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1 Introduction

The motion of compressible viscous barotropic flows occupying a domain Ω ⊂ R3 is governed by
the following Navier-Stokes equations:

ρt + div (ρu) = 0, (1.1)

(ρu)t + div (ρu⊗ u) +∇P = µ∆u+ (µ+ λ)∇divu+ ρ∇f, (1.2)

where the unknown functions ρ = ρ(x, t), u = (u1, u2, u3)(x, t) and P = P (ρ) are the density,
velocity and pressure, respectively, and f = f(x) is the external potential force (e.g., gravity).
The pressure P (ρ) is determined through the equation of state:

P (ρ) = Aργ , (1.3)

where A > 0 is the entropy constant and γ > 1 is the adiabatic exponent. The viscosity
coefficients µ and λ satisfy the physical restrictions for Newtonian fluids:

µ > 0, λ+
2µ

3
≥ 0, (1.4)

which ensure that the Laḿe operator L , µ∆ + (µ+ λ)∇div is a strongly elliptic operator.
In the past decades, the compressible Navier-Stokes equations (1.1)–(1.2) have been exten-

sively studied by many people due to its physical importance and mathematical challenge. The
local-in-time existence of strong/classical solutions was obtained in [25, 30, 32] and [3, 4, 5] for
the non-vacuum case and the vacuum case, respectively. The first result about the global-in-time
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existence of smooth solutions is due to Matsumura-Nishida [23], when the initial perturbation
around the non-vacuum equilibrium is sufficiently small in H3. Later, Hoff [13, 14, 15] extended
the Matsumura-Nishida’s theorem [23] to weak solutions with discontinuous initial data. For
the case of generally large data, the most important breakthrough is due to Lions [22] (see also
[9, 11]), who proved the global existence of weak solutions with finite energy to the isentropic
Navier-Stokes equations, when the adiabatic exponent γ is suitably large (i.e., γ > 3/2). Howev-
er, the uniqueness of the Lions-Feireisl’s type weak solutions is still completely unknown. If there
is absent of external potential forces and the initial data satisfy some compatibility conditions
as the one in [5], Huang-Li-Xin [18] established the global well-posedness of classical solutions of
(1.1) and (1.2) with smooth initial data which are of small energy but possibly large oscillations;
in particular, the initial density is allowed to vanish, even has compact support. Based on some
ideas in [15], Duan [8] extended the Huang-Li-Xin’s result (cf. [18]) to an initial-boundary value
problem of (1.1) and (1.2) with Navier’s type boundary conditions in the half space.

In reality, the large external force will significantly affect the dynamic motion of the flows.
In the case when both the external force and the initial perturbation are sufficiently small,
there have been many results about the global existence and the large-time behavior of smooth
solutions, see, for example, [6, 7, 31, 33] and the references therein. However, if the external
force could be arbitrarily large, then some seriously mathematical difficulties will arise. By virtue
of the compactness technique in [22, 11] the authors [12, 28] showed that the density of weak
solution converges to the steady density in Lγ as time goes to infinity, provided the adiabatic
exponent γ > 3/2. For the case of large external potential force, if the initial perturbations
are sufficiently small in L2 ∩ L∞ for density (non-vacuum) and in H1 for velocity, Matsumura-
Yamagata [24] obtained the convergence in Lp-norm with 2 < p ≤ ∞, when γ > 1 is close
enough to 1 and the external potential forces decay suitably fast at infinity. This result was
later improved by Li-Matsumura [19] by removing the smallness condition on |γ − 1| and the
far-field decay conditions of potential force, and then was extended to the vacuum case by the
authors [20].

Let Ω = R3
+ , {x ∈ R3|x3 > 0} be the half space with the boundary ∂Ω , {x ∈ R3|x3 = 0}.

The present paper aims to study an initial-boundary value problem of (1.1)–(1.4) in R3
+ with

the following initial and boundary conditions:

(ρ, ρu)(x, 0) = (ρ0(x),m0(x)) for x ∈ Ω, (1.5)(
u1, u2, u3

)
(x, t) = β

(
∂3u

1, ∂3u
2, 0
)

(x, t) for x ∈ ∂Ω, t > 0, (1.6)

and the far-field behavior:

(ρ, u)(x, t)→ (ρ∞, 0) as |x| → +∞, (1.7)

where ρ∞ > 0 and β > 0 are given positive numbers. Such a kind of boundary conditions was
proposed by Navier [26] and implies that the velocity on ∂Ω is proportional to the tangential
component of the stress. The flat case of half space in the form (1.6) has been usually applied
for incompressible flows, see, for example, [1, 2, 29] and the references cited therein.

The main purpose of this paper is to study the global well-posedness and asymptotic be-
havior of strong solutions of the problem (1.1)–(1.7). To formulate our main result precisely, we
first consider the stationary problem:

div (ρsus) = 0, (1.8)

ρsus · ∇us +∇P (ρs) = µ∆us + (µ+ λ)∇divus + ρs∇f, (1.9)
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with the boundary and far-field conditions:(
u1
s(x), u2

s(x), u3
s(x)

)
= β

(
∂3u

1
s(x), ∂3u

2
s(x), 0

)
for x ∈ ∂Ω, (1.10)

(ρs, us)(x)→ (ρ∞, 0) as |x| → +∞, (1.11)

Assume that (ρs(x), us(x)) with inf
x∈Ω

ρs(x) > 0 is a smooth solution of (1.8)–(1.11). Then,

multiplying (1.9) by us in L2 and integrating by parts, by (1.8) and (1.10) one easily infers that

µ

∫
Ω
|∇us|2dx+ (µ+ λ)

∫
Ω
|divus|2dx+ µ

∫
∂Ω
β|us|2dS = 0,

so that, us(x) = 0 for x ∈ Ω. Thus, it follows from (1.9)2 that ρs = ρs(x) is determined by

∇P (ρs) = ρs∇f ⇔ ∇
(∫ ρs

ρ∞

P ′(s)

s
ds− f

)
= 0 (1.12)

which, together with (1.3) and (1.11), yields

ρs(x) =

(
ργ−1
∞ +

γ − 1

Aγ
f(x)

) 1
γ−1

,

provided that f ∈ H2 satisfies

inf
x∈Ω

f(x) > − Aγ

γ − 1
ργ−1
∞ . (1.13)

To summarize up, we have shown the following proposition.

Proposition 1.1 Assume that f ∈ H2 and (1.12) are satisfied. Then there exists a unique
steady solution (ρs(x), 0) to the problem (1.8)–(1.11) such that

ρs − ρ∞ ∈ H2, 0 < ρ ≤ inf
x∈Ω̄

ρs(x) ≤ sup
x∈Ω̄

ρs(x) ≤ ρ̄ <∞, (1.14)

where ρ, ρ̄ are positive constants depending only on A, γ, ρ∞, inf
x∈Ω̄

f(x), and sup
x∈Ω̄

f(x).

