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Abstract

This work explores the design of distributed model predictive control (DMPC) systems

for nonlinear processes using machine learning models to predict nonlinear dynamic behavior.

Specifically, sequential and iterative distributed model predictive control systems are designed

and analyzed with respect to closed-loop stability and performance properties. Extensive open-

loop data within a desired operating region are used to develop Long Short-Term Memory

(LSTM) recurrent neural network models with a sufficiently small modeling error from the

actual nonlinear process model. Subsequently, these LSTM models are utilized in Lyapunov-

based DMPC to achieve efficient real-time computation time while ensuring closed-loop state

boundedness and convergence to the origin. Using a nonlinear chemical process network exam-

ple, the simulation results demonstrate the improved computational efficiency when the process

is operated under sequential and iterative DMPCs while the closed-loop performance is very

close to the one of a centralized MPC system.
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1 Introduction

With the rise of big data analytics, machine learning methodologies have gained increasing recog-

nition and demonstrated successful implementation in many traditional engineering fields. One

exemplar use of machine learning techniques in chemical engineering is the identification of process

models using recurrent neural networks (RNN), which has shown effectiveness in modeling nonlinear

dynamic systems. RNN is a class of artificial neural networks that, by using feedback loops in its

neurons and passing on past information derived from earlier inputs to the current network, can rep-

resent temporal dynamic behaviors in a way similar to the one captured by a nonlinear state-space

ordinary differential equation models. Specifically, artificial neural networks (ANN) have been em-

ployed in many applications including optimization, parallel computing, matrix algebra and signal

processing.1 Neural network methods have shown effectiveness in solving both classification and

regression problems. For example, feed-forward neural network (FNN) models have shown effec-

tiveness in detecting and distinguishing standard types of cyber-attacks during process operation

under model predictive control as demonstrated in.2 Long Short-Term Memory (LSTM) networks,

which is a type of recurrent neural networks (RNN), was used in3 to predict short-term traffic flow

in intelligent transportation system management and a supervised LSTM model was used to learn

the hidden dynamics of nonlinear processes for soft sensor applications in.4 It was demonstrated in5

that an ensemble of RNN models with online updating capabilities can be used to develop adaptive

predictive control schemes to address the problem of model uncertainties. Furthermore, a single-

layer RNN called the simplified dual neural network was used for solving quadratic programming

problems by utilizing dual variables in,6 where the network was shown to be Lyapunov stable and

globally convergent to the optimal solution of any strictly convex quadratic programming problem.

For many large industrial processes and/or novel processes, developing an accurate and com-

prehensive model that captures the dynamic behavior of the system can be difficult. Even in the

case where a deterministic first-principles model is developed based on fundamental understandings,

there may be inherent simplifying assumptions involved. Furthermore, during process operation,

the model that is employed in model-based control systems to predict the future evolution of the

system state may not always remain accurate and up-to-date as time progresses due to unforeseen

process changes or large disturbances, causing plant model mismatch that degrades the performance

of the control algorithm.7 Given these considerations, the model identification of a nonlinear process

is crucial for safe and robust model-based feedback control, and given sufficient training data, RNN

is an effective tool to develop accurate process models from data.

On the other hand, chemical process operation has extensively relied on automated control
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systems, and the need of accounting for multivariable interactions and input/state constraints has

motivated the development of model predictive control (MPC). Moreover, augmentation in sensor

information and network-based communication increases the number of decision variables, state

variables, and measurement data, which in turn increases the complexity of the control problem and

the computation time if a centralized model predictive controller is used. With these considerations

in mind, distributed control systems have been developed, where multiple controllers with inter-

controller communication are used to cooperatively calculate the control actions and achieve closed-

loop plant objectives. In this context, MPC is a natural control framework to implement for the

design of coordinated, distributed control systems due to its ability to account for input and state

constraints while also considering the actions of other control actuators when computing the control

actions. In other words, the controllers communicate with each other to calculate their distinct set

of manipulated inputs that will collectively achieve the control objectives of the closed-loop system.

Many distributed MPC methods have been proposed in the literature addressing the coordination of

multiple MPCs that communicate to calculate the optimal input trajectories in a distributed manner

(8–11). A robust distributed control approach to plant-wide operations based on dissipativity was

proposed in.12,13 Depending on the communication network, i.e., whether is one-directional or bi-

directional, two distributed MPC architectures, namely sequential and iterative distributed MPCs,

were proposed in.14 In a sequential distributed MPC architecture, the communication is one-

way and the controllers are evaluated only once per sampling period in a sequential order. In an

iterative distributed MPC system, the communication links are bi-directional and the controllers

are evaluated in parallel iteratively to improve closed-loop performance. Furthermore, distributed

MPC method is also used in15 to address the problem of introducing new control systems which

may use networked sensors and/or actuators to pre-existing control schemes in a way such that

their actions are coordinated. As distributed MPC systems also depend on an accurate process

model, the development and implementation of RNN models in distributed MPCs is an important

area yet to be explored.

In the present work, we introduce distributed control frameworks that employ a Long Short-

Term-Memory (LSTM) network, which is a particular type of RNN. The distributed control systems

are designed via Lyapunov-based model predictive control (LMPC) theory. Specifically, we explore

both sequential distributed LMPC systems and iterative distributed LMPC systems, and compare

the closed-loop performances with that of a centralized LMPC system. The remainder of the paper

is organized as follows. Preliminaries on notation, the general class of nonlinear systems, and the

stabilizing Lypuanov-based controller for the nonlinear process are given in Section 2. The structure
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and development of recurrent neural network and specifically LSTM, as well as Lyapunov-based

control using LSTM models are outlined in Section 3. In Section 4, the formulation and proof for

recursive feasibility and closed-loop stability of the distributed Lyapunov-based model predictive

control systems using an LSTM model as the prediction model are presented. Lastly, Section 5

includes the application to a two-CSTR-in-series process, demonstrating guaranteed closed-loop

stability and enhanced computational efficiency of the proposed distributed LMPC systems with

respect to the centralized LMPC.

2 Preliminaries

2.1 Notation

For the remainder of this manuscript, the notation xT is used to denote the transpose of x. |·|
is used to denote the Euclidean norm of a vector. LfV (x) denotes the standard Lie derivative

LfV (x) := ∂V (x)
∂x

f(x). Set subtraction is denoted by “\”, i.e., A\B := {x ∈ R
n | x ∈ A, x /∈ B}. ∅

signifies the null set. The function f(·) is of class C1 if it is continuously differentiable in its domain.

A continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is strictly increasing and

is zero only when evaluated at zero.

2.2 Class of Systems

Consider a general class of continuous-time nonlinear systems in which several distinct sets of

manipulated inputs are used to regulate the process. Throughout the manuscript, we consider two

sets of input vectors for simplicity, denoted by u1 and u2; however, extending the analysis to systems

with multiple sets of input vectors, u1, ..., uM , M > 2, is conceptually straight-forward. The class

of continuous-time nonlinear systems considered is described by the following system of first-order

nonlinear ordinary differential equations:

ẋ = F (x, u1, u2, w) := f(x) + g1(x)u1 + g2(x)u2 + v(x)w, x(t0) = x0 (1)

where x ∈ R
n is the state vector, u1 ∈ R

m1 and u2 ∈ R
m2 are two separate sets of manipulated

input vectors, and w ∈ W is the disturbance vector with W := {w ∈ R
r | |w| ≤ wm, wm ≥ 0}.

The control action constraints are defined by u1 ∈ U1 := {umin
1i
≤ u1i ≤ umax

1i
, i = 1, ..., m1} ⊂ R

m1 ,

and u2 ∈ U2 := {umin
2i
≤ u2i ≤ umax

2i
, i = 1, ..., m2} ⊂ R

m2 . f(·), g1(·), g2(·), and v(·) are sufficiently

smooth vector and matrix functions of dimensions n× 1, n×m1, n×m2, and n× r, respectively.

Throughout the manuscript, the initial time t0 is taken to be zero (t0 = 0), and it is assumed that

f(0) = 0, and thus, the origin is a steady-state of the nominal (i.e., w(t) ≡ 0) system of Eq. 1 (i.e.,

(xs, u1s, u2s) = (0, 0, 0), where xs, u1s and u2s represent the steady-state state and input vectors,
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respectively).

2.3 Stability Assumptions

We assume that there exist stabilizing control laws u1 = Φ1(x) ∈ U1, u2 = Φ2(x) ∈ U2 (e.g., the

universal Sontag control law16) such that the origin of the nominal system of Eq. 1 with w(t) ≡ 0 is

rendered exponentially stable in the sense that there exists a C1 Control Lyapunov function V (x)

such that the following inequalities hold for all x in an open neighborhood D around the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (2a)

∂V (x)

∂x
F (x,Φ1(x),Φ2(x), 0) ≤ −c3|x|2, (2b)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ c4|x| (2c)

where c1, c2, c3 and c4 are positive constants. F (x, u1, u2, w) represents the nonlinear system of

Eq. 1. A set of candidate controllers Φ1(x) ∈ R
m1 and Φ2(x) ∈ R

m2 , both denoted by Φk(x) where

k = 1, 2, is given in the following form:

φki(x) =







−p+
√

p2 + q4

qT q
q if q 6= 0

0 if q = 0

(3a)

Φki(x) =







umin
ki

if φki(x) < umin
ki

φki(x) if umin
ki
≤ φki(x) ≤ umax

ki

umax
ki

if φki(x) > umax
ki

(3b)

where k = 1, 2 represents the two candidate controllers, p denotes LfV (x) and q denotes Lgki
V (x),

f = [f1 · · · fn]T , gki = [gki1 , ..., gkin]
T , (i = 1, 2, ..., m1 for k = 1 corresponding to the vector of control

actions Φ1(x), and i = 1, 2, ..., m2 for k = 2 corresponding to the vector of control actions Φ2(x).)

