REFERENCES
Akbudak, M. A., Filiz, E., & Kontbay, K. (2018). Genome-wide identification and cadmium induced expression profiling of sulfate transporter (SULTR) genes in sorghum (Sorghum bicolor L.).BioMetals . https://doi.org/10.1007/s10534-017-0071-5
Álvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López-Millán, A.-F., & Abadía, J. (2014). Metal species involved in long distance metal transport in plants. Frontiers in Plant Science . https://doi.org/10.3389/fpls.2014.00105
Ball, L., Accotto, G. P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., Karpinski, S., & Mullineaux, P. M. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression inArabidopsis . Plant Cell . https://doi.org/10.1105/tpc.104.022608
Bielen, A., Remans, T., Vangronsveld, J., & Cuypers, A. (2013). The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions.International Journal of Molecular Sciences . https://doi.org/10.3390/ijms14036382
Carrasco-Gil, S., Álvarez-Fernández, A., Sobrino-Plata, J., Millán, R., Carpena-Ruiz, R. O., Leduc, D. L., & Hernández, L. E. (2011). Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant, Cell and Environment . https://doi.org/10.1111/j.1365-3040.2011.02281.x
Carrasco-Gil, S., Siebner, H., Leduc, D. L., Webb, S. M., Millán, R., Andrews, J. C., & Hernández, L. E. (2013). Mercury localization and speciation in plants grown hydroponically or in a natural environment.Environmental Science and Technology . https://doi.org/10.1021/es303310t
Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals.Current Opinion in Biotechnology . https://doi.org/10.1016/S0958-1669(97)80004-3
Chen, Y. A., Chi, W. C., Trinh, N. N., Huang, L. Y., Chen, Y. C., Cheng, K. T., Huang, T.L., Lin, C.Y., & Huang, H. J. (2014). Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS ONE . https://doi.org/10.1371/journal.pone.0095163
Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology . https://doi.org/10.1104/pp.123.3.825
Ferri, A., Lancilli, C., Maghrebi, M., Lucchini, G., Sacchi, G. A., & Nocito, F. F. (2017). The sulfate supply maximizing Arabidopsisshoot growth is higher under long- than short-term exposure to cadmium.Frontiers in Plant Science . https://doi.org/10.3389/fpls.2017.00854
Frerigmann, H., & Gigolashvili, T. (2014). Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency.Frontiers in Plant Science . https://doi.org/10.3389/fpls.2014.00626
Gigolashvili, T., & Kopriva, S. (2014). Transporters in plant sulfur metabolism. Frontiers in Plant Science . https://doi.org/10.3389/fpls.2014.00442
He, F., Gao, J., Pierce, E., Strong, P. J., Wang, H., & Liang, L. (2015). In situ remediation technologies for mercury-contaminated soil.Environmental Science and Pollution Research . https://doi.org/10.1007/s11356-015-4316-y
Hernández, L. E., Sobrino-Plata, J., Montero-Palmero, M. B., Carrasco-Gil, S., Flores-Cáceres, M. L., Ortega-Villasante, C., & Escobar, C. (2015). Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.Journal of Experimental Botany . https://doi.org/10.1093/jxb/erv063
Hou, J., Liu, X., Wang, J., Zhao, S., & Cui, B. (2015). Microarray-based analysis of gene expression in lycopersicon esculentum seedling roots in response to cadmium, chromium, mercury, and lead.Environmental Science and Technology . https://doi.org/10.1021/es504154y
Jobe, T. O., Sung, D. Y., Akmakjian, G., Pham, A., Komives, E. A., Mendoza-Cózatl, D. G., & Schroeder, J. I. (2012). Feedback inhibition by thiols outranks glutathione depletion: A luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation. Plant Journal . https://doi.org/10.1111/j.1365-313X.2012.04924.x
Jozefczak, M., Bohler, S., Schat, H., Horemans, N., Guisez, Y., Remans, T., Vangronsveld, J., & Cuypers, A. (2015). Both the concentration and redox state of glutathione and ascorbate influence the sensitivity ofArabidopsis to cadmium. Annals of Botany . https://doi.org/10.1093/aob/mcv075
Jozefczak, M., Keunen, E., Schat, H., Bliek, M., Hernández, L. E., Carleer, R., Remans, T., Bohler, S., Vangronsveld, J., & Cuypers, A. (2014). Differential response of Arabidopsis leaves and roots to cadmium: Glutathione-related chelating capacity vs antioxidant capacity.Plant Physiology and Biochemistry . https://doi.org/10.1016/j.plaphy.2014.07.001
Khodamoradi, K., Khoshgoftarmanesh, A. H., & Maibody, S. A. M. M. (2017). Root uptake and xylem transport of cadmium in wheat and triticale as affected by exogenous amino acids. Crop and Pasture Science . https://doi.org/10.1071/CP17061