In order to measure the size of the initial data, we define

C0 ,
∫ (

1

2
ρ0 |u0|2 +G (ρ0)

)
dx, (1.15)

where G(·) is the potential energy density given by

G(ρ) ,
∫ ρ

ρs

∫ r

ρs

P ′(ξ)

ξ
dξdr = ρ

∫ ρ

ρs

P (s)− P (ρs)

s2
ds. (1.16)

It is easy to see from (1.13) that if 0 ≤ ρ ≤ 2ρ̃, then there exists a positive constant C(ρ, ρ̄, ρ̃),
depending on ρ, ρ̄ and ρ̃, such that

C(ρ̃)−1(ρ− ρs)2 ≤ G(ρ) ≤ C(ρ̃)(ρ− ρs)2. (1.17)

The main result of this paper can be stated as follows.
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Theorem 1.1 Let Proposition 1.1 be in force. For any given positive numbers ρ̃ ≥ ρ̄ + 1 and
M (not necessarily small), assume that

0 ≤ inf
x∈Ω̄

ρ0(x) ≤ sup
x∈Ω̄

ρ0(x) ≤ ρ̃, ρ0 − ρ∞ ∈ H1 ∩W 1,p, 3 < p < 6. (1.18)

Moreover, assume that m0/ρ0 is well defined and satisfies

u0 ,
m0

ρ0
with ρ

1/2
0 u0 ∈ L2, ‖∇u0‖2L2 ≤M. (1.19)

Then there exists a positive constant ε > 0, depending only on µ, λ,A, γ, ρ∞, ρ̃,M, inf f(x) and
‖f‖H2, such that if the initial energy satisfies

C0 ≤ ε (1.20)

then the problem (1.1)–(1.7) has a unique global strong solution (ρ, u) on R3 × (0, T ] for any
0 < T <∞ such that

0 ≤ inf
x∈R3

+,t≥0
ρ(x, t) ≤ sup

x∈R3
+,t≥0

ρ(x, t) ≤ 2ρ̃, (1.21)

and 

ρ− ρ∞ ∈ C([0, T ];H1 ∩W 1,p), ρu ∈ C([0, T ];L2),
√
ρu ∈ L∞(0, T ;L2), ∇u ∈ L∞(0, T ;L2) ∩ Lq(0, T ;L∞),

(∇2u,
√
ρut) ∈ L2(0, T ;L2) ∩ Lq(0, T ;Lp),

√
t∇ut ∈ L2(0, T ;L2),

√
t(∇2u,

√
ρut) ∈ L∞(0, T ;L2),

(1.22)

where 1 < q < 4p
5p−6 . Moreover, the following large-time behavior holds,

lim
t→∞

(‖ρ(·, t)− ρs‖Lp + ‖u(·, t)‖Lp∩L∞) = 0, ∀ p ∈ (2,∞). (1.23)

Remark 1.1. Similarly to that in [20], we establish the global existence of strong solutions under
the condition that u0 = m0/ρ0 is well defined, which is much weaker than the one in [3, 4], and
thus, improve the result in [8].

Remark 1.2. In [15], Hoff considered the case that β = β(x1, x2) is a positive smooth function
of x1, x2. Unfortunately, it will produce some additional lower-order terms, when the standard
theory of elliptic system was applied to derive the Lp-estimate of the “effective viscous flux” and
the vorticity. For example, as that in [15, (2.14)], one has to deal with the term ‖u‖L2(0,T ;L2),
however, it seems difficult to derive the t-independent estimate of ‖u‖L2(0,T ;L2), and consequently,
the norm of ‖∇u‖L4(0,T ;L4) cannot be well controlled as desired.

Theorem 1.1 will be proven in Section 3, based on the global a priori estimates established
in Section 2. We now comment on the analysis of this paper. Indeed, the strategy for the
proof of global existence is analogous to the one in [19, 20]. Roughly speaking, we first use the
well-known Matsumura-Nishida’s theorem (cf. [23]) to guarantee the local existence of classical
solutions with strictly positive density, then extend the local classical solutions globally in time
just under the condition that the initial energy is suitably small, and finally let the lower bound
of the initial density go to zero. Since the scheme is standard, the main part of this paper is
to derive some global a priori estimates which are independent of the lower bound of density.
To do this, we will borrow some ideas from [8, 15, 18, 19, 20]. We shall make a full use of the
mathematical structure of the stationary solutions to deal with the pressure and the external
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potential force by the deviation of the density ρ from the steady state ρs. Moreover, as it was
mentioned in [15] that because ∇u may be discontinuous across the hypersurface of R3

+, it is
difficult to show that ∇2u is locally integrable, and thus, one cannot expect to control ‖∇u‖L4 by
‖∇u‖H1 directly. Note that one has to deal with the term ‖∇u‖L4(0,T ;L4) induced the nonlinear
terms in (1.1) after integrating by parts. To this end, similarly to that [19, 20], we introduce
the following modified “effective viscous flux” F̃ and vorticity ω̃

F̃ , ρ−1
s [(λ+ 2µ)divu− (P (ρ)− P (ρs))] , ω̃ , ρ−1

s ∇× u. (1.24)

However, unlike the Cauchy problem considered in [19, 20], the estimates of F̃ and ω̃ become a
bit more complicated, due to the boundary effects. Indeed, due to the Navier’s type boundary
conditions in (1.6), one can use the elliptic theory to obtain some desired estimates for the
gradients of ω̃1, ω̃2 in a similar manner as that in [8, 15]. But, the gradient estimates of the
third component ω̃3 needs more works (see Lemma 2.3). Based on some careful computations,
we find that ∆hω̃

3 with ∆h , ∂2
11 +∂2

22 being Laplacian operator in horizonal direction equals to
some terms involving the desired derivatives in either x1 or x2 direction (see (2.36)). This plays
an important role when one applies the standard Lp-theory to the equation of ∆hω̃

3 and to derive
the Lp-estimates of ∇hω̃3 in dimension two. It is worth mentioning that once the estimates of
ω̃ is obtained, one also gets the estimates of F̃ (due to (2.27)). With these estimates at hand,
one then can prove the upper bound of density by applying the Zlotnik inequlaity (see Lemma
2.2) in a similar manner as that in [18].

To prove the existence of strong solutions, we still need to estimates of the gradient of
density, which relies strongly on the bound of ‖∇u‖L∞ ∈ L1(0, T ). As that in [16, 20], this will
be achieved by using the fact that the t-weighted estimate in (2.49) implies ‖ρu̇‖Lp ∈ Lq(0, T )
for some 3 < p < 6 and q > 1. This, combined with the BKM’s type logarithmic estimate,
immediately yields a desired estimate of ‖∇u‖L∞ , and enables us to get that ‖∇ρ‖L2∩Lp ∈
L∞(0, T ) after solving a logarithmic inequality.

2 A priori estimates

This section is devoted to the derivations of the global a priori estimates of the solutions to the
problem (1.1)–(1.7), and is split into two subsections which are concerned with the t-independent
lower-order and the t-dependent gradient estimates for the existence of strong solutions, respec-
tively. Throughout this section, we assume that (ρ, u) is a smooth solution of (1.1)–(1.7) defined
on Ω̄× [0, T ] with some T ∈ (0,∞).

2.1 t-independent lower-order estimates

The purpose of this subsection is mainly to derive some necessary lower-order estimates of the
solutions. To do so, similarly to that in [8, 18, 20], we set

A1(T ) , sup
t∈[0,T ]

(
σ‖∇u‖2L2

)
+

∫ T

0
σ‖√ρu̇‖2L2dt, (2.1)

A2(T ) , sup
t∈[0,T ]

(
σ3‖√ρu̇‖2L2

)
+

∫ T

0
σ3‖∇u̇‖2L2dt, (2.2)

and,
A3(T ) , sup

t∈[0,T ]
‖∇u‖2L2 (2.3)
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where
σ(t) , min{1, t} and ḟ , ft + u · ∇f.

We aim to prove the following key a priori estimates on Ai(T ) (i = 1, 2, 3) and the upper
bound of the density.

