[23] J.P. Pedrew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys Rev Lett 77 (1996) 3865–3868.
[24] P.Hohnberg and W. Kohn, Inhomogeneous Electron Gas, Phys Rev. B 136 (3B) (1964) B864–B871.
[25 ] W.Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys Rev. 140 (4A) (1965) 1133–1138.
[26] X. Gonze, and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory phys. Rev. B 55 (1997) 10355.
[27] Kronig, R.D.L., J. Opt. Soc. Am. On the Theory of Dispersion of X-Rays Phys. Rev. 12 (1926) 547-557.
[28] K. Xiong, J. Robertson, S.J. Clark, Defect states in the high-dielectric-constant gate oxide LaAlO3, Phys. Lett. 89 (2006), 022907.
[29] M. Solar and N. Trapp, A lightweight modular system for handling crystalline samples at low temperatures under inert conditions, J. Appl. Cryst. 51 (2018) 541-548,
[30] S. Baroni , S.d.G., A. dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73 (2) (2001) 515-562.
[31] K. Miwa, N. Ohba, S. Towata, First-principles study on lithium borohydride LiBH4, Phys. Rev. B 69, 245120 (2004) 1-8.
[32] T. Ghellab, Z. Charifi, H. Baaziz, K. Bouferrache, B. Hamad, Electronic structure and optical properties of complex hydrides LiBH4 and NaAlH4 compounds, Int. J. Energy Res. (2019) 1-15.
[33] Z.J. Wu, E. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principlesPhys. Rev. B 76 (2007) 054115.
[34] D. Mainprice, M. Humbert, Methods of calculating petrophysical properties from lattice preferred orientation data, Surv. Geophys. 15 (1994) 575-592.
[35] M. Hadi, M. Roknuzzaman, A. Chroneos, S. Naqib, A. Islam, R. Vovk, K. Ostrikov, Elastic and thermodynamic properties of new (Zr3-xTix)AlC2 MAX-phase solid solutions, Comput. Mat. Sci. 137 (2017) 318–326.
[36] S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823-843.
[37] Y. Tian, B. Xu, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater. 33 (2012) 93–106.
[38] I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators, Handbook Ed. I. N. Frantsevich (Kiev: Naukova Dumka) (1990) 60.
[39] V. Tvergaard, J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc. 71 (3) (1988) 157-166.
[40] M. I. Hussain, R. M. A. Khalil, F. Hussain, A. M. Rana, M. Imran, Ab-initio prediction of the mechanical, magnetic and thermoelectric behaviour of perovskite oxides XGaO3 (X = Sc, Ti, Ag) using LDA+U functional: For optoelectronic devices, J. Mol. Graph. Model. 99 (107621) (2020) 1-11.
[41] K. Xiong, J. Robertson, S. J. Clark, Defect States in the High-Dielectric-Constant Gate Oxide LaAlO3 Appl. Phys. Lett. 89(2) (2006).
[42] P. Baroni and S. Picozzi, Mechanisms and origin of multiferroicity. C. R. Physique 16 (2015) 143-152
[43] D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128 (1962)2093-2097
[44] M. I. Hussain, R. M. A. Khalil, F. Hussain, M. Imran, A. M. Rana, S. Kim, Investigations of structural, electronic and optical properties of YInO3 (Y = Rb, Cs, Fr) perovskite oxides using mBJ approximation for optoelectronic applications: A first principles study. Mater. Sci. Semicond. Process. 113, (2020) 1-9.
[45] S. Gomes, H. Hagemann, K. Yvon, Lithium boro-hydride LiBH4: II. Raman spectroscopy, J. Alloys Compd. 346 (2002) 206–210.