φki(x) of Eq. 3a represents the ith component of the control law φk(x). Φki(x) of Eq. 3 represents the

ith component of the saturated control law Φk(x) that accounts for the input constraints uk ∈ Uk.

Based on Eq. 2, we can first characterize a region where the time-derivative of V is rendered

negative under the controller Φ1(x) ∈ U1, Φ2(x) ∈ U2 as D = {x ∈ R
n | V̇ (x) = LfV + Lg1V u1 +

Lg2V u2 < −c3|x|2, u1 = Φ1(x) ∈ U1, u2 = Φ2(x) ∈ U2} ∪ {0}. Then the closed-loop stability region

Ωρ for the nonlinear system of Eq. 1 is defined as a level set of the Lyapunov function, which is

inside D: Ωρ := {x ∈ D | V (x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ D. Also, the Lipschitz property of

F (x, u1, u2, w) combined with the bounds on u1, u2 and w implies that there exist positive constants

M , Lx, Lw, L
′

x, L
′

w such that the following inequalities hold for all x, x′ ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and

w ∈ W :
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|F (x, u1, u2, w)| ≤M (4a)

|F (x, u1, u2, w)− F (x′, u1, u2, 0)| ≤ Lx|x− x′|+ Lw|w| (4b)
∣

∣

∣

∣

∂V (x)

∂x
F (x, u1, u2, w)−

∂V (x′)

∂x
F (x′, u1, u2, 0)

∣

∣

∣

∣

≤ L
′

x|x− x′|+ L
′

w|w| (4c)

3 Long Short-Term Memory Network

In this work, we develop an LSTM network model with the following form:

˙̂x = Fnn(x̂, u1, u2) := Ax̂+ΘTy (5)

where x̂ ∈ R
n is the predicted state vector and u1 ∈ R

m1 and u2 ∈ R
m2 are the two separate sets

of manipulated input vectors. yT = [y1, ..., yn, yn+1, ..., yn+m1
, yn+m1+1..., yn+m1+m2

, yn+m1+m2+1] =

[H(x̂1), ..., H(x̂n), u11, ..., u1m1
, u21, ..., u2m2

, 1] ∈ R
n+m1+m2+1 is a vector of the network state x̂,

where H(·) represents a series of interacting nonlinear activation functions in each LSTM unit,

the inputs u1 and u2, and the constant 1 which accounts for the bias term. A is a diagonal

coefficient matrix, i.e., A = diag{−α1, ...,−αn} ∈ R
n×n, and Θ = [θ1, ..., θn] ∈ R

(n+m1+m2+1)×n

with θi = βi[ωi1, ..., ωi(n+m1+m2), bi], i = 1, ..., n. αi and βi are constants, and ωij is the weight

connecting the jth input to the ith neuron where i = 1, ..., n and j = 1, ..., (n +m1 +m2), and bi

is the bias term for i = 1, ..., n. We use x to represent the state of actual nonlinear system of Eq. 1

and use x̂ for the state of the LSTM model of Eq. 5. Here, αi is assumed to be positive such that

each state x̂i is bounded-input bounded-state stable.

Instead of having one-way information flow from the input layer to the output layer in a feed-

forward neural network (FNN), RNNs introduce feedback loops into the network and allow infor-

mation exchange in both directions between modules. Unlike feed-forward neural networks, RNNs

take advantage of the feedback signals to store outputs derived from past inputs, and together with

the current input information, give a more accurate prediction of the current output. By having

access to information of the past, RNN is capable of representing dynamic behaviors of time-series

samples, therefore it is an effective method used to model nonlinear processes. Based on the univer-

sal approximation theorem, it can be shown that the RNN model with sufficient number of neurons

is able to approximate any nonlinear dynamic system on compact subsets of the state-space for

finite time (17,18). However, in a standard RNN model, the problem of vanishing gradient phenom-

ena often arises due to the network’s difficulty to capture long term dependencies; this is because

of multiplicative gradients that can be exponentially decaying with respect to the number of lay-

ers. Therefore, the stored information over extended time intervals is very limited in a short term
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memory manner. Due to these considerations, Hochreiter and Schmidhuber (19) proposed the Long

Short-Term Memory (LSTM) network, which is a type of RNN that uses three gated units (the

forget gate, the input gate, and the output gate) to protect and control the memory cell state, c(k),

where k = 1, ..., T , such that information will be stored and remembered for long periods of time

(20). The basic architecture of an LSTM network is illustrated in Fig. 1a. We develop an LSTM

network model to approximate the class of continuous-time nonlinear processes of Eq. 1. We use

m ∈ R
(n+m1+m2)×T to denote the matrix of input sequences to the LSTM network, and x̂ ∈ R

n×T

to denote the matrix of network output sequences. The output from each repeating module that

is passed onto the next repeating module in the unfolded sequence is the hidden state, and the

vector of hidden states is denoted by h. The network output x̂ at the end of the prediction period

is dependent on all internal states h(1), ..., h(T ), where the number of internal states T (i.e., the

number of repeating modules) corresponds to the length of the time-series input sample. The LSTM

network calculates a mapping from the input sequence m to the output sequence x̂ by calculating

the following equations iteratively from k = 1 to k = T :

i(k) =σ(ωm
i m(k) + ωh

i h(k − 1) + bi) (6a)

f(k) =σ(ωm
f m(k) + ωh

fh(k − 1) + bf ) (6b)

c(k) =f(k)c(k − 1) + i(k)tanh(ωm
c m(k) + ωh

c h(k − 1) + bc) (6c)

o(k) =σ(ωm
o m(k) + ωh

oh(k − 1) + bo) (6d)

h(k) =o(k)tanh(c(k)) (6e)

x̂(k) =ωyh(k) + by (6f)

where σ(·) is the sigmoid function, tanh(·) is the hyperbolic tangent function; both of which are

activation functions. h(k) is the internal state, and x̂(k) is the output from the repeating LSTM

module with ωy and by denoting the weight matrix and bias vector for the output, respectively. The

outputs from the input gate, the forget gate, and the output gate are represented by i(k), f(k), o(k),

respectively; correspondingly, ωm
i , ω

h
i , ω

m
f , ω

h
f , ω

m
o , ω

h
o are the weight matrices for the input vector

m and the hidden state vectors h within the input gate, the forget gate, and the output gate

respectively, and bi, bf , bo represent the bias vectors within each of the three gates, respectively.

Furthermore, c(k) is the cell state which stores information to be passed down the network units,

with ωm
c , ωh

c and bc representing the weight matrices for the input and hidden state vectors, and

the bias vector in the cell state activation function, respectively. The series of interacting nonlinear

functions carried out in each LSTM unit, outlined in Eq. 6, can be represented by H(x̂). The
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internal structure of a repeating module within an LSTM network where the iterative calculations

of Eq. 6 are carried out is shown in Fig. 1b.

The closed-loop simulation of the continuous-time nonlinear system of Eq. 1 is carried out in a

sample-and-hold manner, where the feedback measurement of the closed-loop state x is received by

the controller every sampling period ∆. Furthermore, state information of the simulated nonlinear

process is obtained via numerical integration methods, e.g., explicit Euler, using an integration

time step of hc. Since the objective of developing the LSTM model is its eventual utilization in a

controller, the prediction period of the LSTM model is set to be the same as the sampling period ∆

of the model predictive controller. The time interval between two consecutive internal states within

the LSTM can be chosen to be a multiple qnn of the integration time step hc used in numerical

integration of the nonlinear process, with the minimum time interval being qnn = 1, i.e., 1 × hc.

Therefore, depending on the choice of qnn, the number of internal states, T , will follow T = ∆
qnn·hc

.

Given that the input sequences fed to the LSTM network are taken at time t = tk, the future states

predicted by the LSTM network, x̂(t), at t = tk +∆, would be the network output vector at k = T ,

i.e., x̂(tk +∆) = x̂(T ).

The LSTM learning algorithm is developed to obtain the optimal parameter matrix Γ∗, which

includes the network parameters ωi, ωf , ωc, ωo, ωy, bi, bf , bc, bo, by. Under this optimal parameter

matrix, the error between the actual state x(t) of the nominal system of Eq. 1 (i.e., w(t) ≡ 0) and

the modeled states x̂(t) of the LSTM model of Eq. 5 is minimized.

The LSTM model is developed using a state-of-the-art application program interface, i.e.,

Keras,21 which contains open-source neural network libraries. The mean absolute percentage error

between x(t) and x̂(t) is minimized using the adaptive moment estimation optimizer, i.e., Adam

in Keras, in which the gradient of the error cost function is evaluated using back-propagation.

Furthermore, in order to ensure that the trained LSTM model can sufficiently represent the non-

linear process of Eq. 1, which in turn ascertains that the LSTM model can be used in a model-

based controller to stabilize the actual nonlinear process at its steady-state with guaranteed sta-

bility properties, a constraint on the modeling error is also imposed during training, where |ν| =
|F (x, u1, u2, 0)− Fnn(x, u1, u2)| ≤ γ|x|, with γ > 0. Additionally, to avoid over-fitting of the LSTM

model, the training process is terminated once the modeling error falls below the desired threshold

and the error on the validation set stops decreasing.