Proposition 2.1 Let the conditions of Theorem 1.1 hold. Then there exist two positive con-
stants ε̃ and K, depending only on µ, λ,A, γ, ρ∞, ρ̃,M, β(x) and f(x), such that if (ρ, u) is a
smooth solution of (1.1)–(1.7) on Ω̄× [0, T ] satisfying{

0 ≤ ρ(x, t) ≤ 2ρ̃ for all (x, t) ∈ Ω̄× [0, T ],

A1(T ) +A2(T ) ≤ 2C
1/2
0 and A3(σ(T )) ≤ 3K,

(2.4)

the following estimates hold:{
0 ≤ ρ(x, t) ≤ 7ρ̃/4 for all (x, t) ∈ Ω̄× [0, T ],

A1(T ) +A2(T ) ≤ C1/2
0 and A3(σ(T )) ≤ 2K,

(2.5)

provided
C0 ≤ ε̃. (2.6)

Proof. Proposition 2.1 follows directly from Lemmas 2.4, 2.6 and 2.10 with K and ε̃ being the
same ones chosen in Lemmas 2.4 and 2.10, respectively. �

For simplicity, throughout this subsection we denote by C or Ci (i = 1, 2, . . .) the generic
positive constants which may depend on µ, λ,A, γ, ρ∞, inf f(x), ‖f‖H2 , ρ̃, and M , but not on T .
We also sometimes write C(α) to emphasize that C relies on α.

We begin with the following elementary energy estimate.

Lemma 2.1 Let (ρ, u) be a smooth solution of (1.1)-(1.7) on Ω̄× [0, T ]. Then,

sup
0≤t≤T

(
1

2
‖√ρu‖2L2 + ‖G(ρ)‖L1

)
+

∫ T

0

∫
∂Ω
β−1|u|2dSdt

+

∫ T

0

(
µ‖∇u‖2L2 + (µ+ λ)‖divu‖2L2

)
dt ≤ C0

(2.7)

Proof. Multiplying (1.2) by u in L2 and integrating by parts, by virtue of (1.1), (1.6) and (1.12)
we easily obtain (2.7). �

To estimate A1(T ) and A2(T ), we need the following preliminary estimates.

Lemma 2.2 Let (ρ, u) with 0 ≤ ρ(x, t) ≤ 2ρ̃ be a smooth solution of (1.1)-(1.7) on Ω̄ × [0, T ].
Then there is a positive constant C(ρ̃) such that

A1(T ) ≤ C(ρ̃)C0 + C(ρ̃)

∫ T

0
σ‖∇u‖3L3dt

+ C(ρ̃)

∫ T

0

∫
σ
(
|u|2|∇u|+ |u||∇u|2

)
dxdt

(2.8)

and

A2(T ) ≤ C(ρ̃)C0 + C(ρ̃)A1(T ) + C(ρ̃)

∫ T

0
σ3‖∇u‖4L4dt

+ C(ρ̃)

∫ T

0

∫
σ3
(
|u|4 + |u̇‖∇u‖u|+ |u̇‖∇u|2

)
dxdt

(2.9)
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Proof. In terms of (1.12), we rewrite (1.2) in the form:

ρu̇− µ∆u− (µ+ λ)∇ div u+∇ (P (ρ)− P (ρs)) = (ρ− ρs)∇f, (2.10)

which, multiplied by σmu̇ with m ∈ Z+ in L2, yields

σm
∫
ρ|u̇|2dx = µσm

∫
∆u · u̇dx+ (λ+ µ)σm

∫
u̇ · ∇divudx

− σm
∫
u̇ · ∇ (P (ρ)− P (ρs)) dx

+ σm
∫

(ρ− ρs) u̇ · ∇fdx ,
4∑
i=1

Ii.

(2.11)

In view of (1.12), we deduce after integrating by parts that

I1 = −µ
2

(
σm‖∇u‖2L2

)
t
+
µ

2
mσm−1σ′‖∇u‖2L2 − µσm

∫
∂Ω
∂3u

j u̇jdS

− µσm
∫ (

∂ku
j∂ku

i∂iu
j − 1

2
|∇u|2(divu)

)
dx

≤ −µ
2

(
σm‖∇u‖2L2

)
t
+
µ

2
mσm−1σ′‖∇u‖2L2 −

µ

2

d

dt

∫
∂Ω
σmβ−1|u|2dS

− µ

2
mσm−1σ′

∫
∂Ω
β−1|u|2dS − µσm

∫
∂Ω
β−1ujui∂iu

jdS + Cσm‖∇u‖3L3 .

(2.12)

In view of the following identity∫
∂Ω
h(x)dS =

∫
Ω ∩ {0 ≤ x3 ≤ 1}

(h(x) + (x3 − 1)∂3h(x)) dx, (2.13)

we infer from integrating by parts that∣∣∣∣∫
∂Ω
β−1|u|2dS

∣∣∣∣ ≤ C ∫ (|u|2 + |∇u|2
)

dx

and ∣∣∣∣∫
∂Ω
β−1ujui∂iu

jdS

∣∣∣∣ ≤ C ∫ (|u||∇u|2 + |u|2|∇u|
)

dx,

since i, j ∈ {1, 2} due to the fact that u3 = 0 on ∂Ω. This, together with (2.12), gives

I1 ≤ −
µ

2

(
σm‖∇u‖2L2

)
t
− µ

2

d

dt

∫
∂Ω
σmβ−1|u|2dS + Cσm−1σ′‖∇u‖2L2

+ Cσm−1σ′‖u‖2L2 + Cσm‖∇u‖3L3 + Cσm
∫ (
|u||∇u|2 + |u|2|∇u|

)
dx.

(2.14)

In a similar manner,

I2 ≤ −
µ+ λ

2

(
σm‖divu‖2L2

)
t
+
µ+ λ

2
mσm−1σ′‖divu‖2L2 + Cσm‖∇u‖3L3 . (2.15)

It follows from (1.1) that

P (ρ)t + div(P (ρ)u) +
(
ρP ′(ρ)− P (ρ)

)
div u = 0, (2.16)
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and hence, using the fact that 0 ≤ ρ ≤ 2ρ̃, we find

I3 = σm
∫

(divut (P (ρ)− P (ρs))− (u · ∇u) · ∇ (P (ρ)− P (ρs))) dx

=
d

dt

∫
σmdivu (P (ρ)− P (ρs)) dx−mσm−1σ′

∫
divu (P (ρ)− P (ρs)) dx

+ σm
∫ ((

ρP ′(ρ)− P (ρ)
)

(divu)2 + P (ρ)∂iu
j∂ju

i + u · ∇u · ∇P (ρs)
)

dx

≤ d

dt

∫
σmdivu (P (ρ)− P (ρs)) dx+ C(ρ̃)‖∇u‖2L2 + Cm2σ2(m−1)σ′C0,

(2.17)

where we have also used (2.7), (1.14) and the following Gagliardo-Nirenberg’s inequality:

‖v‖Lp ≤ C‖v‖
6−p
2p

L2 ‖∇v‖
3p−6
2p

L2 , ∀ v ∈ H1 and 2 ≤ p ≤ 6. (2.18)

Thanks to (1.1), one has ρt+div ((ρ− ρs)u)+div (ρsu) = 0. Thus, we have by (1.14), (2.7)
and (2.18) that

I4 ≤
d

dt

∫
σm (ρ− ρs)u · ∇fdx+ Cmσm−1σ′ ‖ρ− ρs‖L2 ‖u‖L6‖∇f‖L3

+ C(ρ̃)σm
∫ (
|u||∇u||∇f |+ |∇ρs||u|2|∇f |+ |ρ− ρs||u|2|∇2f |

)
dx

≤ d

dt

∫
σm (ρ− ρs)u · ∇fdx+ C(ρ̃)‖∇u‖2L2 + C(ρ̃)m2σ2(m−1)σ′C0.

