species spread: Invasion with stepping stones.Journal of Theoretical Biology, 464 , 85-97.
doi:10.1016/j.jtbi.2018.12.019
Allan, G. M., Prelypchan, C. J., & Gregory, P. T. (2006). Population
profile of an introduced species, the common wall lizard (Podarcis
muralis ), on Vancouver Island, Canada. Canadian Journal of
Zoology-Revue Canadienne De Zoologie, 84 (1), 51-57. doi:10.1139/Z05-176
Andrew, M. E., & Ustin, S. L. (2010). The effects of temporally
variable dispersal and landscape structure on invasive species spread.Ecological Applications, 20 (3), 593-608. doi:Doi
10.1890/09-0034.1
Arim, M., Abades, S. R., Neill, P. E., Lima, M., & Marquet, P. A.
(2006). Spread dynamics of invasive species. Proceedings of the
National Academy of Sciences of the United States of America, 103 (2),
374-378. doi:10.1073/pnas.0504272102
Bacher, S., Blackburn, T. M., Essl, F., Genovesi, P., Heikkila, J.,
Jeschke, J. M., . . . Kumschick, S. (2018). Socio-economic impact
classification of alien taxa (SEICAT). Methods in Ecology and
Evolution, 9 (1), 159-168. doi:10.1111/2041-210X.12844
Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., & Turlure, C.
(2013). Individual dispersal, landscape connectivity and ecological
networks. Biol Rev Camb Philos Soc, 88 (2), 310-326.
doi:10.1111/brv.12000
Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R.
(2008). Slope, aspect and climate: Spatially explicit and implicit
models of topographic microclimate in chalk grassland. Ecological
Modelling, 216 (1), 47-59. doi:10.1016/j.ecolmodel.2008.04.010
Bergelson, J., Newman, J. A., & Floresroux, E. M. (1993). Rate of weed
spread in spatially heterogeneous environments. Ecology, 74 (4),
999-1011. doi:Doi 10.2307/1940470
Bertram, N. A. (2004). Ecology of the Introduced European Wall
Lizard, Podarcis muralis, near Victoria, British Columbia (MSc),
University of Victoria,
Blackburn, T. M., Pysek, P., Bacher, S., Carlton, J. T., Duncan, R. P.,
Jarosik, V., . . . Richardson, D. M. (2011). A proposed unified
framework for biological invasions. Trends in Ecology &
Evolution, 26 (7), 333-339. doi:10.1016/j.tree.2011.03.023
Bocedi, G., Palmer, S. C. F., Pe’er, G., Heikkinen, R. K., Matsinos, Y.
G., Watts, K., & Travis, J. M. J. (2014). RangeShifter: a platform for
modelling spatial eco-evolutionary dynamics and species’ responses to
environmental changes. Methods in Ecology and Evolution, 5 (4),
388-396. doi:10.1111/2041-210X.12162
Bocedi, G., Zurell, D., Reineking, B., & Travis, J. M. J. (2014).
Mechanistic modelling of animal dispersal offers new insights into range
expansion dynamics across fragmented landscapes. Ecography,
37 (12), 1240-1253. doi:10.1111/ecog.01041
Bomford, M., Kraus, F., Barry, S. C., & Lawrence, E. (2009). Predicting
establishment success for alien reptiles and amphibians: a role for
climate matching. Biological Invasions, 11 (3), 713-724.
doi:10.1007/s10530-008-9285-3
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs,
M., . . . Travis, J. M. (2012). Costs of dispersal. Biol Rev Camb
Philos Soc, 87 (2), 290-312. doi:10.1111/j.1469-185X.2011.00201.x
Brown, G. P., Phillips, B. L., Webb, J. K., & Shine, R. (2006). Toad on
the road: Use of roads as dispersal corridors by cane toads (Bufo
marinus ) at an invasion front in tropical Australia. Biological
Conservation, 133 (1), 88-94. doi:10.1016/j.biocon.2006.05.020
Brown, R. M., Gist, D. H., & Taylor, D. H. (1995). Home-range ecology
of an introduced population of the European wall lizard Podarcis
muralis (Lacertilia; Lacertidae) in Cincinnati, Ohio. American
Midland Naturalist (133), 344-359.