One way to assess the modeling error ν = F (x(tk), u1, u2, 0) − Fnn(x(tk), u1, u2) is through

numerical approximation using the forward finite difference method. Given that the time interval

between internal states of the LSTM model is a multiple of the integration time step qnn × hc,
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the time derivative of the LSTM predicted state x̂(t) at t = tk can be approximated by ˙̂x(tk) =

Fnn(x(tk), u1, u2) ≈ x̂(tk+qnnhc)−x̂(tk)
qnnhc

. The time derivative of the actual state x(t) at t = tk can be

approximated by ẋ(tk) = F (x(tk), u1, u2, 0) ≈ x(tk+qnnhc)−x(tk)
qnnhc

. At time t = tk, x̂(tk) = x(tk), the

constraint |ν| ≤ γ|x| can be written as follows:

|ν| = |F (x(tk), u1, u2, 0)− Fnn(x(tk), u1, u2)| (7a)

≈ |x(tk + qnnhc)− x̂(tk + qnnhc)

qnnhc

| (7b)

≤ γ|x(tk)| (7c)

which will be satisfied if |x(tk+qnnhc)−x̂(tk+qnnhc)
x(tk)

| ≤ γqnnhc. Therefore, the mean absolute percentage

error between the predicted states x̂ and the targeted states x in the training data will be used as

a metric to assess the modeling error of the LSTM model. While the error bounds that the LSTM

network model and the actual process should satisfy to ensure closed-loop stability are difficult

to calculate explicitly and are, in general, conservative, they provide insight into the key network

parameters that will need to be tuned to reduce the error between the two models as well as the

amount of data needed to build a suitable LSTM model.

To collect training data, we first discretize the targeted region in state-space with sufficiently

small intervals; then, open-loop simulations are conducted for various initial conditions x0 ∈ Ωρ

following the nonlinear process of Eq. 1 under various sequences of inputs u1 ∈ U1, u2 ∈ U2 applied

in a sample-and-hold manner. We obtain enough samples of trajectories for finite time to sweep

over all the values that (x, u1, u2) can take. These time-series data can be separated into samples

with a fixed length T , which corresponds to the prediction period of the LSTM model, where

∆ = T × qnn × hc. The time interval between two time-series data points in the sample qnn × hc

corresponds to the time interval between two consecutive memory units in the LSTM network. The

generated dataset is then divided into training and validation sets.

Remark 1. The actual nonlinear process is a continuous-time model that can be represented using

Eq. 1; therefore, to characterize the modeling error ν between the LSTM network and the nonlinear

process of Eq. 1, the LSTM network is represented as a continuous-time model of Eq. 5. However,

the series of interacting nonlinear operations in the LSTM memory unit is carried out recursively

akin to a discrete-time model. The time interval qnn × hc between two LSTM memory units is

given by the time interval between two consecutive time-series data points in the training samples.

Since the LSTM network provides a predicted state at each time interval qnn×hc calculated by each
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LSTM memory unit, similarly to how we can use numerical integration methods to obtain the state

at the same time instance using the continuous-time model, we can use the predicted states from

the LSTM network to compare with the predicted states from the nonlinear model of Eq. 1 to assess

the modeling error. The modeling error is subject to a modeling error constraint as shown in Eq. 7

to ensure that the LSTM model can be used in the model-based controller with guaranteed stability

properties.

3.1 Lyapunov-based Control using LSTM Models

Once we obtain an LSTM model with a sufficiently small modeling error, we can design a stabilizing

feedback controller u1 = Φnn1
(x) ∈ U1 and u2 = Φnn2

(x) ∈ U2 that can render the origin of the

LSTM model of Eq. 5 exponentially stable in an open neighborhood D̂ around the origin in the

sense that there exists a C1 Control Lyapunov function V̂ (x) such that the following inequalities

hold for all x in D̂:
ĉ1|x|2 ≤ V̂ (x) ≤ ĉ2|x|2, (8a)

∂V̂ (x)

∂x
Fnn(x,Φnn1

(x),Φnn2
(x)) ≤ −ĉ3|x|2, (8b)

∣

∣

∣

∣

∣

∂V̂ (x)

∂x

∣

∣

∣

∣

∣

≤ ĉ4|x| (8c)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants, and Fnn(x, u1, u2) represents the LSTM network model

of Eq. 5. Similar to the characterization method of the closed-loop stability region Ωρ for the

nonlinear system of Eq. 1, we first search the entire state-space to characterize a set of states D̂

where the following inequality holds:
˙̂
V (x) = ∂V̂ (x)

∂x
Fnn(x, u1, u2) < −c3|x|2, u1 = Φnn1

(x) ∈ U1,

u2 = Φnn2
(x) ∈ U2. Starting from D̂, the origin of the LSTM network model of Eq. 5 can be

rendered exponentially stable under the controller u1 = Φnn1
(x) ∈ U1, and u2 = Φnn2

(x) ∈ U2. The

closed-loop stability region for the LSTM network model of Eq. 5 is defined as a level set of Lyapunov

function inside D̂: Ωρ̂ := {x ∈ D̂ | V̂ (x) ≤ ρ̂}, where ρ̂ > 0. It is noted that the above assumption

of Eq. 8 is the same as the assumption of Eq. 2 for the general class of nonlinear systems of Eq. 1

since the LSTM network model of Eq. 5 can be written in the form of Eq. 1 (i.e., ˙̂x = f̂(x̂)+ ĝ(x̂)u,

where f̂(·) and ĝ(·) are obtained from coefficient matrices A and Θ in Eq. 5). However, due to

the complexity of the LSTM structure and the interactions of the nonlinear activation functions, f̂

and ĝ may be hard to compute explicitly. For computational convenience, at t = tk, given a set of

control actions u1(tk) ∈ U1\{0} and u2(tk) ∈ U2\{0} that are applied in a sample-and-hold fashion

for the time interval t ∈ [tk, tk + hc) (hc is the integration time step), f̂ and ĝ can be numerically

approximated as follows:
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f̂(x(tk)) ≈
∫ tk+hc

tk
Fnn(x, 0, 0)dt− x(tk)

hc

(9a)

ĝ1(x(tk)) ≈
∫ tk+hc

tk
Fnn(x, u1(tk), 0)dt−

∫ tk+hc

tk
Fnn(x, 0, 0)dt

hcu1(tk)
(9b)

ĝ2(x(tk)) ≈
∫ tk+hc

tk
Fnn(x, 0, u2(tk))dt−

∫ tk+hc

tk
Fnn(x, 0, 0)dt

hcu2(tk)
(9c)

The integral
∫ tk+hc

tk
Fnn(x, u1, u2)dt gives the predicted state x̂(t) at t = tk + hc under the sample-

and-hold implementation of the inputs u1(tk) and u2(tk); x̂(tk + hc) is the first internal state of

the LSTM network, given that the time interval between consecutive internal states of the LSTM

network is chosen as the integration time step hc. After obtaining f̂ , ĝ1 and ĝ2, the stabilizing control

law Φnn1
(x) and Φnn2

(x) can be computed similarly as in Eq. 3, where f , g1, and g2 are replaced

by f̂ , ĝ1, and ĝ2, respectively. Subsequently,
˙̂
V can also be computed using the approximated f̂ ,

ĝ1, and ĝ2. The assumptions of Eq. 2 and Eq. 8 are the stabilizability requirements of the first-

principles model of Eq. 1 and the LSTM network model of Eq. 5, respectively. Since the dataset for

developing the LSTM network model is generated from open-loop simulations for x ∈ Ωρ, u1 ∈ U1,

and u2 ∈ U2, the closed-loop stability region of the LSTM system is a subset of the closed-loop

stability region of the actual nonlinear system, Ωρ̂ ⊆ Ωρ. Additionally, there exist positive constants

Mnn and Lnn such that the following inequalities hold for all x, x′ ∈ Ωρ̂, u1 ∈ U1 and u2 ∈ U2:

|Fnn(x, u1, u2)| ≤Mnn (10a)
∣

∣

∣

∣

∣

∂V̂ (x)

∂x
Fnn(x, u1, u2)−

∂V̂ (x′)

∂x
Fnn(x

′, u1, u2)

∣

∣

∣

∣

∣

≤ Lnn|x− x′| (10b)

4 Distributed LMPC using LSTM Network Models

To achieve better closed-loop control performance, some level of communication may be established

between the different controllers. In a distributed Lyapunov-based model predictive controller

(LMPC) framework, we design two separate LMPCs – LMPC 1 and LMPC 2 – to compute control

actions u1 and u2 respectively; the trajectories of control actions computed by LMPC 1 and LMPC

2 are denoted by ud1 and ud2 , respectively.

4.1 Sequential Distributed LMPC using LSTM Network Models

The communication between two LMPCs in a sequential distributed LMPC framework is one-

way only; i.e., the optimal control actions obtained from solving the optimization problem of one
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LMPC will be relayed to the other LMPC, which will use this information to carry on with its

own optimization problem. A schematic diagram of the structure of a sequential distributed LMPC

system is shown in Fig. 2a. In a sequential distributed LMPC system, the following implementation

strategy is used:
1. At each sampling instant t = tk, both LMPC 1 and LMPC 2 receive the state measurement

x(t), t = tk from the sensors.

2. LMPC 2 evaluates the optimal trajectory of ud2 based on the state measurement x(t) at t = tk,

sends the control action of the first sampling period u∗

d2
(tk) to the corresponding actuators,

and sends the entire optimal trajectory to LMPC 1.

3. LMPC 1 receives the entire optimal input trajectory of ud2 from LMPC 2, and evaluates the

optimal trajectory of ud1 based on state measurement x(t) at t = tk and the optimal trajectory

of ud2 . LMPC 1 then sends u∗

d1
(tk), the optimal control action over the next sampling period

to the corresponding actuators.