(2.19)

Using (2.7), (2.18) and (1.14), we observe that∫
|u|2dx ≤ ρ−1

∫
ρs|u|2dx ≤ C

∫ (
ρ|u|2 + |ρ− ρs||u|2

)
dx

≤ CC0 + ‖ρ− ρs‖L2‖u‖2L4 ≤ CC0 + C
1/2
0 ‖u‖

1/2
L2 ‖∇u‖

3/2
L2 ,

so that
‖u‖2L2 ≤ CC0 + CC

2/3
0 ‖∇u‖

2
L2 . (2.20)

Thus, inserting (2.14), (2.15), (2.17) and (2.19) into (2.11), integrating it over (0, t), and
taking (2.17) and (2.20) into account, we immediately obtain (2.8) by choosing m = 1.

Next, operating ∂t + div(u·) to (2.10)j , multiplying it by σmu̇j , and integrating by parts
over Ω, we obtain after summing them up that

d

dt

(
σm

2
‖√ρu̇‖2L2

)
− m

2
σm−1σ′‖√ρu̇‖2L2

= µσm
∫
u̇j
[
∆ujt + div

(
u∆uj

)]
dx

+ (λ+ µ)σm
∫
u̇j [∂t∂jdivu+ div (u∂jdivu)] dx

− σm
∫
u̇j
[
(∂jP (ρ))t + ∂k

(
uk∂j (P (ρ)− P (ρs))

)]
dx

+ σm
∫
u̇j
[
ρt∂jf + ∂k

(
uk (ρ− ρs) ∂jf

)]
dx ,

4∑
i=1

IIi

(2.21)
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In terms of (1.6) and (2.13), we deduce after integrating by parts that

II1 = −µσm
∫ (
|∇u̇|2 − ∂iu̇j∂iuk∂kuj + ∂iu̇

j∂ku
k∂iu

j − ∂ku̇j∂iuj∂iuk
)

dx

− µσm
∫
∂Ω
β−1

(
|u̇|2 − u̇juk∂kuj − ∂ku̇jukuj

)
dS

≤ −µσm‖∇u̇‖2L2 + Cσm‖∇u̇‖L2‖∇u‖2L4 − µσm
∫
∂Ω
β−1|u̇|2dS

+ Cσm
∫ (
|u||∇u||u̇|+ |u||∇u||∇u̇|+ |∇u|2|u̇|

)
dx.

(2.22)

Similarly,

II2 ≤ −(µ+ λ)σm‖divu̇‖2L2 +
µ

8
σm‖∇u̇‖2L2 + Cσm‖∇u‖4L4 (2.23)

Based on (1.6), (1.14) and (2.16) and integration by parts, we obtain

II3 = −σm
∫ [

divu̇
(
ρP ′(ρ)− P (ρ)

)
divu+ (divu̇)div(P (ρs)u)

]
dx

− σm
∫
∂ku̇

j∂ju
k (P (ρ)− P (ρs)) dx

≤ µ

8
σm‖∇u̇‖2L2 + C(ρ̃)σm‖∇u‖2L2 ,

(2.24)

and analogously,

II4 ≤ C(ρ̃) (‖∇u̇‖L2 + ‖ρu̇‖L3) ‖u‖L6‖∇f‖H1

≤ µ

8
σm‖∇u̇‖2L2 + C(ρ̃)σm

(
‖√ρu̇‖2L2 + ‖∇u‖2L2

)
.

(2.25)

Thus, substituting (2.21)-(2.25) into (2.21) and integrating it over (0, t), we arrive at the
desired estimate of (2.9), choosing m = 3 and using the Cauchy-Schwarz’s inequality. �

In order to estimate the right-hand side of (2.8) and (2.9), we introduce the following
modified “effective viscous flux” F̃ and vorticity ω̃:{

F̃ , ρ−1
s [(2µ+ λ)divu− (P (ρ)− P (ρs))] ,

ω̃ , ρ−1
s ∇× u = ρ−1

s

(
∂2u

3 − ∂3u
2, ∂3u

1 − ∂1u
3, ∂1u

2 − ∂2u
1
)>
,

(2.26)

where ω̃ = (ω̃1, ω̃2, ω̃3)>. As observed in [19, 20], one easily deduces from (1.12) that

ρ−1
s (∇P (ρ)− ρ∇f)

= ρ−1
s

[
∇ (P (ρ)− P (ρs))− ρ−1

s (ρ− ρs)∇P (ρs)
]

= ∇
[
ρ−1
s (P (ρ)− P (ρs))

]
+ ρ−2

s

[
P (ρ)− P (ρs)− P ′(ρs)(ρ− ρs)

]
∇ρs,

which, combined with (1.2), gives

ρ−1
s ρu̇−∇F̃ + µ∇× ω̃ = G1 +G2, (2.27)

where {
G1 , −

[
(2µ+ λ)(divu)∇ρ−1

s − µ∇ρ−1
s × (∇× u)

]
,

G2 , [P (ρ)− P (ρs)− P ′(ρs)(ρ− ρs)]∇ρ−1
s .

9



It follows from Proposition 1.1 that{
‖G1‖L2 ≤ C‖∇u‖L3‖∇ρs‖L6 ≤ C‖∇u‖L3 ,
‖G2‖L2 ≤ C(ρ̃)‖∇ρs‖L6‖ρ− ρs‖2L6 ≤ C(ρ̃)‖ρ− ρs‖2L6 ,

(2.28)

where we have used the fact 0 ≤ ρ ≤ 2ρ̃ to get that∣∣P (ρ)− P (ρs)− P ′(ρs)(ρ− ρs)
∣∣ ≤ C(ρ̃)|ρ− ρs|2.

Operating div and curl to both sides of (2.27), we get{
∆F̃ = div

(
ρ−1
s ρu̇−G1 −G2

)
,

µ∆ω̃ = µ∇
(
(∇× u) · ∇ρ−1

s

)
+∇×

(
ρ−1
s ρu̇−G1 −G2

)
,

(2.29)

and moreover, by (1.6) we find{
ω̃1 = ρ−1

s

(
∂2u

3 − ∂3u
2
)

= −ρ−1
s ∂3u

2 = −(βρs(x))−1u2, x ∈ ∂Ω,
ω̃2 = ρ−1

s

(
∂3u

1 − ∂1u
3
)

= ρ−1
s ∂3u

1 = (βρs(x))−1u1, x ∈ ∂Ω.
(2.30)

Based on the standard elliptic theory, we infer from (2.28)–(2.30) that

Lemma 2.3 Let (ρ, u) with 0 ≤ ρ(x, t) ≤ 2ρ̃ be a smooth solution of (1.1)-(1.7) on Ω̄ × [0, T ].
Then, for F̃ and ω̃ be the ones defined in (2.26), one has

‖∇F̃‖L2 + ‖∇ω̃‖L2 ≤ C(ρ̃)
(
‖√ρu̇‖L2 + ‖∇u‖L3 + ‖∇u‖L2 + ‖ρ− ρs‖2L6

)
. (2.31)

Proof. Let
H1 , ω̃1 + (βρs(x))−1u2, H2 , ω̃2 − (βρs(x))−1u1. (2.32)

It is clear that H i = 0 (i = 1, 2) on ∂Ω. Using (2.18), (2.28) and Proposition 1.1, we infer from
(2.29)2 that

‖∇H i‖L2 ≤ C(ρ̃) (‖√ρu̇‖L2 + ‖∇ρs‖L3‖u‖L6 + ‖∇u‖L2 + ‖G1‖L2 + ‖G2‖L2)