Burke, R. L., Hussain, A. A., Storey, J. M., & Storey, K. B. (2002).
Freeze tolerance and supercooling ability in the Italian wall lizard,Podarcis sicula, introduced to Long Island, New York.Copeia (3), 836-842.
Centre for Ecology Environment and Conservation. (2018). Phase One
survey toolkit [Mobile Application software]. In. Oxford Brookes
University
Claussen, D. L., Townsley, M. D., & Bausch, R. G. (1990). Supercooling
and freeze-tolerance in the European wall lizard, Podarcis
muralis , with a revisional history of the discovery of freeze-tolerance
in vertebrates. Journal of Comparative Physiology B-Biochemical
Systemic and Environmental Physiology, 160 (2), 137-143. doi:Doi
10.1007/Bf00300945
Covaciu - Markov, S.-D., Bogdan, H. V., & Ferenti, S. (2006). Notes
regarding the presence of some Podarcis muralis (Laurenti 1768)
populations on the railroads of western Romania. North-Western
Journal of Zoology, 2 , 126-130.
Crooks, J. A. (2005). Lag times and exotic species: The ecology and
management of biological invasions in slow-motion. Ecoscience,
12 (3), 316-329. doi:DOI 10.2980/i1195-6860-12-3-316.1
Day, C. C., Landguth, E. L., Bearlin, A., Holden, Z. A., & Whiteley, A.
R. (2018). Using simulation modeling to inform management of invasive
species: A case study of eastern brook trout suppression and
eradication. Biological Conservation, 221 , 10-22.
doi:10.1016/j.biocon.2018.01.017
Engelstoft, C., Robinson, J., Fraser, D., & Hanke, G. (2020). Recent
rapid expansion of Common wall lizards (Podarcis muralis ) in
British Columbia, Canada. Northwestern Naturalist, 101 , 50-55.
Ernst, R., Massemin, D., & Kowarik, I. (2011). Non-invasive invaders
from the Caribbean: The status of Johnstone’s Whistling frog
(Eleutherodactylus johnstonei ) ten years after its introduction
to Western French Guiana. Biological Invasions, 13 , 1767-1777.
doi:10.1007/s10530-010-9930-5
Ferrari, J. R., Preisser, E. L., & Fitzpatrick, M. C. (2014). Modeling
the spread of invasive species using dynamic network models.Biological Invasions, 16 (4), 949-960.
doi:10.1007/s10530-013-0552-6
Foster, J. (2015). Common wall lizard (Podarcis muralis) Risk
assessment summary . Retrieved from
Fraser, E. J., Lambin, X., Travis, J. M. J., Harrington, L. A., Palmer,
S. C. F., Bocedi, G., & Macdonald, D. W. (2015). Range expansion of an
invasive species through a heterogeneous landscape - the case of
American mink in Scotland. Diversity and Distributions, 21 (8),
888-900. doi:10.1111/ddi.12303
Gallien, L., Munkemuller, T., Albert, C. H., Boulangeat, I., &
Thuiller, W. (2010). Predicting potential distributions of invasive
species: where to go from here? Diversity and Distributions,
16 (3), 331-342. doi:10.1111/j.1472-4642.2010.00652.x
Gassert, F., Schulte, U., Husemann, M., Ulrich, W., Rodder, D.,
Hochkirch, A., . . . Habel, J. C. (2013). From southern refugia to the
northern range margin: genetic population structure of the common wall
lizard, Podarcis muralis . Journal of Biogeography, 40 (8),
1475-1489. doi:10.1111/jbi.12109
Genovesi, P. (2009). Invasive alien species in a changing world.Biodiversity, 10 (2-3), 3-4. doi:10.1080/14888386.2009.9712838
Gherghel, I., Strugariu, A., Sahlean, T. C., & Zamfirescu, O. (2009).