Kopriva, S., Malagoli, M., & Takahashi, H. (2019). Sulfur nutrition: Impacts on plant development, metabolism, and stress responses.Journal of Experimental Botany . https://doi.org/10.1093/jxb/erz319
Kopriva, S. (2006). Regulation of sulfate assimilation inArabidopsis and beyond. Annals of Botany . https://doi.org/10.1093/aob/mcl006
Koprivova, A., & Kopriva, S. (2014). Molecular mechanisms of regulation of sulfate assimilation: First steps on a long road. Frontiers in Plant Science . https://doi.org/10.3389/fpls.2014.00589
Krämer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology . https://doi.org/10.1016/j.copbio.2005.02.006
Kühnlenz, T., Westphal, L., Schmidt, H., Scheel, D., & Clemens, S. (2015). Expression of Caenorhabditis elegansPCS in the AtPCS1-deficientArabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases.Plant Cell and Environment . https://doi.org/10.1111/pce.12534
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature . https://doi.org/10.1038/227680a0
Lancilli, C., Giacomini, B., Lucchini, G., Davidian, J. C., Cocucci, M., Sacchi, G. A., & Nocito, F. F. (2014). Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transporter (Sultr1;2 ) genes in Brassica juncea.BMC Plant Biology . https://doi.org/10.1186/1471-2229-14-132
Lee, S., Petros, D., Moon, J. S., Ko, T. S., Goldsbrough, P. B., & Korban, S. S. (2003). Higher levels of ectopic expression ofArabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiology and Biochemistry . https://doi.org/10.1016/S0981-9428(03)00140-2
Li, Y., Dankher, O. P., Carreira, L., Smith, A. P., & Meagher, R. B. (2006). The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiology . https://doi.org/10.1104/pp.105.074815
Liu, W. J., Wood, B. A., Raab, A., McGrath, S. P., Zhao, F. J., & Feldmann, J. (2010). Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots inArabidopsis . Plant Physiology . https://doi.org/10.1104/pp.109.150862
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods . https://doi.org/10.1006/meth.2001.1262
Lopes, M. S., Iglesia-Turiño, S., Cabrera-Bosquet, L., Serret, M. D., Bort, J., Febrero, A., & Araus, J. L. (2013). Molecular and physiological mechanisms associated with root exposure to mercury in barley. Metallomics . https://doi.org/10.1039/c3mt00084b
López-Millán, A. F., Morales, F., Abadı́a, A., & Abadı́a, J. (2000). Effects of Iron Deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiology . https://doi.org/10.1104/pp.124.2.873
Lovisolo, C., Tramontini, S., Flexas, J., & Schubert, A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environmental and Experimental Botany . https://doi.org/10.1016/j.envexpbot.2007.11.005
Maksymiec, W., Wójcik, M., & Krupa, Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere . https://doi.org/10.1016/j.chemosphere.2006.06.025
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - A practical guide. Journal of Experimental Botany . https://doi.org/10.1093/jxb/51.345.659
Mendoza-Cózatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E. A., Kehr, J., & Schroeder, J. I. (2008). Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap ofBrassica napus . A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation.Plant Journal . https://doi.org/10.1111/j.1365-313X.2008.03410.x
Montero-Palmero, M. B., Martín-Barranco, A., Escobar, C., & Hernández, L. E. (2013). Early transcriptional responses to mercury: A role for ethylene in mercury-induced stress. New Phytologist . https://doi.org/10.1111/nph.12486
Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury-contaminated water: Volatilisation and plant-accumulation aspects. Environmental and Experimental Botany . https://doi.org/10.1016/j.envexpbot.2007.07.007
Na, G. N., & Salt, D. E. (2011). The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants.Environmental and Experimental Botany . https://doi.org/10.1016/j.envexpbot.2010.04.004
Nocito, F. F., Lancilli, C., Crema, B., Fourcroy, P., Davidian, J.-C., & Sacchi, G. A. (2006). Heavy metal stress and sulfate uptake in maize roots. Plant Physiology . https://doi.org/10.1104/pp.105.076240
Ortega-Villasante, C., Hernández, L. E., Rellán-Alvarez, R., Del Campo, F. F., & Carpena-Ruiz, R. O. (2007). Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings.New Phytologist , https://doi.org/10.1111/j.1469-8137.2007.02162.x.