4. When a new state measurement is received (k ← k + 1), go to Step 1.
We first define the optimization problem of LMPC 2, which uses the LSTM network model as

its prediction model. LMPC 2 depends on the latest state measurement, but does not have any

information on the value that ud1 will take. Thus, to make a decision, LMPC 2 must assume

a trajectory for ud1 along the prediction horizon. To this end, an explicit nonlinear control law,

Φnn1
(x), is used to compute the assumed trajectory of ud1 . To inherit the stability properties

of Φnnj
(x), j = 1, 2, ud2 must satisfy a Lyapunov-based contractive constraint that guarantees a

minimum decrease rate of the Lyapunov function V̂ . The optimization problem of LMPC 2 is given

as follows:

J = min
ud2

∈S(∆)

∫ tk+N

tk

L(x̃(t),Φnn1
(x̃(t)), ud2(t))dt (11a)

s.t. ˙̃x(t) = Fnn(x̃(t),Φnn1
(x̃(t)), ud2(t)) (11b)

ud2(t) ∈ U2, ∀ t ∈ [tk, tk+N) (11c)

x̃(tk) = x(tk) (11d)

∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)), ud2(tk))) ≤
∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)),Φnn2
(x(tk)))),

if x(tk) ∈ Ωρ̂\Ωρnn
(11e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn
(11f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. The optimal input trajectory
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computed by this LMPC 2 is denoted by u∗

d2
(t), which is calculated over the entire prediction

horizon t ∈ [tk, tk+N). This information is sent to LMPC 1. The control action computed for the

first sampling period of the prediction horizon u∗

d2
(tk) is sent by LMPC 2 to its control actuators

to be applied over the next sampling period. In the optimization problem of Eq. 11, the objective

function of Eq. 11a is the integral of L(x̃(t),Φnn1
(t), ud2(t)) over the prediction horizon. Note that

L(x, u1, u2) is typically in a quadratic form, i.e., L(x, u1, u2) = xTQx + uT
1R1u1 + uT

2R2u2, where

Q, R1, and R2 are positive definite matrices, and the minimum of the objective function of Eq. 11a

is achieved at the origin. The constraint of Eq. 11b is the LSTM network model of Eq. 5 that is

used to predict the states of the closed-loop system. Eq. 11c defines the input constraints on ud2

applied over the entire prediction horizon. Eq. 11d defines the initial condition x̃(tk) of Eq. 11b,

which is the state measurement at t = tk. The constraint of Eq. 11e forces the closed-loop state to

move towards the origin if x(tk) ∈ Ωρ̂\Ωρnn
. However, if x(tk) enters Ωρnn

, the states predicted by

the LSTM network model of Eq. 11b will be maintained in Ωρnn
for the entire prediction horizon.

The optimization problem of LMPC 1 depends on the latest state measurement as well as the

control action computed by LMPC 2 (i.e., u∗

d2
(t), ∀t ∈ [tk, tk+N)). This allows LMPC 1 to compute a

control action ud1 such that the closed-loop performance is optimized while guaranteeing the stability

properties of the Lyapunov-based controllers using LSTM network models, Φnnj
(x), j = 1, 2, are

preserved. Specifically, LMPC 1 uses the following optimization problem:

J = min
ud1

∈S(∆)

∫ tk+N

tk

L(x̃(t), ud1(t), u
∗

d2
(t))dt (12a)

s.t. ˙̃x(t) = Fnn(x̃(t), ud1(t), u
∗

d2
(t)) (12b)

ud1(t) ∈ U1, ∀ t ∈ [tk, tk+N) (12c)

x̃(tk) = x(tk) (12d)

∂V̂ (x(tk))

∂x
(Fnn(x(tk), ud1(tk), u

∗

d2
(tk))) ≤

∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)), u
∗

d2
(tk))),

if x(tk) ∈ Ωρ̂\Ωρnn
(12e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn
(12f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with

period ∆, and N is the number of sampling periods in the prediction horizon. The optimal input

trajectory computed by LMPC 1 is denoted by u∗

d1
(t), which is calculated over the entire prediction

horizon t ∈ [tk, tk+N). The control action computed for the first sampling period of the prediction

horizon u∗

d1
(tk) is sent by LMPC 1 to be applied over the next sampling period. In the optimization
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problem of Eq. 12, the objective function of Eq. 12a is the integral of L(x̃(t), ud1(t), u
∗

d2
(t)) over the

prediction horizon. The constraint of Eq. 12b is the LSTM model of Eq. 5 that is used to predict

the states of the closed-loop system. Eq. 12c defines the input constraints on ud1 applied over the

entire prediction horizon. Eq. 12d defines the initial condition x̃(tk) of Eq. 12b, which is the state

measurement at t = tk. The constraint of Eq. 12e forces the closed-loop state to move towards the

origin if x(tk) ∈ Ωρ̂\Ωρnn
. However, if x(tk) enters Ωρnn

, the states predicted by the LSTM model

of Eq. 12b will be maintained in Ωρnn
for the entire prediction horizon.

Since the execution of LMPC 1 depends on the results of LMPC 2, the total computation time

to execute the sequential distributed LMPC design would be the sum of the time taken to solve

each optimization problem in LMPC 1 and LMPC 2 respectively.

4.2 Iterative Distributed LMPC using LSTM Network Models

In an iterative distributed LMPC framework, both controllers communicate with each other to

cooperatively optimize the control actions. The controllers solve their respective optimization prob-

lems independently in a parallel structure, and solutions to each control problem are exchanged at

the end of each iteration. The schematic diagram of an iterative distributed LMPC system is shown

in Fig. 2b. More specifically, the following implementation strategy is used:

1. At each sampling instant tk, both LMPC 1 and LMPC 2 receive the state measurement x(t)

at t = tk from the sensors.

2. At iteration c = 1, LMPC 1 evaluates future trajectories of ud1(t) assuming u2(t) = Φnn2
(t), ∀t ∈

[tk, tk+N). LMPC 2 evaluates future trajectories of ud2(t) assuming u1(t) = Φnn1
(t), ∀t ∈

[tk, tk+N). The LMPCs exchange their future input trajectories, calculate and store the value

of their own cost function.

3. At iteration c > 1:

(a) Each LMPC evaluates its own future input trajectory based on state measurement x(tk)

and the latest received input trajectories from the other LMPC.

(b) The LMPCs exchange their future input trajectories. Each LMPC calculates and stores

the value of the cost function.

4. If a termination criterion is satisfied, each LMPC sends its entire future input trajectory

corresponding to the smallest value of the cost function to its actuators. If the termination

criterion is not satisfied, go to Step 3 (c ← c+ 1).

5. When a new state measurement is received, go to Step 1 (k ← k + 1).
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To preserve the stability properties of the Lyapunov-based controllers Φnnj
(x), j = 1, 2, the op-

timized ud1 and ud2 must satisfy the contractive constraint that guarantees a minimum decrease

rate of the Lyapunov function V̂ given by Φnnj
(x), j = 1, 2. Following the same variables and

constraints as defined in a sequential distributed LMPC design, the optimization problem of LMPC

1 in an iterative distributed LMPC at iteration c = 1 is presented as follows:

J = min
ud1

∈S(∆)

∫ tk+N

tk

L(x̃(t), ud1(t),Φnn2
(x̃(t)))dt (13a)

s.t. ˙̃x(t) = Fnn(x̃(t), ud1(t),Φnn2
(x̃(t))) (13b)

ud1(t) ∈ U1, ∀ t ∈ [tk, tk+N) (13c)

x̃(tk) = x(tk) (13d)

∂V̂ (x(tk))

∂x
(Fnn(x(tk), ud1(tk),Φnn2

(x(tk)))) ≤
∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)),Φnn2
(x(tk)))),

if x(tk) ∈ Ωρ̂\Ωρnn
(13e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn
(13f)

At iteration c = 1, the optimization problem of LMPC 2 is shown as follows:

J = min
ud2

∈S(∆)

∫ tk+N

tk

L(x̃(t),Φnn1
(x̃(t)), ud2(t))dt (14a)

s.t. ˙̃x(t) = Fnn(x̃(t),Φnn1
(x̃(t)), ud2(t)) (14b)

ud2(t) ∈ U2, ∀ t ∈ [tk, tk+N) (14c)

x̃(tk) = x(tk) (14d)

∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)), ud2(t))) ≤
∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)),Φnn2
(x(tk)))),

if x(tk) ∈ Ωρ̂\Ωρnn
(14e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn
(14f)

At iteration c > 1, following the exchange of the optimized input trajectories u∗

d1
(t) and u∗

d2
(t)

between the two LMPCs, the optimization problem of LMPC 1 is modified as follows:

J = min
ud1

∈S(∆)

∫ tk+N

tk

L(x̃(t), ud1(t), u
∗

d2
(t))dt (15a)

s.t. ˙̃x(t) = Fnn(x̃(t), ud1(t), u
∗

d2
(t)) (15b)

ud1(t) ∈ U1, ∀ t ∈ [tk, tk+N) (15c)
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x̃(tk) = x(tk) (15d)

∂V̂ (x(tk))

∂x
(Fnn(x(tk), ud1(tk), u

∗

d2
(tk)) ≤

∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)),Φnn2
(x(tk)))),

if x(tk) ∈ Ωρ̂\Ωρnn
(15e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn
(15f)

And the optimization problem of LMPC 2 becomes:

J = min
ud2

∈S(∆)

∫ tk+N

tk

L(x̃(t), u∗

d1
(t), ud2(t))dt (16a)

s.t. ˙̃x(t) = Fnn(x̃(t), u
∗

d1
(t), ud2(t)) (16b)

ud2(t) ∈ U2, ∀ t ∈ [tk, tk+N) (16c)

x̃(tk) = x(tk) (16d)

∂V̂ (x(tk))

∂x
(Fnn(x(tk), u

∗

d1
(t), ud2(t))) ≤

∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1

(x(tk)),Φnn2
(x(tk)))),

if x(tk) ∈ Ωρ̂\Ωρnn
(16e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn
(16f)

At each iteration c ≥ 1, the two LMPCs can be solved simultaneously via parallel computing in

separate processors. Therefore, the total computation time required for iterative distributed LMPC

would be the maximum solving time out of the two controllers accounting for all the iterations

required before the termination criterion is met.