Anthropogenic impact or anthropogenic accommodation? Distribution range
expansion of the common wall lizard (Podarcis muralis ) by means
of artificial habitats in the north-eastern limits of its distribution
range. Acta Herpetologica, 4 (2), 183-189.
Glover-Kapfer, P. (2015). A training manual for habitat
suitability and connectivity modeling using tigers (Panthera tigris) in
Bhutan as example . Retrieved from
https://www.researchgate.net/profile/Paul_Glover-Kapfer/publication/324842116_A_training_manual_for_habitat_suitability_and_connectivity_modeling_using_tigers_Panthera_tigris_in_Bhutan_as_example/links/5ae74151aca2725dabb2364f/A-training-manual-for-habitat-suitability-and-connectivity-modeling-using-tigers-Panthera-tigris-in-Bhutan-as-example.pdf
Grayson, K. L., & Johnson, D. M. (2018). Novel insights on population
and range edge dynamics using an unparalleled spatiotemporal record of
species invasion. Journal of Animal Ecology, 87 (3), 581-593.
doi:10.1111/1365-2656.12755
Guichon, M. L., Benitez, V. V., Gozzi, A. C., Hertzriken, M., &
Borgnia, M. (2015). From a lag in vector activity to a constant increase
of translocations: invasion of Callosciurus squirrels in Argentina.Biological Invasions, 17 (9), 2597-2604.
doi:10.1007/s10530-015-0897-0
Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf,
S., Freestone, A., . . . Thomson, D. (2005). The spatial spread of
invasions: new developments in theory and evidence. Ecol Lett,
8 (1), 91-101. doi:10.1111/j.1461-0248.2004.00687.x
Hedeen, S. E., & Hedeen, D. L. (1999). Railway aided dispersal of an
introduced Podarcis muralis population. Herpetological
Review, 30 (1), 57.
Hulbert, A. C., Hall, J. M., Mitchell, T. S., & Warner, D. A. (2020).
Use of human-made structures facilitates persistence of a non-native
ectotherm. Biological Invasions , 15.
doi:10.1007/s10530-020-02236-2
Hunter-Ayad, J., & Hassall, C. (2020). An empirical, cross-taxon
evaluation of landscape-scale connectivity. Biodiversity and
Conservation, 29 (4), 1339-1359. doi:10.1007/s10531-020-01938-2
Ingenloff, K., Hensz, C. M., Anamza, T., Barve, V., Campbell, L. P.,
Cooper, J. C., . . . Soberon, J. (2017). Predictable invasion dynamics
in North American populations of the Eurasian collared doveStreptopelia decaocto . Proceedings of the Royal Society
B-Biological Sciences, 284 (1862), 9. doi:10.1098/rspb.2017.1157
Jimenez-Valverde, A., & Lobo, J. M. (2007). Threshold criteria for
conversion of probability of species presence to either-or
presence-absence. Acta Oecologica-International Journal of
Ecology, 31 (3), 361-369. doi:10.1016/j.actao.2007.02.001
Kadoya, T., & Washitani, I. (2010). Predicting the rate of range
expansion of an invasive alien bumblebee (Bombus terrestris )
using a stochastic spatio-temporal model. Biological Conservation,
143 (5), 1228-1235. doi:10.1016/j.biocon.2010.02.030
Keller, R. P., Geist, J., Jeschke, J. M., & Kühn, I. (2011). Invasive
species in Europe: ecology, status, and policy. Environmental
Sciences Europe, 23 (1), 23. doi:10.1186/2190-4715-23-23
Kinezaki, N., Kawasaki, K., & Shigesada, N. (2010). The effect of the
spatial configuration of habitat fragmentation on invasive spread.Theoretical Population Biology, 78 (4), 298-308.
doi:https://doi.org/10.1016/j.tpb.2010.09.002
Kolar, C. S., & Lodge, D. M. (2001). Progress in invasion biology:
predicting invaders. Trends in Ecology & Evolution, 16 (4),
199-204. doi:10.1016/s0169-5347(01)02101-2
Kühnis, J., & Schmocker, H. (2008). Zur Situation der Mauereidechse
(Podarcis muralis ) im Fürstentum Liechtenstein und im
schweizerischen Alpenrheintal. Zeitschrift für Feldherpetologie,
15 , 43-48.