≤ C(ρ̃)
(
‖√ρu̇‖L2 + ‖∇u‖L3 + ‖∇u‖L2 + ‖ρ− ρs‖2L6

)
,

and hence, by (2.32) we easily get that

‖∇ω̃i‖L2 ≤ C(ρ̃)
(
‖√ρu̇‖L2 + ‖∇u‖L3 + ‖∇u‖L2 + ‖ρ− ρs‖2L6

)
, i = 1, 2. (2.33)

To estimate ‖∇ω̃3‖L2 , we first observe from direct calculations that

∂3ω̃
3 = ρ−1

s ∂1

(
∂3u

2 − ∂2u
3
)
− ρ−1

s ∂2

(
∂3u

1 − ∂1u
3
)

+ ∂3ρ
−1
s

(
∂1u

2 − ∂2u
1
)

= −∂1ω̃
1 − ∂2ω̃

2 +∇ρ−1
s · (∇× u),

(2.34)

which, combined with (2.33) and Proposition 1.1, results in

‖∂3ω̃
3‖L2 ≤ C

(
‖∇ω̃1‖L2 + ‖∇ω̃2‖L2 + ‖∇ρs‖L6‖∇ × u‖L3

)
≤ C(ρ̃)

(
‖√ρu̇‖L2 + ‖∇u‖L3 + ‖∇u‖L2 + ‖ρ− ρs‖2L6

)
.

(2.35)

Moreover, substituting (2.34) into the third equation of (2.29)2, we obtain

µ
(
∂2

11 + ∂2
22

)
ω̃3 = ∂1

(
ρ−1
s ρu̇2 −G2

1 −G2
2

)
− ∂2

(
ρ−1
s ρu̇1 −G2

1 −G1
2

)
+ µ∂3

(
(∇× u) · ∇ρ−1

s

)
− µ∂2

33ω̃
3

= ∂1

(
ρ−1
s ρu̇2 −G2

1 −G2
2

)
− ∂2

(
ρ−1
s ρu̇1 −G2

1 −G1
2

)
+ µ∂2

13ω̃
1 + µ∂2

23ω̃
2,

(2.36)
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where f i denotes the i-th component of f ∈ R3. So, it follows from (2.36) that for fixed x3 ∈ R+,

‖∂iω̃3(x3)‖2L2(R2) ≤ C(ρ̃)
(
‖√ρu̇‖2L2(R2) + ‖G1‖2L2(R2) + ‖G2‖2L2(R2)

)
+ C

(
‖∇ω̃1‖2L2(R2) + ‖∇ω̃2‖2L2(R2)

)
,

which, integrated with respect to x3 over R+ and combined with (2.28) and (2.33), yields

‖∂iω̃3‖L2 ≤ C(ρ̃)
(
‖√ρu̇‖L2 + ‖∇u‖L3 + ‖∇u‖L2 + ‖ρ− ρs‖2L6

)
, i = 1, 2. (2.37)

Thus, collecting (2.33), (2.35) and (2.37) together gives

‖∇ω̃3‖L2 ≤ C(ρ̃)
(
‖√ρu̇‖L2 + ‖∇u‖L3 + ‖∇u‖L2 + ‖ρ− ρs‖2L6

)
,

which, combined with (2.27) and (2.28), also proves the desired estimate of ‖∇F̃‖L2 . The proof
of (2.31) is therefore complete. �

The following lemma is concerned with the short-time estimate of A3(σ(T )).

Lemma 2.4 Let (ρ, u) with 0 ≤ ρ(x, t) ≤ 2ρ̃ be a smooth solution of (1.1)–(1.7) on Ω̄× [0, T ].
Then there exist positive constants K and ε0 > 0, depending on ρ̃ and M , such that

A3(σ(T )) +

∫ σ(T )

0
‖√ρu̇‖2L2dt ≤ 2K, (2.38)

provided A3(σ(T )) ≤ 3K and C0 ≤ ε0.

Proof. Indeed, choosing m = 0 in (2.11) and integrating it over (0, σ(T )), we deduce from
(2.14), (2.15), (2.17) and (2.18) that

A3(σ(T )) +

∫ σ(T )

0
‖√ρu̇‖2L2dt

≤ C(ρ̃)(C0 +M) + C(ρ̃)

∫ σ(T )

0

∫ (
|∇u|3 + |u||∇u|2 + |u|2|∇u|

)
dxdt

≤ C(ρ̃)(C0 +M) + C(ρ̃)

∫ σ(T )

0

(
‖∇u‖3L3 + ‖u‖3L3

)
dt

(2.39)

where we have also used (2.7), (2.20), Proposition 1.1 and the Cauchy-Schwarz’s inequality.
In order to deal with ‖∇u‖3L3 , we first infer from the identity ∇× (∇× u) = ∇divu−∆u

and (2.26) that

(2µ+ λ)∆u = (2µ+ λ)∇divu− (2µ+ λ)∇× (∇× u)

= ∇(ρsF̃ ) +∇(P (ρ)− P (ρs))− (2µ+ λ)∇× (ρsω̃),

subject to the boundary conditions ∂3u
i = β−1ui with i = 1, 2, and u3 = 0 for x ∈ ∂Ω. Thus, it

follows from the standard elliptic theory that for any p > 1

‖∇u‖Lp ≤ C(p)
(
‖F̃‖Lp + ‖ω̃‖Lp + ‖P (ρ)− P (ρs)‖Lp + ‖u‖Lp

)
. (2.40)

Thus, using (2.7), (2.28), (2.31) and (2.40) with p = 6, we have

‖∇u‖3L3 ≤ C‖∇u‖3/2L2

(
‖∇F̃‖3/2

L2 + ‖∇ω̃‖3/2
L2 + ‖P (ρ)− P (ρs)‖3/2L6 + ‖∇u‖3/2

L2

)
≤ C‖∇u‖3/2

L2

(
C

1/4
0 + ‖√ρu̇‖3/2

L2 + ‖∇u‖3/2
L3 + ‖∇u‖3/2

L2

)
≤ 1

2
‖∇u‖3L3 + C‖∇u‖3/2

L2 ‖
√
ρu̇‖3/2

L2 + C‖∇u‖3/2
L2

(
C

1/4
0 + ‖∇u‖3/2

L2

)
,

(2.41)
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which, inserted into (2.39) and combined with the Cacuhy-Schwarz’s inequality, yields

A3(σ(T )) +

∫ σ(T )

0
‖√ρu̇‖2L2dt

≤ C(ρ̃,M) + C(ρ̃)C0[A3(σ(T ))]1/2 + C(ρ̃)

∫ σ(T )

0
‖∇u‖6L2dt

≤ K + C(ρ̃)C0[A3(σ(T ))]2,

with K , C(ρ̃,M). Here, we have also used (2.7) and (2.20) to get that∫ σ(T )

0
‖u‖3L3dt ≤ C + C

∫ σ(T )

0
‖∇u‖3L2dt ≤ C + CC0[A3(σ(T ))]1/2.

So, if A3(σ(T )) ≤ 3K and C0 ≤ ε0 , min{1, (9K)−1}, then (2.38) follows. �

Based on Lemma 2.3, we have the following important estimates, which will be used to deal
with A1(T ) and A2(T ).

Lemma 2.5 Let (ρ, u) with 0 ≤ ρ(x, t) ≤ 2ρ̃ be a smooth solution of (1.1)–(1.7) on Ω̄× [0, T ].
Then there exists a positive constant ε1 > 0, depending on ρ̃, such that∫ T

0
σ3
(
‖∇u‖4L4 + ‖ρ− ρs‖4L4 + ‖F̃‖4L4 + ‖ω̃‖4L4

)
dt ≤ CC0. (2.42)

provided A1(T ) +A2(T ) ≤ 2C
1/2
0 and C0 ≤ ε1.