Remark 2. One consideration that applies to any MPC system is that the computation time to

calculate the solutions to the MPC optimization problem(s) must be less than the sampling time of

the actual nonlinear process of Eq. 1. One of the main advantages of distributed MPC systems is

the reduced computational complexity of the optimization problems, and thus, reduced total computa-

tional time compared to solving the optimization problem in a centralized MPC system. Therefore,

running more iterations to achieve a more optimal set of solutions (i.e., lower value of the cost

function) should be balanced with reducing total computation time, and there should be an upper

bound enforced on the maximum number of iterations at all times to ensure calculation of control

actions within the sampling time.

Remark 3. It is important to note that the number of iterations c could vary and will not affect the

closed-loop stability of the iterative distributed LMPC system. The number of iterations c depends
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on the termination conditions, which can be of many forms, e.g., c must not exceed a maximum

iteration number cmax (i.e., c ≤ cmax), the computational time for solving each LMPC must not

exceed a maximum time period, or the difference in the cost function or of the solution trajectory

between two consecutive iterations is smaller than a threshold value. During implementation, when

one such criterion is met, the iterations will be terminated.

Remark 4. In general, there is no guaranteed convergence of the optimal cost or solution of an

iterative distributed LMPC system to the optimal cost or solution of a centralized LMPC. This is

due to the non-convexity of the MPC optimization problems. However, the proposed implementation

strategy guarantees that the optimal cost of the distributed optimization is upper bounded by the cost

of the Lyapunov-based control laws Φnn1
(x) ∈ U1, Φnn2

(x) ∈ U2.

4.3 Sample-and-hold implementation of Distributed LMPC

Once both optimization problems of LMPC 1 and LMPC 2 are solved, the optimal control actions of

the proposed distributed LMPC design (both sequential and iterative distributed LMPC systems)

are defined as follows:

u1(t) = u∗

d1
(tk), ∀t ∈ [tk, tk+1) (17a)

u2(t) = u∗

d2
(tk), ∀t ∈ [tk, tk+1) (17b)

The control actions computed by each LMPC will be applied in a sample-and-hold manner to the

process, which may be subject to bounded disturbances (i.e., |w(t)| ≤ wm). In this section, we

present the stability properties of the distributed LMPC design, accounting for sufficiently small

bounded modeling error of the LSTM network and bounded disturbances. Following Lyapunov

arguments, this property will guarantee practical stability of the closed-loop system, i.e., the closed-

loop state x(t) of the nominal process of Eq. 1 is bounded in Ωρ̂ at all times, and ultimately driven

to a small neighborhood Ωρmin
around the origin under the control actions in the distributed LMPC

design of Eq. 17 implemented in a sample-and-hold manner. First, we will present propositions

demonstrating the existence of an upper bound on the state error |e(t)| = |x(t) − x̂(t)| provided

that the modeling error |ν| and process disturbances |w| are bounded, followed by propositions

that demonstrate the boundedness and convergence of the LSTM system of Eq. 5 and of the actual

nonlinear system of Eq. 1 under the sample-and-hold implementation of u1 = Φnn1
(x) ∈ U1 and

u2 = Φnn2
(x) ∈ U2. Both propositions have been previously proved in.22 Then, we will extend the
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proof to show the boundedness and convergence of the nonlinear system of Eq. 1 under the sample-

and-hold implementation of [u1 u2] = [u∗

d1
u∗

d2
] from the distributed LMPC design of Eq. 17 in the

presence of sufficiently small bounded disturbances and modeling error.

Proposition 1. Consider the nonlinear system ẋ = F (x, u1, u2, w) of Eq. 1 in the presence of

bounded disturbances |w(t)| ≤ wm and the LSTM model ˙̂x = Fnn(x̂, u1, u2) of Eq. 5 with the same

initial condition x0 = x̂0 ∈ Ωρ̂ and sufficiently small modeling error |ν| ≤ νm. There exists a class

K function fw(·) and a positive constant κ such that the following inequalities hold ∀x, x̂ ∈ Ωρ̂ and

w(t) ∈ W :
|e(t)| = |x(t)− x̂(t)| ≤ fw(t) :=

Lwwm + νm
Lx

(eLxt − 1) (18a)

V̂ (x) ≤ V̂ (x̂) +
ĉ4
√
ρ̂√

ĉ1
|x− x̂|+ κ|x− x̂|2 (18b)

It has also been established that under the controller u1(t) = Φnn1
(x) ∈ U1, u2(t) = Φnn2

(x) ∈ U2

implemented in a sample-and-hold fashion, the closed-loop state x(t) of the actual process of Eq. 1

and the closed-loop state x̂(t) of the LSTM system of Eq. 5 are bounded in the stability region and

ultimately driven to a small neighborhood around the origin, given that the conditions of Eq. 8 are

satisfied, and the modeling error |ν| ≤ γ|x| ≤ νm, where γ is chosen to satisfy γ < ĉ3/ĉ4. This is

shown in the following proposition. The full proof of the following proposition can be found in.22

Proposition 2. Consider the system of Eq. 1 under the controllers uj = Φnnj
(x̂) ∈ Uj, j = 1, 2,

which meet the conditions of Eq. 8. The controllers uj = Φnnj
(x̂) ∈ Uj, j = 1, 2 are designed to sta-

bilize the LSTM system of Eq. 5, developed with a modeling error |ν| ≤ γ|x| ≤ νm, where γ < ĉ3/ĉ4.

The control actions are implemented in a sample-and-hold fashion, i.e., uj(t) = Φnnj
(x̂(tk)), j =

1, 2, ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆. Let ǫs, ǫw > 0, ∆ > 0, c̃3 = −ĉ3 + ĉ4γ > 0, and

ρ̂ > ρmin > ρnn > ρs satisfy

− ĉ3
ĉ2
ρs + LnnMnn∆ ≤ −ǫs (19a)

− c̃3
ĉ2
ρs + L

′

xM∆ + L
′

wwm ≤ −ǫw (19b)

and

ρnn := max{V̂ (x̂(t+∆)) | x̂(t) ∈ Ωρs , u1 ∈ U1, u2 ∈ U2} (20a)

ρmin ≥ ρnn +
ĉ4
√
ρ̂√

ĉ1
fw(∆) + κ(fw(∆))2 (20b)

Then, for any x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs, the following inequality holds:
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V̂ (x̂(t)) ≤ V̂ (x̂(tk)), ∀t ∈ [tk, tk+1) (21a)

V̂ (x(t)) ≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (21b)

and if x0 ∈ Ωρ̂, the state x̂(t) of the LSTM modeled system of Eq. 5 is bounded in Ωρ̂ for all times

and ultimately bounded in Ωρnn
, and the state x(t) of the nonlinear system of Eq. 1 is bounded in

Ωρ̂ for all times and ultimately bounded in Ωρmin
.

Proposition 2 demonstrates that, if x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs, the closed-loop state of the LSTM

system of Eq. 5 and of the actual nonlinear process of Eq. 1 are both bounded in the stability

region Ωρ̂ and they move towards the origin under u1(t) = Φnn1
(x) ∈ U1 and u2(t) = Φnn2

(x) ∈ U2

implemented in a sample-and-hold fashion. If x(tk) = x̂(tk) ∈ Ωρs , the closed-loop state of the LSTM

model is maintained in Ωρnn
within one sampling period for all t ∈ [tk, tk+1), and the closed-loop

state of the actual nonlinear system is maintained in Ωρmin
within one sampling period.

In the following theorem, we will prove that the optimization problem of LMPC 1 and of LMPC

2 in the distributed LMPC network can be solved with recursive feasibility, and the closed-loop

stability of the nonlinear system of Eq. 1 is guaranteed under the sample-and-hold implementation

of the optimal control actions [u1 u2] = [u∗

d1
u∗

d2
] given by the distributed LMPC design of Eq. 17.

Theorem 1. Consider the closed-loop system of Eq. 1 under [u1 u2] = [u∗

d1
u∗

d2
] in the distributed

LMPC design of Eq. 17, which are calculated based on the controllers Φnnj
(x), j = 1, 2 that satisfy

Eq. 8. Let ∆ > 0, ǫs > 0, ǫw > 0 and ρ̂ > ρmin > ρnn > ρs satisfy Eq. 19 and 20. Then,

given any initial state x0 ∈ Ωρ̂, if the conditions of Proposition 1 and Proposition 2 are satisfied,

and the LSTM model of Eq. 5 has a modeling error |ν| ≤ γ|x| ≤ νm, 0 < γ < ĉ3/ĉ4, then there

always exists a feasible solution for the optimization problem of Eq. 11, Eq. 12, and of Eq. 15,

Eq. 16. Additionally, it is guaranteed that under the distributed LMPC design [u1 u2] = [u∗

d1
u∗

d2
]

of Eq. 17, x(t) ∈ Ωρ̂, ∀t ≥ 0, and x(t) ultimately converges to Ωρmin
for the closed-loop system of

Eq. 1.

Proof. The proof consists of three parts. In Part 1, We first prove that the optimization problem

of each LMPC in the distributed LMPC network is feasible for all states x ∈ Ωρ̂. In Part 2, we

prove the boundedness and convergence of the state in Ωρnn
for the closed-loop LSTM system of

Eq. 5 under the distributed LMPC design [u1 u2] = [u∗

d1
u∗

d2
] in Eq. 17. Lastly, in Part 3, we

prove the boundedness and convergence of the closed-loop state to Ωρmin
for the actual nonlinear

system of Eq. 1 under the distributed LMPC design [u1 u2] = [u∗

d1
u∗

d2
] in Eq. 17. The following
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proof is provided in reference to the formulations of the sequential distributed LMPC of Eq. 11 –

Eq. 12, but the same result also applies to the iterative distributed LMPC of Eq. 15 – Eq. 16.