Langham, S. (2019). ”The Wall Lizard Project” Surrey Amphibian and
Reptile Group. Retrieved from http://surrey-arg.org.uk/SARGWEB
Langton, T., S., Atkins, W., & Herbert, C. (2011). On the distribution,
ecology and management of non-native reptiles and amphibians in the
London Area. Part 1. Distribution and predator/prey impacts. The
London Naturalist, 90 , 83 - 156.
Litmer, A. R., & Murray, C. M. (2019). Critical thermal tolerance of
invasion: Comparative niche breadth of two invasive lizards.Journal of Thermal Biology, 86 , 8.
doi:10.1016/j.jtherbio.2019.102432
Liwanag, H. E. M., Haro, D., Callejas, B., Labib, G., & Pauly, G. B.
(2018). Thermal tolerance varies with age and sex for the nonnative
Italian Wall Lizard (Podarcis siculus ) in Southern California.Journal of Thermal Biology, 78 , 263-269.
doi:10.1016/j.jtherbio.2018.10.010
Locey, K. J., & Stone, P. A. (2006). Factors affecting range expansion
in the introduced Mediterranean Gecko, Hemidactylus turcicus .Journal of Herpetology, 40 (4), 526-530.
doi:10.1670/0022-1511(2006)40[526:Fareit]2.0.Co;2
Lustig, A., Worner, S. P., Pitt, J. P. W., Doscher, C., Stouffer, D. B.,
& Senay, S. D. (2017). A modeling framework for the establishment and
spread of invasive species in heterogeneous environments. Ecology
and Evolution, 7 (20), 8338-8348. doi:10.1002/ece3.2915
Mahoney, P. J., Beard, K. H., Durso, A. M., Tallian, A. G., Long, A. L.,
Kindermann, R. J., . . . Mohn, H. E. (2015). Introduction effort,
climate matching and species traits as predictors of global
establishment success in non-native reptiles. Diversity and
Distributions, 21 (1), 64-74. doi:10.1111/ddi.12240
Mang, T., Essl, F., Moser, D., Kleinbauer, I., & Dullinger, S. (2018).
An integrated, spatio-temporal modelling framework for analysing
biological invasions. Diversity and Distributions, 24 (5),
652-665. doi:10.1111/ddi.12707
Marvier, M., Kareiva, P., & Neubert, M. G. (2004). Habitat destruction,
fragmentation, and disturbance promote invasion by habitat generalists
in a multispecies metapopulation. Risk Analysis, 24 (4), 869-878.
doi:10.1111/j.0272-4332.2004.00485.x
McGarigal, K., Cushman, S., & Ene, E. (2002). FRAGSTATS v4: Spatial
Pattern Analysis Program for Categorical and Continuous Maps. University
of Massachusetts, Amherst. Retrieved from
http://www.umass.edu/landeco/research/fragstats/fragstats.html
Met Office. (2018). UKCP09: Met Office gridded land surface climate
observations - long term averages at 5km resolution. Retrieved from
http://catalogue.ceda.ac.uk/uuid/620f6ed379d543098be1126769111007
Michaelides, S. N., While, G. M., Bell, C., & Uller, T. (2013). Human
introductions create opportunities for intra-specific hybridization in
an alien lizard. Biological Invasions, 15 (5), 1101-1112.
doi:10.1007/s10530-012-0353-3
Michaelides, S. N., While, G. M., Zajac, N., & Uller, T. (2015).
Widespread primary, but geographically restricted secondary, human
introductions of wall lizards, Podarcis muralis . Mol Ecol,
24 (11), 2702-2714. doi:10.1111/mec.13206
Mole, S. (2010). Changes in relative abundance of the western green
lizard Lacerta bilineata and the common wall lizardPodarcis muralis introduced onto Boscombe Cliffs, Dorset, UK.The Herpetological Journal, 15 (2), 6.