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., & Mauch, F. (2007). Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis . Plant Journal . https://doi.org/10.1111/j.1365-313X.2006.02938.x
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?Plant Science . https://doi.org/10.1016/j.plantsci.2010.08.016
Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M. & Ragg, T. (2006). The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology . https://doi.org/10.1186/1471-2199-7-3
Selin, N. E. (2010). Global biogeochemical cycling of mercury: A review.Annual Review of Environment and Resources . https://doi.org/10.1146/annurev.environ.051308.084314
Shahbaz, M., Stuiver, C. E. E., Posthumus, F. S., Parmar, S., Hawkesford, M. J., & De Kok, L. J. (2014). Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites. Plant Biology . https://doi.org/10.1111/plb.12019
Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell and Environment . https://doi.org/10.1111/pce.12706
Shi, W., Zhang, Y., Chen, S., Polle, A., Rennenberg, H., & Luo, Z. B. (2019). Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell and Environment . https://doi.org/10.1111/pce.13471
Sobrino-Plata, J., Carrasco-Gil, S., Abadía, J., Escobar, C., Álvarez-Fernández, A., & Hernández, L. E. (2014a). The role of glutathione in mercury tolerance resembles its function under cadmium stress in Arabidopsis . Metallomics . https://doi.org/10.1039/c3mt00329a
Sobrino-Plata, J., Meyssen, D., Cuypers, A., Escobar, C., & Hernández, L. E. (2014b). Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant and Soil . https://doi.org/10.1007/s11104-013-2006-4
Sobrino-Plata, J., Herrero, J., Carrasco-Gil, S., Pérez-Sanz, A., Lobo, C., Escobar, C., Millán, R., & Hernández, L. E. (2013). Specific stress responses to cadmium, arsenic and mercury appear in the metallophyteSilene vulgaris when grown hydroponically. RSC Advances . https://doi.org/10.1039/c3ra40357b
Sobrino-Plata, J., Ortega-Villasante, C., Laura Flores-Cáceres, M., Escobar, C., Del Campo, F. F., & Hernández, L. E. (2009). Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere . https://doi.org/10.1016/j.chemosphere.2009.08.007
Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., & Perilleux, C. (2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering ofArabidopsis thaliana . BMC Plant Biology . https://doi.org/10.1186/1471-2229-3-2
Wang, F. Z., Chen, M. X., Yu, L. J., Xie, L. J., Yuan, L. B., Qi, H., Xiao, M., Guo, W., Chen, Z., Yi, K., Zhang, J., Qiu, R., Shu, W., Xiao, S., & Chen, Q. F. (2017). OsARM1, an R2R3 MYB Transcription factor, is involved in regulation of the response to arsenic stress in rice.Frontiers in Plant Science . https://doi.org/10.3389/fpls.2017.01868
Wu, Z., Zhao, X., Sun, X., Tan, Q., Tang, Y., Nie, Z., & Hu, C. (2015). Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus ). Chemosphere . https://doi.org/10.1016/j.chemosphere.2014.09.099
Yamaguchi, C., Takimoto, Y., Ohkama-Ohtsu, N., Hokura, A., Shinano, T., Nakamura, T., Suyama, A., & Maruyama-Nakashita, A. (2016). Effects of cadmium treatment on the uptake and translocation of sulfate inArabidopsis thaliana . Plant and Cell Physiology . https://doi.org/10.1093/pcp/pcw156
Ye, W. L., Wood, B. A., Stroud, J. L., Andralojc, P. J., Raab, A., McGrath, S. P., Feldmann, J., & Zhao, F. J. (2010). Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiology . https://doi.org/10.1104/pp.110.163261
Yin, Y., Li, S., Liao, W., Lu, Q., Wen, X., & Lu, C. (2010). Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. Journal of Plant Physiology . https://doi.org/10.1016/j.jplph.2009.12.021
Zhang, P., Wang, R., Ju, Q., Li, W., Tran, L. S. P., & Xu, J. (2019). The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation.Plant Physiology . https://doi.org/10.1104/pp.18.01380
Zhou, Z. S., Yang, S. N., Li, H., Zhu, C. C., Liu, Z. P., & Yang, Z. M. (2013). Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula . Journal of Hazardous Materials . https://doi.org/10.1016/j.jhazmat.2013.02.011