Proof. In terms of F̃ in (2.26), we can rewrite (1.1) as

(ρ− ρs)t +
ρs

2µ+ λ
(P (ρ)− P (ρs)) = −div (u(ρ− ρs))− u · ∇ρs −

ρ2
sF̃

2µ+ λ
,

which, multiplied by 4(ρ− ρs)3 and integrated by parts over Ω, gives

d

dt

∫
(ρ− ρs)4dx+

4

2µ+ λ

∫
ρs (P (ρ)− P (ρs)) (ρ− ρs)3dx

≤ C
∫ (

(ρ− ρs)4|∇u|+ |ρ− ρs|3|u||∇ρs|+ |ρ− ρs|3|F̃ |
)

dx

≤ δ‖ρ− ρs‖4L4 + C(δ, ρ̃)
(
‖∇u‖2L2 + ‖F̃‖4L4

)
, δ > 0,

where we have used (1.14) and (2.18). Noting that

ρs (P (ρ)− P (ρs)) (ρ− ρs)3 ≥ C(ρ− ρs)4,

and choosing δ > 0 suitably small, by (2.7) we deduce∫ T

0
σ3‖ρ− ρs‖4L4dt ≤ CC0 + C

∫ T

0
σ3‖F̃‖4L4dt. (2.43)

Since A1(T ) ≤ 2C
1/2
0 , by (2.7), (2.20) and (2.28) we have∫ T

0
σ‖u‖4L4dt ≤ C sup

0≤t≤T
(σ‖u‖L2‖∇u‖L2)

∫ T

0
‖∇u‖2L2dt ≤ CC0. (2.44)
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It is easy to see that

‖F̃‖L2 + ‖ω̃‖L2 ≤ C
(
‖∇u‖L2 + C

1/2
0

)
,

and hence, using (2.7), (2.28), (2.31) and (2.44), we find∫ T

0
σ3
(
‖F̃‖4L4 + ‖ω̃‖4L4

)
dt

≤ C
∫ T

0
σ3
(
‖F̃‖L2‖∇F̃‖3L2 + ‖ω̃‖L2‖∇ω̃‖3L2

)
dt

≤ C
∫ T

0
σ3
(
‖∇u‖L2 + C

1/2
0

)(
‖√ρu̇‖3L2 + ‖∇u‖3L3 + ‖∇u‖3L2 + ‖ρ− ρs‖6L6

)
dt

≤ C
∫ T

0

(
σ1/2‖∇u‖L2 + C

1/2
0

)(
σ3/2‖√ρu̇‖L2

)
σ‖√ρu̇‖2L2dt

+ C

∫ T

0

(
σ1/2‖∇u‖L2 + C

1/2
0

)
‖∇u‖L2

(
σ3/2‖∇u‖2L4

)
dt

+ C

∫ T

0

[(
σ‖∇u‖2L2

)
‖∇u‖2L2 + C

1/2
0 ‖∇u‖L2

(
σ3/2‖ρ− ρs‖2L4

)]
dt

+ CC
1/2
0

∫ T

0

[(
σ1/2‖∇u‖L2

)
‖∇u‖2L2 + ‖ρ− ρs‖4L4

]
dt

≤ CC0 + CC
1/2
0

∫
σ3
(
‖∇u‖4L4 + ‖ρ− ρs‖4L4

)
dt,

(2.45)

where we have also used the fact that A1(T ) +A2(T ) ≤ 2C
1/2
0 and the following inequality:

‖ρ− ρs‖6L6 ≤ C‖ρ− ρs‖4L4 ≤ C‖ρ− ρs‖3L3 ≤ CC1/2
0 ‖ρ− ρs‖

2
L4 .

Now, by choosing p = 4 in (2.40), we conclude from (2.43)–(2.45) that∫ T

0
σ3
(
‖∇u‖4L4 + ‖F̃‖4L4 + ‖ω̃‖4L4 + ‖ρ− ρs‖4L4

)
dt

≤ CC0 + CC
1/2
0

∫
σ3
(
‖∇u‖4L4 + ‖ρ− ρs‖4L4

)
dt,

and thus, if C0 is chosen to be small enough such that C0 ≤ ε1 , min{ε0, (2C)−2}, then one
immediately obtains (2.42). �

We are now in a position of closing the estimates of A1(T ) and A2(T ).

Lemma 2.6 Assume that (ρ, u) is a smooth solution of (1.1)–(1.7) on Ω̄ × [0, T ], satisfying
(2.4) with K > 0 being the same one determined in (2.38). Then there exists a positive constant
ε2 > 0, depending on ρ̃, such that

A1(T ) +A2(T ) ≤ C1/2
0 , (2.46)

provided C0 ≤ ε2.
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Proof. By virtue of (2.4), (2.7), (2.42) and (2.44), we infer from Lemma 2.2 that

A1(T ) +A2(T ) ≤ C(ρ̃)C0 + C(ρ̃)

∫ T

0
σ‖∇u‖3L3 +

∫ T

0

∫
σ|∇u|2|u|dxdt

+ C(ρ̃)

∫ T

0

∫
σ3
(
|u||∇u||u̇|+ |∇u|2|u̇|

)
dxdt

≤ C(ρ̃)C0 + C(ρ̃)

∫ T

0
σ
(
‖∇u‖3L3 + ‖∇u‖2L2‖∇u‖L3

)
dt

+ C(ρ̃)

∫ T

0
σ3 (‖u‖L3 + ‖∇u‖L3) ‖∇u‖L2‖u̇‖L6dt

≤ C(ρ̃)C0 + C(ρ̃)

∫ T

0
σ‖∇u‖3L3dt+

1

2
A2(T ),

and hence,

A1(T ) +A2(T ) ≤ C(ρ̃)C0 + C(ρ̃)

∫ T

0
σ‖∇u‖3L3dt. (2.47)

Here, we have also used (2.4), (2.18) and (2.20) to obgtain

σ‖u‖2L3 ≤ Cσ‖∇u‖L2

(
C

1/2
0 + CC

1/3
0 ‖∇u‖L2

)
≤ CC1/2

0 , ∀ t ∈ [0, T ].

Clearly, it remains to deal with ‖∇u‖L3 . To do so, we first infer from (2.7) and (2.42) that∫ T

σ(T )
σ‖∇u‖3L3dt ≤

∫ T

σ(T )

(
‖∇u‖4L4 + ‖∇u‖2L2

)
dt ≤ C(ρ̃)C0,

and thus, using (2.4), (2.7), (2.38) and (2.41), we find∫ T

0
σ‖∇u‖3L3dt ≤

∫ σ(T )

0
σ‖∇u‖3L3dt+

∫ T

σ(T )
σ‖∇u‖3L3dt

≤ C(ρ̃)C0 + C(ρ̃)

∫ σ(T )

0
σ‖∇u‖3/2

L2

(
C

1/4
0 + ‖∇u‖3/2

L2 + ‖√ρu̇‖3/2
L2

)
dt

≤ C(ρ̃)C0 + C(ρ̃)

∫ σ(T )

0

(
σ‖∇u‖2L2

)1/4 ‖∇u‖L2

(
σ‖√ρu̇‖2L2

)3/4
dt

≤ C(ρ̃,M)C0 + C(ρ̃,M)C
1/8
0

∫ σ(T )

0
‖∇u‖1/2

L2

(
σ‖√ρu̇‖2L2

)3/4
dt

≤ C(ρ̃,M)C
3/4
0 ,

(2.48)

which, inserted into (2.47), yields

A1(T ) +A2(T ) ≤ C(ρ̃,M)C
3/4
0 ≤ C1/2

0 ,

provided C0 ≤ ε2 , min{ε1, (C(ρ̃,M))−4}. This finishes the proof of (2.46). �

To derive the uniform upper bound of density, we need the following refined estimate.