Münch, D. (2001). Do allochthone Common Wall Lizards jeopardize
autochtone Sand and Viviparous Lizards? Dortmunder Beiträge zur
Landesskunde, 35 , 187-190.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
Modelling, 190 (3), 231-259.
doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pysek, P., Jarosik, V., Hulme, P. E., Kuhn, I., Wild, J., Arianoutsou,
M., . . . Winter, M. (2010). Disentangling the role of environmental and
human pressures on biological invasions across Europe. Proceedings
of the National Academy of Sciences of the United States of America,
107 (27), 12157-12162. doi:10.1073/pnas.1002314107
R Core Team. (2017). R: A language and environment for statistical
computing. In. Vienna, Austria.: R Foundation for Statistical Computing.
Ricciardi, A., & Cohen, J. (2007). The invasiveness of an introduced
species does not predict its impact. Biological Invasions, 9 (3),
309-315. doi:10.1007/s10530-006-9034-4
Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D. M.,
Carpintero, S., . . . Worner, S. P. (2011). Relative roles of climatic
suitability and anthropogenic influence in determining the pattern of
spread in a global invader. Proceedings of the National Academy of
Sciences of the United States of America, 108 (1), 220-225.
doi:10.1073/pnas.1011723108
Roy, H. E., Bacher, S., Essl, F., Adriaens, T., Aldridge, D. C., Bishop,
J. D. D., . . . Rabitsch, W. (2019). Developing a list of invasive alien
species likely to threaten biodiversity and ecosystems in the European
Union. Global Change Biology, 25 (3), 1032-1048.
doi:10.1111/gcb.14527
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J.,
With, K. A., . . . Weller, S. G. (2001). The population biology of
invasive species. Annual Review of Ecology and Systematics, 32 ,
305-332. doi:DOI 10.1146/annurev.ecolsys.32.081501.114037
Salgado, I. (2018). Is the raccoon (Procyon lotor ) out of control
in Europe? Biodiversity and Conservation, 27 (9), 2243-2256.
doi:10.1007/s10531-018-1535-9
Samson, E., Hirsch, P. E., Palmer, S. C. F., Behrens, J. W., Brodin, T.,
& Travis, J. M. J. (2017). Early engagement of stakeholders with
individual-based modeling can inform research for improving invasive
species management: The round goby as a case study. Frontiers in
Ecology and Evolution, 5 (149). doi:10.3389/fevo.2017.00149
Šandera, M. (Producer). (2017, 2017-10-12). Map of distribution ofPodarcis muralis in the Czech Republic. Retrieved from
https://www.biolib.cz/en/taxonmap/id113/
Schulte, U. (2009). Expansion einer allochthonen
Mauereidechsen-Population bei Leipzig. Jahresschrift für
Feldherpetologie und Ichthyofaunistik Sachsen, 11 , 2-10.
Schulte, U., Gassert, F., Geniez, P., Veith, M., & Hochkirch, A.
(2012). Origin and genetic diversity of an introduced wall lizard
population and its cryptic congener. Amphibia-Reptilia, 33 (1),
129-140. doi:10.1163/156853812X626160
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E.,
Jeschke, J. M., . . . Essl, F. (2017). No saturation in the accumulation
of alien species worldwide. Nature Communications, 8 , 9.
doi:10.1038/ncomms14435
Shigesada, N., Kawasaki, K., & Takeda, Y. (1995). Modeling Stratified
Diffusion in Biological Invasions. American Naturalist, 146 (2),
229-251. doi:Doi 10.1086/285796
Sibly, R. M., & Hone, J. (2002). Population growth rate and its
determinants: an overview. Philosophical Transactions of the Royal
Society of London Series B-Biological Sciences, 357 (1425), 1153-1170.
doi:10.1098/rstb.2002.1117
Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A.,
Aronson, J., . . . Vila, M. (2013). Impacts of biological invasions:
what’s what and the way forward. Trends in Ecology & Evolution,
28 (1), 58-66. doi:10.1016/j.tree.2012.07.013
Skellam, J. G. (1951). Random Dispersal in Theoretical Populations.Biometrika, 38 (1-2), 196-218. doi:DOI 10.1093/biomet/38.1-2.196
Sprouffske, K. (2018). growthcurver: Simple metrics to summarize growth
curves. R package version 0.3.0.