Part 1: We prove that the optimization problem of each LMPC in the distributed LMPC network

is recursively feasible for all x ∈ Ωρ̂. If x(tk) ∈ Ωρ̂\Ωρnn
, the input trajectories udj (t) = Φnnj

(x(tk)),

j = 1, 2, for t ∈ [tk, tk+1] are feasible solutions to the optimization problem of LMPC j since such

trajectories satisfy the input constraint on udj of Eq. 11c in LMPC 2 and of Eq. 12c in LMPC

1 respectively, as well as the Lyapunov-based contractive constraint of Eq. 11e in LMPC 2 and

of Eq. 12e in LMPC 1. Additionally, if x(tk) ∈ Ωρnn
, the control actions given by Φnnj

(x̃(tk+i)),

i = 0, 1, ..., N−1 satisfy the input constraint on ud2 of Eq. 11c and the Lyapunov-based constraint of

Eq. 11f in LMPC 2, and the input constraint on ud1 of Eq. 12c and the Lyapunov-based constraint of

Eq. 12f in LMPC 1, since it is shown in Proposition 2 that the states predicted by the LSTM model

of Eq. 11b and of Eq. 12b remain inside Ωρnn
under the controller Φnnj

(x̃), j = 1, 2. Therefore,

for all x0 ∈ Ωρ̂, the optimization problems of both Eq. 12 and Eq. 11 can be solved with recursive

feasibility if x(t) ∈ Ωρ̂ for all times.

Part 2: Next, we prove that given any x0 = x̂0 ∈ Ωρ̂, the state of the closed-loop LSTM system

of Eq. 5 is bounded in Ωρ̂ for all times and ultimately converges to a small neighborhood around

the origin Ωρnn
defined by Eq. 20a under the sample-and-hold implementation of the distributed

LMPC design [u1 u2] = [u∗

d1
u∗

d2
] of Eq. 17.

First, we consider x(tk) ∈ Ωρ̂\Ωρnn
at t = tk, therefore activating the contractive constraints

of Eq. 11e and Eq. 12e. Based on the definition of ρnn in Eq. 20a, this means x(tk) also belongs

to the region Ωρ̂\Ωρs . With the conditions of Eq. 8 on Φnn1
(x̂(tk)) and Φnn2

(x̂(tk)) satisfied, the

contractive constraints are activated such that the optimal control actions u∗

d2
, and sequentially u∗

d1
,

are calculated to decrease the value of the Lyapunov function based on the states predicted by the

LSTM model of Eq. 11b and Eq. 12b over the next sampling period, respectively. This is shown as

follows:

˙̂
V (x̂(tk)) =

∂V̂ (x̂(tk))

∂x̂
Fnn(x̂(t), u

∗

d1
(tk), u

∗

d2
(tk))

≤∂V̂ (x̂(tk))

∂x̂
Fnn(x̂(t),Φnn1

(x̂(tk)), u
∗

d2
(tk))

≤∂V̂ (x̂(tk))

∂x̂
Fnn(x̂(t),Φnn1

(x̂(tk)),Φnn2
(x̂(tk)))

≤− ĉ3|x̂(tk)|2

(22)
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The time derivative of the Lyapunov function along the trajectory of x̂(t) of the LSTM model of

Eq. 5 in t ∈ [tk, tk+1) is given by:

˙̂
V (x̂(t)) =

∂V̂ (x̂(t))

∂x̂
Fnn(x̂(t), u

∗

d1
(tk), u

∗

d2
(tk))

=
∂V̂ (x̂(tk))

∂x̂
Fnn(x̂(tk), u

∗

d1
(tk), u

∗

d2
(tk)) +

∂V̂ (x̂(t))

∂x̂
Fnn(x̂(t), u

∗

d1
(tk), u

∗

d2
(tk))

− ∂V̂ (x̂(tk))

∂x̂
Fnn(x̂(tk), u

∗

d1
(tk), u

∗

d2
(tk))

(23)

After adding and subtracting ∂V̂ (x̂(tk))
∂x̂

Fnn(x̂(tk), u
∗

d1
(tk), u

∗

d2
(tk)), and taking into account the con-

ditions of Eq. 8, we obtain the following inequality:

˙̂
V (x̂(t)) ≤− ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))

∂x̂
Fnn(x̂(t), u

∗

d1
(tk), u

∗

d2
(tk))

− ∂V̂ (x̂(tk))

∂x̂
Fnn(x̂(tk), u

∗

d1
(tk), u

∗

d2
(tk))

(24)

Based on the Lipschitz condition of Eq. 10 and that x̂ ∈ Ωρ̂, u1 ∈ U1, and u2 ∈ U2, the upper bound

of
˙̂
V (x̂(t)) is derived ∀t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤− ĉ3

ĉ2
ρs + Lnn|x̂(t)− x̂(tk)|

≤ − ĉ3
ĉ2
ρs + LnnMnn∆

(25)

Therefore, if Eq. 19a is satisfied, the following inequality holds ∀x̂(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤− ǫs (26)

By integrating the above equation over t ∈ [tk, tk+1), it is obtained that V (x̂(tk+1)) ≤ V (x̂(tk))−ǫs∆.

Therefore, V (x̂(tk+1)) < V (x̂(tk)), ∀t ∈ [tk, tk+1). We have proved that for all x̂(tk) ∈ Ωρ̂\Ωρs , the

state of the closed-loop LSTM system of Eq. 5 is bounded in the closed-loop stability region Ωρ̂

for all times and moves towards the origin under [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)] implemented in a

sample-and-hold fashion.

Next, we consider when x(tk) = x̂(tk) ∈ Ωρs and Eq. 26 may not hold. According to Eq. 20a,

Ωρnn
is designed to ensure that the closed-loop state x̂(t) of the LSTM model does not leave Ωρnn

for all t ∈ [tk, tk+1), u1 ∈ U1, u2 ∈ U2, and x̂(tk) ∈ Ωρs within one sampling period. If the state

x̂(tk+1) leaves Ωρs , the controller [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)] ∈ U will drive the state towards Ωρs
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over the next sampling period since Eq. 26 is satisfied again at t = tk+1. Therefore, the convergence

of the state to Ωρnn
for the closed-loop LSTM system of Eq. 5 is proved for all x̂0 ∈ Ωρ̂.

Part 3: We have proven that the closed-loop state of the LSTM system of Eq. 5 are bounded

in Ωρ̂ and ultimately converge to Ωρnn
under the controller [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)] computed

by the distributed LMPC design of Eq. 17 for all x̂ ∈ Ωρ̂. We will now prove that the controllers

[u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)] computed by the distributed LMPC design of Eq. 17 are able to

stabilize the actual nonlinear system of Eq. 1 while accounting for bounded modeling error |ν| and

disturbances |w|.
If there exists a positive real number γ < ĉ3/ĉ4 that constrains the modeling error |ν| =

|F (x, u1, u2, 0) − Fnn(x, u1, u2)| ≤ γ|x| for all x ∈ Ωρ̂, u1 ∈ U1, u2 ∈ U2, then the origin of the

closed-loop nominal system of Eq. 1 can be rendered exponentially stable under the controller

[u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)]. This is shown by proving that

˙̂
V for the nominal system of Eq. 1 can

be rendered negative under [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)]. Based on the conditions on the Lyapunov

functions of Eq. 22 as derived in Part 2, and Eq. 8c, the time derivative of the Lyapunov function

is derived as follows:

˙̂
V (x) =

∂V̂ (x)

∂x
F (x, u∗

d1
(tk), u

∗

d2
(tk), 0)

=
∂V̂ (x)

∂x
(Fnn(x, u

∗

d1
(tk), u

∗

d2
(tk)) + F (x, u∗

d1
(tk), u

∗

d2
(tk), 0)− Fnn(x, u

∗

d1
(tk), u

∗

d2
(tk)))

≤− ĉ3|x|2 + ĉ4|x|(F (x, u∗

d1
(tk), u

∗

d2
(tk), 0)− Fnn(x, u

∗

d1
(tk), u

∗

d2
(tk)))

≤− ĉ3|x|2 + ĉ4γ|x|2

≤− c̃3|x|2

(27)

When γ is chosen to satisfy γ < ĉ3/ĉ4, it holds that
˙̂
V ≤ −c̃3|x|2 ≤ 0 where c̃3 = −ĉ3 + ĉ4γ > 0.

Therefore, the closed-loop state of the nominal system of Eq. 1 converges to the origin under

[u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)], ∀ x0 ∈ Ωρ̂ if the modeling error is sufficiently small, i.e., |ν| ≤ γ|x|.

Additionally, considering the presence of bounded disturbances (i.e., |w| ≤ wm), we will now

prove that the closed-loop state x(t) of the actual nonlinear system of Eq. 1 (i.e., ẋ = F (x, u, w)) is

bounded in Ωρ̂ and ultimately converges to Ωρmin
under the sample-and-hold implementation of the

control actions [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)] as computed by the distributed LMPC design of Eq. 17.