Lemma 2.7 Assume that (ρ, u) is a smooth solution of (1.1)–(1.7) on Ω̄ × [0, T ], satisfying
(2.4) with K > 0 being the same one determined in (2.38). Then,

sup
0≤t≤T

(
σ‖√ρu̇‖2L2

)
+

∫ T

0
σ‖∇u̇‖2L2dt ≤ C(ρ̃,M), (2.49)

provided C0 ≤ ε2.
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Proof. First, it is easily deduced from (2.38) and (2.46) that

sup
0≤t≤T

‖∇u‖2L2 +

∫ T

0
‖√ρu̇‖2L2dt ≤ C(ρ̃,M). (2.50)

Next, choosing m = 1 in (2.21), integrating it over (0, T ), using (2.7), (2.18), (2.44) and
(2.50), we deduce from (2.22)–(2.25) that

sup
0≤t≤T

(
σ‖√ρu̇‖2L2

)
+

∫ T

0
σ‖∇u̇‖2L2dt

≤ C(ρ̃,M) + C(ρ̃)

∫ T

0
σ‖∇u‖4L4dt+ C(ρ̃)

∫ T

0

∫
σ
(
|u||∇u||u̇|+ |∇u|2|u̇|

)
dxdt

≤ C(ρ̃,M) + C(ρ̃)

∫ T

0
σ‖∇u‖4L4dt+ C(ρ̃)

∫ T

0
σ (‖u‖L3 + ‖∇u‖L3) ‖∇u‖L2‖∇u̇‖L2dt

≤ C(ρ̃,M) + C(ρ̃,M)

∫ T

0
σ‖∇u‖4L4dt+

1

2

∫ T

0
σ‖∇u̇‖2L2dt,

where we have used the fact that σ(t)‖u(t)‖L3 ≤ C for any 0 ≤ t ≤ T (see (2.47)). Thus,

sup
0≤t≤T

(
σ‖√ρu̇‖2L2

)
+

∫ T

0
σ‖∇u̇‖2L2dt ≤ C(ρ̃,M) + C(ρ̃,M)

∫ T

0
σ‖∇u‖4L4dt. (2.51)

Using (2.7), (2.18), (2.31), (2.40) with p = 6, (2.42), (2.48) and (2.50), we have∫ T

0
σ‖∇u‖4L4dt ≤

∫ σ(T )

0
σ‖∇u‖4L4dt+

∫ T

σ(T )
σ‖∇u‖4L4dt

≤ C(ρ̃,M) + C(ρ̃)

∫ σ(T )

0
σ‖∇u‖L2‖∇u‖3L6dt

≤ C(ρ̃,M) + C(ρ̃)

∫ σ(T )

0
σ‖∇u‖L2‖√ρu̇‖3L2dt

≤ C(ρ̃,M) + C(ρ̃,M) sup
0≤t≤T

(
σ‖√ρu̇‖2L2

)1/2
,

which, inserted into (2.51) and combined with the Cauchy-Schwarz’s inequality, finishes the
proof of (2.49). �

To be continued, as that in [8], we introduce the standard “effective viscous flux” F and
vorticity ω as follows:

F , (2µ+ λ)divu− (P (ρ)− P (ρs)), ω , ∇× u, (2.52)

which, together with (1.1)2 and (1.12), yields

∇F − µ∇× ω = ρu̇− (ρ− ρs)∇f (2.53)

and {
∆F = div(ρu̇− (ρ− ρs)∇f),
µ∆ω = ∇× (ρu̇− (ρ− ρs)∇f).

(2.54)

Moreover, it is clear that {
ω1 = ∂2u

3 − ∂3u
2 = −β−1u2, x ∈ ∂Ω,

ω2 = ∂3u
1 − ∂1u

3 = β−1u1, x ∈ ∂Ω.
(2.55)
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Thus, similarly to the derivation of Lemma 2.3, by virtue of the elliptic theory we infer
from (2.52)–(2.55) that

Lemma 2.8 Let (ρ, u) with 0 ≤ ρ(x, t) ≤ 2ρ̃ be a smooth solution of (1.1)-(1.7) on Ω̄ × [0, T ].
Then, for F and ω be the ones defined in (2.52), one has

‖∇F‖Lp + ‖∇ω‖Lp ≤ C(ρ̃) (‖√ρu̇‖Lp + ‖(ρ− ρs)∇f‖Lp + ‖u‖Lp) . (2.56)

To be continued, we recall the following Zlotnik’s inequality, which is useful for the proof
of the upper bound of density.

Lemma 2.9 ([34]) Assume that y ∈W 1,1(0, T ) solves the ODE system:

y′ = g(y) + b′(t) on [0, T ], y(0) = y0,

where b ∈W 1,1(0, T ) and g ∈ C(R). If g(∞) = −∞ and

b(t2)− b(t1) ≤ N0 +N1(t2 − t1) (2.57)

for all 0 ≤ t1 ≤ t2 ≤ T with some positive constants N0 and N1, then one has

y(t) ≤ max{y0, ξ
∗}+N0 < +∞ on [0, T ], (2.58)

where ξ∗ ∈ R is a constant such that

g(ξ) ≤ −N1 for ξ ≥ ξ∗. (2.59)

With the help of Lemmas 2.8 and 2.9, we are now ready to derive the t-independent upper
bound of density.

Lemma 2.10 Assume that (ρ, u) is a smooth solution of (1.1)–(1.7) on Ω̄ × [0, T ], satisfying
(2.4) with K > 0 being the same one as in (2.38). Then there exists a positive constant ε,
depending on ρ̃ and M , such that

sup
0≤t≤T

‖ρ(t)‖L∞ ≤
7ρ̃

4
, (2.60)

provided C0 ≤ ε̃.

Proof. Due to (2.52), one has

divu = (2µ+ λ)−1 (ρF + P (ρ)− P (ρs)) ,

which, together with (1.1), implies

Dtρ = g(ρ) + b′(t),

where Dtρ , ρt + u · ∇ρ denotes the material derivative,

g(ρ) , − Aρ

2µ+ λ
(ργ − ργs ) , b(t) , − 1

2µ+ λ

∫ t

0
ρFdt
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To apply the Zlotnik’s inequality (cf. Lemma 2.9), we need to deal with b(t). To do so, we
first observe from (2.18), the Sobolev embedding inequality and Lemma 2.8 that

‖F‖L∞ ≤ C (‖F‖L4 + ‖∇F‖L4) ≤ C‖F‖1/4
L2 ‖∇F‖

3/4
L2 + C‖∇F‖L4

≤ C(ρ̃) (‖∇u‖L2 + ‖ρ− ρs‖L2)1/4 (‖√ρu̇‖L2 + ‖(ρ− ρs)∇f‖L2 + ‖u‖L2)3/4

+ C(ρ̃) (‖√ρu̇‖L4 + ‖(ρ− ρs)∇f‖L4 + ‖u‖L4)

≤ C(ρ̃)
(
‖∇u‖1/4

L2 + C
1/8
0

)(
‖√ρu̇‖3/4

L2 + 1
)

+ C(ρ̃)
(
‖√ρu̇‖1/4

L2 ‖∇u̇‖
3/4
L2 + ‖ρ− ρs‖L12‖∇f‖L6 + ‖u‖1/4

L2 ‖∇u‖
3/4
L2

)
≤ C(ρ̃)

(
‖∇u‖1/4

L2 + C
1/8
0

)(
‖√ρu̇‖3/4

L2 + 1
)