Strugariu, A., Gherghel, I., & Zamfirescu, Ş. (2008). Conquering new
ground: On the presence of Podarcis muralis (Reptilia:
Lacertidae) in Bucharest, the capital city of Romania.Herpetologica Romanica, 2 , 47-50.
Suarez, A. V., Holway, D. A., & Case, T. J. (2001). Patterns of spread
in biological invasions dominated by long-distance jump dispersal:
Insights from Argentine ants. Proceedings of the National Academy
of Sciences of the United States of America, 98 (3), 1095-1100. doi:DOI
10.1073/pnas.98.3.1095
Suzuki-Ohno, Y., Morita, K., Nagata, N., Mori, H., Abe, S., Makino, T.,
& Kawata, M. (2017). Factors restricting the range expansion of the
invasive green anole Anolis carolinensis on Okinawa Island,
Japan. Ecology and Evolution, 7 (12), 4357-4366.
doi:10.1002/ece3.3002
Trajer, A., Mlinarik, L., Juhasz, P., & Bede-Fazekas, A. (2014). The
combined impact of urban heat island, thermal bridge effect of buildings
and future climate change on the potential overwintering of Phlebotomus
species in a Central European metropolis. Applied Ecology and
Environmental Research, 12 (4), 887-908. doi:DOI
10.15666/aeer/1204_887908
Travis, J. M. J., Harris, C. M., Park, K. J., & Bullock, J. M. (2011).
Improving prediction and management of range expansions by combining
analytical and individual-based modelling approaches. Methods in
Ecology and Evolution, 2 (5), 477-488.
doi:10.1111/j.2041-210X.2011.00104.x
Urban, M. C., Phillips, B. L., Skelly, D. K., & Shine, R. (2008). A
toad more traveled: The heterogeneous invasion dynamics of cane toads in
Australia. American Naturalist, 171 (3), E134-E148.
doi:10.1086/527494
Vila, M., Basnou, C., Pysek, P., Josefsson, M., Genovesi, P., Gollasch,
S., . . . Partners, D. (2010). How well do we understand the impacts of
alien species on ecosystem services? A pan-European, cross-taxa
assessment. Frontiers in Ecology and the Environment, 8 (3),
135-144. doi:10.1890/080083
Villalobos-Jimenez, G., & Hassall, C. (2017). Effects of the urban heat
island on the phenology of Odonata in London, UK. International
Journal of Biometeorology, 61 (7), 1337-1346.
doi:10.1007/s00484-017-1311-7
While, G. M., Williamson, J., Prescott, G., Horvathova, T., Fresnillo,
B., Beeton, N. J., . . . Uller, T. (2015). Adaptive responses to cool
climate promotes persistence of a non-native lizard. Proceedings
of the Royal Society B-Biological Sciences, 282 (1803). doi:Artn
20142638
10.1098/Rspb.2014.2638
Williams, R. J., Dunn, A. M., Quinn, C. H., & Hassall, C. (2019).
Stakeholder discourse and opinion towards a charismatic non-native
lizard species: Potential invasive problem or a welcome addition?People and Nature, 1 (2), 152-166. doi:10.1002/pan3.18
Wirga, M., & Majtyka, T. (2015). Do climatic requirements explain the
northern range of European reptiles? Common wall lizard Podarcis
muralis (Laur.) (Squamata, Lacertidae) as an example.North-Western Journal of Zoology, 11 (2), 296-303.
With, K. A. (2002). The landscape ecology of invasive spread.Conservation Biology, 16 (5), 1192-1203. doi:DOI
10.1046/j.1523-1739.2002.01064.x
Table 1 Details of
variables and their data source used in MaxEnt models of P.
muralis probability of occurrence.