Similarly, we first consider x(tk) = x̂(tk) ∈ Ωρ̂\Ωρnn
, which means x(tk) also belongs to the

region Ωρ̂\Ωρs .We derive the time-derivative of V̂ (x) for the nonlinear system of Eq. 1 with bounded

22



disturbances as follows:

˙̂
V (x(t)) =

∂V̂ (x(t))

∂x
F (x(t), u∗

d1
(tk), u

∗

d2
(tk), w)

=
∂V̂ (x(tk))

∂x
F (x(tk), u

∗

d1
(tk), u

∗

d2
(tk), 0) +

∂V̂ (x(t))

∂x
F (x(t), u∗

d1
(tk), u

∗

d2
(tk), w)

− ∂V̂ (x(tk))

∂x
F (x(tk), u

∗

d1
(tk), u

∗

d2
(tk), 0)

(28)

From Eq. 27, we know that ∂V̂ (x(tk))
∂x

F (x(tk), u
∗

d1
(tk), u

∗

d2
(tk), 0) ≤ −c̃3|x(tk)|2 holds for all x ∈ Ωρ̂.

Based on Eq. 8a and the Lipschitz condition in Eq. 4, the following inequality is obtained for
˙̂
V (x(t))

∀t ∈ [tk, tk+1) and x(tk) ∈ Ωρ̂\Ωρs :

˙̂
V (x(t)) ≤− c̃3

ĉ2
ρs +

∂V̂ (x(t))

∂x
F (x(t), u∗

d1
(tk), u

∗

d2
(tk), w)−

∂V̂ (x(tk))

∂x
F (x(tk), u

∗

d1
(tk), u

∗

d2
(tk), 0)

≤− c̃3
ĉ2
ρs + L

′

x|x(t)− x(tk)|+ L
′

w|w|

≤ − c̃3
ĉ2
ρs + L

′

xM∆+ L
′

wwm

(29)

Therefore, if Eq. 19b is satisfied, the following inequality holds ∀x(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1):

˙̂
V (x(t)) ≤− ǫw (30)

Integrating Eq. 30 will show that Eq. 21b holds; hence, the closed-loop state of the actual nonlinear

process of Eq. 1 is maintained in Ωρ̂ for all times, and can be driven towards the origin in every

sampling period under the controller [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)]. Additionally, if x(tk) ∈ Ωρs ,

considering the sample-and-hold implementation of control actions, it has been shown in Part 2

that the state of the LSTM model of Eq. 5 is maintained in Ωρnn
within one sampling period.

Considering the bounded error between the state of the LSTM of Eq. 5 model and the state of the

nonlinear system of Eq. 1 given by Eq. 18a, there exists a compact set Ωρmin
⊃ Ωρnn

that satisfies

Eq. 20b such that the state of the actual nonlinear system of Eq. 1 does not leave Ωρmin
during one

sampling period if the state of the LSTM model of Eq. 5 is bounded in Ωρnn
. If the state x(t) enters

Ωρmin
\Ωρs , we have shown that Eq. 30 holds, and thus, the state will be driven towards the origin

again under [u1 u2] = [u∗

d1
(tk) u∗

d2
(tk)] during the next sampling period.

Consider x(t) ∈ Ωρ̂\Ωρnn
at t = tk where the contractive constraints of Eq. 11e and Eq. 12e

are activated. Since x(tk) ∈ Ωρ̂\Ωρnn
, it follows that x(tk) ∈ Ωρ̂\Ωρs , hence Eq. 30 holds, implying

that the closed-loop state will be driven towards the origin in every sampling step under [u1 u2] =
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[u∗

d1
(tk) u∗

d2
(tk)] and can be driven into Ωρnn

within finite sampling steps. After the state enters

Ωρnn
, the constraint of Eq. 11f and Eq. 12f are activated to maintain the predicted states of the

LSTM model of Eq. 11b and Eq. 12b in Ωρnn
over the entire prediction horizon. As we characterize

a region Ωρmin
that satisfies Eq. 20b, the closed-loop state x(t) of the nonlinear system of Eq. 1,

∀t ∈ [tk, tk+1) is guaranteed to be bounded in Ωρmin
if the predicted state by the LSTM model of

Eq. 11b and Eq. 12b remains in Ωρnn
. Therefore, at the next sampling step t = tk+1, if the state

x(tk+1) is still bounded in Ωρnn
, the constraint of Eq. 11f and Eq. 12f maintains the predicted state

x̂ of the LSTM model of Eq. 11b and Eq. 12b in Ωρnn
such that the actual state x of the nonlinear

system of Eq. 1 stays inside Ωρmin
. However, if x(tk+1) ∈ Ωρmin

\Ωρnn
, following the proof we have

shown for the case that x(tk) ∈ Ωρ̂\Ωρnn
, the contractive constraint of Eq. 11e and Eq. 12e will be

activated instead to drive it towards the origin. This completes the proof of boundedness of the

states of the closed-loop system of Eq. 1 in Ωρ̂ and convergence to Ωρmin
for any x0 ∈ Ωρ̂.

5 Application to a Two-CSTR-in-Series Process

A chemical process example is utilized to demonstrate the application of sequential distributed and

iterative distributed model predictive control using the proposed LSTM model, the results of which

will be compared to that of centralized model predictive control. Specifically, two well-mixed, non-

isothermal continuous stirred tank reactors (CSTRs) in series are considered where an irreversible

second-order exothermic reaction takes place in each reactor as shown in Fig. 3. The reaction

transforms a reactant A to a product B (A → B). Each of the two reactors are fed with reactant

material A with the inlet concentration CAj0, the inlet temperature Tj0 and feed volumetric flow

rate of the reactor Fj0, j = 1, 2, where j = 1 denotes the first CSTR and j = 2 denotes the second

CSTR. Each CSTR is equipped with a heating jacket that supplies/removes heat at a rate Qj ,

j = 1, 2. The CSTR dynamic models is obtained by the following material and energy balance

equations:

dCA1

dt
=
F10

V1

(CA10 − CA1)− k0e
−E
RT1C2

A1 (31a)

dT1

dt
=
F10

V1

(T10 − T1) +
−∆H

ρLCp

k0e
−E
RT1C2

A1 +
Q1

ρLCpV1

(31b)

dCB1

dt
=− F10

V1

CB1 + k0e
−E
RT1 C2

A1
(31c)

dCA2

dt
=
F20

V2

CA20 +
F10

V2

CA1 −
F10 + F20

V2

CA2 − k0e
−E
RT2C2

A2 (31d)
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dT2

dt
=
F20

V2
T20 +

F10

V2
T1 −

F10 + F20

V2
T2 +

−∆H

ρLCp

k0e
−E
RT2C2

A2 +
Q2

ρLCpV2
(31e)

dCB2

dt
=
F10

V2
CB1 −

F10 + F20

V2
CB2 + k0e

−E
RT2C2

A2 (31f)

where CAj, Vj , Tj and Qj, j = 1, 2 are the concentration of reactant A, the volume of the reacting

liquid, the temperature, and the heat input rate in the first and the second reactor, respectively. The

reacting liquid has a constant density of ρL and a constant heat capacity of Cp for both reactors.

∆H , k0, E, and R represent the enthalpy of the reaction, pre-exponential constant, activation

energy, and ideal gas constant, respectively. Process parameter values are listed in Table 1.

The manipulated inputs for both CSTRs are the inlet concentration of species A and the heat

input rate, which are represented by the deviation variables ∆CAj0 = CAj0−CAj0s, ∆Qj = Qj−Qjs ,

j = 1, 2, respectively. The manipulated inputs are bounded as follows: |∆CAj0| ≤ 3.5 kmol/m3

and |∆Qj | ≤ 5 × 105 kJ/hr, j = 1, 2. Therefore, the states of the closed-loop system are xT =

[CA1 − CA1s T1 − T1s CA2 − CA2s T2 − T2s ], where CA1s , CA2s, T1s and T2s are the steady-state

values of concentration of A and temperature in the first and the second reactor, such that the

equilibrium point of the system is at the origin of the state-space.

It is noted that the states of the first CSTR can be separately denoted as xT
1 = [CA1−CA1s T1−

T1s ] and the states of the second CSTR are denoted as xT
2 = [CA2 − CA2s T2 − T2s ]. In a cen-

tralized MPC framework, feedback measurement on all states x is received by the controller, and

the manipulated inputs for the entire system, uT = [∆CA10 ∆Q1 ∆CA20 ∆Q2], are computed by

one centralized controller. In a distributed LMPC system, both LMPCs have access to full-state

information as well as the overall model of the two-CSTR process. Both LMPC 1 and LMPC 2

receive feedback on x(t); LMPC 1 optimizes uT
1 and LMPC 2 optimizes uT

2 . The common control

objective of the model predictive controllers is to stabilize the two-CSTR process at the unstable

operating steady-state xT
s = [CA1s CA2s T1s T2s ], whose values are presented in Table 1.

The explicit Euler method with an integration time step of hc = 10−4 hr is used to numerically

simulate the dynamic model of Eq. 31. The nonlinear optimization problems of the distributed

LMPCs of Eq. 11 – Eq. 12, and of Eq. 15 – Eq. 16 are solved using the Python module of the IPOPT

software package,23 named PyIpopt with a sampling period ∆ = 10−2 hr. The objective function in

the distributed LMPC optimization problem has the form L(x, u1, u2) = xTQx+uT
1R1u1+uT

2R2u2,

where Q = diag[2 × 103 1 2 × 103 1], R1 = R2 = diag[8 × 10−13 0.001]; the same objective

function is used in both LMPC 1 and LMPC 2 in all distributed LMPC systems. The overall

control Lyapunov function is the sum of the control Lyapunov functions for the two CSTRs, i.e.,
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V (x) = V1(x1) + V2(x2) = xT
1 P1x1 + xT

2 P2x2, with the following positive definite P matrices:

P1 = P2 =

[

1060 22
22 0.52

]

(32)

5.1 LSTM Network Development

Open-loop simulations are conducted for finite sampling steps for various initial conditions inside

Ωρ, where ρ = 392, using the nonlinear system of Eq. 1 under various u1 ∈ U1, u2 ∈ U2 applied in

a sample-and-hold manner. These trajectories which consist of training sample points are collected

with a time interval of 5×hc. The LSTM model is then developed to predict future states over one

sampling period ∆. This LSTM model captures the dynamics of the overall two-CSTR process of

Eq. 31, and can be used in all individual distributed LMPCs or in the centralized LMPC. The LSTM

network is developed using Keras with 1 hidden layer consisting of 50 units, where tanh function is

used as the activation function, and Adam is used as the optimizer. The stopping criteria for the

training process include that the mean squared modeling error being less than 5×10−7 and the mean

absolute percentage of the modeling error being less than 4.5 × 10−4. After 50 epochs of training,

with each epoch taking on average 200 s, the mean squared error between the predicted states of

the LSTM network model and of the first-principles models is 4.022× 10−7 and the mean absolute

error is 4.254 × 10−4. After obtaining an LSTM model with sufficiently small modeling error, the

Lyapunov function of the LSTM model, V̂ , is chosen to be the same as V (x). Subsequently, the

set D̂ can be characterized using the controllers [u1 u2] = [Φnn1
(x) Φnn2

(x)], from which the

closed-loop stability region Ωρ̂ for the LSTM system can be characterized as the largest level set

of V̂ in D̂ while also being a subset of Ωρ. The positive constants ρ̂1 and ρ̂2, which are used to

define the largest level sets of the control Lyapunov functions for the first and the second CSTR

respectively, are ρ̂1 = ρ̂2 = 380. Additionally, the ultimate bounded region Ωρnn
, and subsequently,

Ωρmin
, are chosen to be ρnn = 10 and ρmin = 12, determined via extensive closed-loop simulations

with u1 ∈ U1, u2 ∈ U2. Readers interested in more computational details on the development of a

recurrent neural network model can refer to.24

In this study, we simulate three different types of control systems to compare their closed-loop

control performances: a centralized LMPC, an iterative distributed LMPC system, and a sequential

distributed LMPC system. We develop an LSTM model for the overall two-CSTR process, which

is the same model used in both centralized LMPC system and distributed LMPC systems. When

this LSTM network model is implemented online during closed-loop simulations, the inputs to the

LSTM network are x(t) and u(t) at t = tk, and the outputs are the predicted future states x̂(t) at
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t = tk+1; more examples on this overall LSTM model can be found in.25 It should be noted that,

depending on the different architectures of the control systems, the choice of inputs and outputs as

well as the structure of the LSTM model used in the control system may be different.

5.2 Closed-loop Model Predictive Control Simulations

To demonstrate the efficacy of the distributed model predictive control network using LSTM models,

the following simulations are carried out. First, we simulate a centralized LMPC using the LSTM

network for the overall two-CSTR process as its prediction model, where the four manipulated inputs

are uT = [∆CA10 ∆Q1 ∆CA20 ∆Q2], and it receives feedback on all states xT = [CA1−CA1s T1−
T1s CA2−CA2s T2−T2s ]. Then, we simulate sequential distributed LMPCs and iterative distributed

LMPCs, where LMPC 1 and LMPC 2 in both distributed frameworks use the same LSTM model

for the overall two-CSTR process as used in a centralized LMPC system. The closed-loop control

performances of the aforementioned control networks are compared, the comparison metrics include

the computation time of calculating the solutions to the LMPC optimization problem(s), as well

as the sum squared error of the closed-loop states x(t) for a total simulation period of tp = 0.3 hr.

It should be noted that, since iterative distributed LMPC systems allow parallel computing of the

individual controllers, the computation time for obtaining the final solutions to the optimization

problems of Eq. 15 – Eq. 16 should be the maximum time of the two controllers, accounting for all

iterations carried out before the termination criterion is reached. The termination criterion used

was that the computation time for solving each LMPC must not exceed the sampling period, ∆.

On the other hand, in a sequential distributed LMPC system, since the computation of LMPC 1

depends on the optimal trajectory of control action calculated by LMPC 2, the total computation

time taken to obtain the solutions to the optimization problems of Eq. 11 – Eq. 12 must be the sum

of the time taken by the two controllers.

Table 2 shows the average computation time for solving the optimization problem(s) of the

distributed and centralized LMPC systems, as well as the sum of squared percentage error of all

states in the form of SSE =
∫ tp

0
(
CA1−CA1s

CA1s
)2 + (T1−T1s

T1s
)2 + (

CA2−CA2s

CA2s
)2 + (T2−T2s

T2s
)2dt. It is shown

in Table 2 that when the two-CSTR process is operated under distributed LMPC systems, the

sum squared error and the average computation time are reduced compared to the case where a

centralized LMPC system is used. Moreover, it is shown that the iterative distributed MPC using

the LSTM model has a lower mean computation time and a lower sum squared error than the

sequential distributed MPC, and the distributed MPC in general achieve a lower sum squared error

than the centralized MPC. It should also be noted that the computation time of all simulated
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control systems are lower than the sampling period used in the two-CSTR process such that the

proposed control system can be implemented without computational issues.

In this work, we develop machine-learning-based models for the two-CSTR process of Eq. 31

assuming that the first-principles model of Eq. 31 is unknown. However, in order to have a reasonable

baseline for comparison, we show the simulation results of each distributed control framework using

the first-principles model of the nonlinear process of Eq. 31. Furthermore, in real-life scenarios where

the first-principles model of an industrial-scale chemical plant is not available, the comparison of

closed-loop control performances using machine-learning-based models can be conducted against

plant data. To further illustrate the closed-loop performances of sequential and iterative LMPC

systems using the LSTM model, the closed-loop state evolution showing the convergence of closed-

loop states from the initial conditions xT
0 = [−1.5kmol/m3 70K 1.5kmol/m3 − 70K] under the

sequential and iterative LMPC using the LSTM model are plotted in Figs. 4a – 4b along with the

closed-loop trajectories under the respective distributed LMPCs using the first-principles model as

a baseline for comparison. All states converge to Ωρmin
within 0.10 hr under the sequential and

iterative distributed MPCs using the LSTM model. It is reported that using the LSTM model, the

sum squared error of an operation period of 0.3 hr under iterative distributed LMPC and under

sequential distributed LMPC are 2.85 and 3.04, respectively. Using the first-principles model, the

sum squared error of the same operation period with the same initial conditions under iterative and

sequential distributed LMPC systems are 2.96 and 2.98, respectively, which is on par with the sum

squared error achieved using LSTM network, with the iterative distributed LMPC obtaining even

a lower sum squared error using LSTM network than using first-principles. Through closed-loop

simulations and performance metrics comparisons, we have demonstrated the efficacy of distributed

LMPC systems using LSTM network models.

6 Conclusions

In this study, we presented the design of distributed model predictive control systems for nonlinear

processes using a machine-learning-based model, which was used as the prediction model to capture

nonlinear dynamic behavior. Closed-loop stability and performance properties were analyzed for

the sequential and iterative distributed model predictive control systems. Extensive open-loop

data within the stability region of the nonlinear process characterized by Lyapunov-based control

methods were collected to train LSTM network models with a sufficiently small modeling error

with respect to the actual nonlinear process model. It was shown that both sequential distributed

LMPC system and iterative distributed LMPC system using the LSTM network model were able to
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achieve efficient real-time computation, and ensure closed-loop state boundedness and convergence

to the origin. Working with a nonlinear chemical process network example, the distributed LMPC

systems using the LSTM network model were able to obtain similar closed-loop performance as the

distributed LMPC systems using the first-principles model, as well as reduced computation time

when compared to the closed-loop results of the centralized LMPC system using the LSTM network

model.
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(a) A long short-term memory recurrent neural network and its unfolded structure, where m is the input
vector and x̂ is the output vector, c is the cell state vector, and h is the hidden state vector.

(b) The internal structure of an LSTM unit showing the input gate, the forget gate, and the output gate
layers, where the cell state vector c(k−1), hidden state vector h(k−1), and the input vector m(k) are used
to obtain c(k), h(k), as well as the network output vector y(k) via an additional output activation layer.

Figure 1: Structure of a LSTM network.
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(a) A schematic showing the flow of information of the sequential distributed LMPC system with the overall
process.

(b) A schematic showing the flow of information of iterative distributed LMPC system with the overall
process.

Figure 2: Schematic diagrams of distributed LMPC systems.
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Figure 3: Process flow diagram of two CSTRs in series.
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(a) Closed-loop state trajectories of the sequential distributed LMPC systems using LSTM model and
first-principles models respectively.
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(b) Closed-loop state trajectories of the iterative distributed LMPC systems using LSTM model and first-
principles models respectively.

Figure 4: Closed-loop state trajectories of distributed LMPC systems using LSTM models and
first-principles models respectively.
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Table 1: Parameter values of the CSTRs.

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

V1 = 1 m3 V2 = 1 m3

T1s = 401.9 K T2s = 401.9 K

CA1s = 1.954 kmol/m3 CA2s = 1.954 kmol/m3

CA10s = 4 kmol/m3 CA20s = 4 kmol/m3

Q1s = 0.0 kJ/hr Q2s = 0.0 kJ/hr

k0 = 8.46× 106 m3/kmol hr ∆H = −1.15× 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5× 104 kJ/kmol

Table 2: Average LMPC computation time in one sampling period and the sum of squared per-
centage error of all states along the closed-loop trajectory under iterative distributed, sequential
distributed, and centralized LMPC systems using their respective LSTM models with a total sim-
ulation time of 0.3 hr.

Ave. Computation Time (s) Sum Squared Error

Iterative Distributed LMPC 26.70 2.85

Sequential Distributed LMPC 29.55 3.04

Centralized LMPC 35.26 3.08
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