+ C(ρ̃)
(
‖√ρu̇‖1/4

L2 ‖∇u̇‖
3/4
L2 + C

1/12
0 + ‖∇u‖3/4

L2

)
,

(2.61)

where we have also used (2.7), (2.20) and (2.50). So, using (2.4), (2.7), (2.49) and (2.50), we
have from (2.61) that for 0 ≤ t1 < t2 ≤ σ(T ) ≤ 1,

|b(t2)− b(t1)| ≤ C(ρ̃)

∫ σ(T )

0
‖F‖L∞dt

≤ C(ρ̃)C
1/12
0 + C(ρ̃)

(∫ σ(T )

0
‖∇u‖2L2dt

)1/8(∫ σ(T )

0
‖√ρu̇‖2L2dt

)3/8

+ C(ρ̃)

∫ σ(T )

0

(
σ‖√ρu̇‖2L2

)1/8 (
σ‖∇u̇‖2L2

)3/8
σ−1/2dt

≤ C(ρ̃)C
1/12
0 + C(ρ̃) sup

0≤t≤σ(T )

(
σ‖√ρu̇‖2L2

)1/16

(∫ σ(T )

0
σ‖√ρu̇‖2L2dt

)1/16

×

(∫ σ(T )

0
σ‖∇u̇‖2L2dt

)3/8(∫ σ(T )

0
σ−8/9dt

)9/16

≤ C(ρ̃)C
1/12
0 + C(ρ̃)C

1/32
0 ≤ C(ρ̃)C

1/32
0

Thus, for any t ∈ [0, σ(T )], one can choose N0, N1 in (2.57) and ξ∗ in (2.59) as follows:

N0 = C(ρ̃)C
1/32
0 , N1 = 0, ξ∗ = ρ̄.

Noting that ρ ≤ ρs ≤ ρ̄ (see Proposition 1.1) and

g(ξ) ≤ − Aξ

λ+ 2µ
(ξγ − ρ̄γ) ≤ −N1 = 0, ∀ ξ ≥ ξ∗ = ρ̄,

we infers from (2.58) that (keeping in mind that 0 ≤ ρ0 ≤ ρ̃ and ρ̃ ≥ ρ̄+ 1)

sup
0≤t≤σ(T )

‖ρ(t)‖L∞ ≤ max{ρ̃, ρ̄}+N0 ≤ ρ̃+ C(ρ̃)C
1/32
0 ≤ 3

2
ρ̃, (2.62)

provided C0 is chosen to be such that

C0 ≤ min{ε2, ε3} with ε3 ,

(
ρ̃

2C(ρ̃)

)32

.
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For any σ(T ) ≤ t1 < t2 ≤ T , by (2.4) and (2.7)we have from (2.61) and the Cauchy-
Schwarz’s inequality that

|b(t2)− b(t1)| ≤
(
C(ρ̃)C

1/12
0 +

A

2(2µ+ λ)

)
(t2 − t1)

+ C(ρ̃)

∫ T

σ(T )

(
σ‖√ρu̇‖2L2 + σ3‖∇u̇‖2L2 + ‖∇u‖2L2

)
dt

≤ A

2µ+ λ
(t2 − t1) + C(ρ̃)C

1/2
0 ,

(2.63)

where in the last inequality we have chosen C0 to be such that

C0 ≤ min{ε2, ε3, ε4} with ε4 ,

(
A

2C(ρ̃)(2µ+ λ)

)12

.

Thus, for any t ∈ [σ(T ), T ], we can choose N0 and N1 in (2.57) and ξ∗ in (2.59) as follows:

N0 = C(ρ̃)C
1/2
0 , N1 =

A

2µ+ λ
, ξ∗ = ρ̄+ 1.

It is easily seen that for any ξ ≥ ξ∗,

g(ξ) ≤ − Aξ

2µ+ λ
(ξγ − ρ̄γ) ≤ −N1 = − A

2µ+ λ
,

so that, it follows from (2.58), (2.62) and (2.63) that

sup
σ(T )≤t≤T

‖ρ(t)‖L∞ ≤ max

{
3

2
ρ̃, ρ̄+ 1

}
+N0 ≤

3

2
ρ̃+ C(ρ̃)C

1/2
0 ≤ 7

4
ρ̃, (2.64)

provided the initial energy C0 satisfies

C0 ≤ ε̃ , min{ε2, ε3, ε4, ε5} with ε5 ,

(
ρ̃

4C(ρ̃)

)2

.

Therefore, collecting (2.62) and (2.64) together finishes the proof fo Lemma 2.10. �

2.2 Lp-estimates of the gradient of denstiy

This subsection concerns the necessary estimates for the existence of strong solutions. To do
this, let the conditions of Theorem 1.1 be in force. We always assume that (2.4) holds and the
initial energy C0 satisfies (2.6). For simplicity, we denote by C the various positive constants
which may depend on

µ, λ,A, γ, β, ρ∞, inf f(x), ρ̃,M, ‖f‖H2 , ‖ρ0 − ρ∞‖H1∩W 1,p , and T.

We aim to prove the following proposition, which is mainly concerned with the Lp-estimates
of the gradient of density.

Proposition 2.2 Let (ρ, u) be a smooth solution of (1.1)–(1.7) on Ω̄ × [0, T ], satisfying (2.4)
and (2.6). Then there exists a positive constant C(T ), depending on T , such that

sup
0≤t≤T

‖∇ρ‖L2∩Lp +

∫ T

0

(
‖∇2u‖qLp + ‖∇u‖qL∞

)
dt ≤ C(T ). (2.65)

where

3 < p < 6, 1 < q <
4p

5p− 6
. (2.66)
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Lemma 2.11 There exists a positive constant C(T ), depending on T , such that∫ T

0

(
‖√ρu̇‖qLp + ‖divu‖qL∞ + ‖curlu‖qL∞

)
dt ≤ C(T ) (2.67)

where p, q are the same ones in (2.66).

Proof. Thanks to (2.18) and (2.49), we see that∫ T

0
‖√ρu̇‖qLpdt ≤ C

∫ T

0
‖√ρu̇‖

q(6−p)
2p

L2 ‖u̇‖
q(3p−6)

2p

L6 dt

≤ C sup
0≤t≤T

(
t‖√ρu̇‖2L2

) q(6−p)
4p

∫ T

0
t−

q
2
(
σ(t)‖∇u̇‖2L2

) q(3p−6)
4p dt

≤ C
(∫ T

0
t
− 2pq

4p−3pq+6q dt

) 4p−3pq+6q
4p

(∫ T

0
t‖∇u̇‖2L2dt

) q(3p−6)
4p

≤ C(T ),

(2.68)

since 1 < q < 4p
5p−6 implies that 0 < 2pq

4p−3pq+6q < 1. As a result, it follows from (2.7), (2.50),
(2.52), (2.56) and the Sobolev’s embedding inequality that

‖divu‖L∞ + ‖curlu‖L∞ ≤ C (1 + ‖F‖L∞ + ‖ω‖L∞)

≤ C (1 + ‖∇u‖Lp + ‖∇F‖Lp + ‖∇ω‖Lp)
≤ C (1 + ‖√ρu̇‖L2 + ‖√ρu̇‖Lp) ∈ Lq(0, T ).

This finishes the proof of Lemma 2.11. �

To be continued, we recall the following logarithm estimate for the Lamé system, which will
be used to estimate ‖∇u‖L∞ .

Lemma 2.12 ([8, 17]) Assume that µ, λ satisfy (1.4), and that v = v(x) is a solution of the
Lamé system:

−µ∆v − (µ+ λ)∇divv = divg

with the boundary conditions (1.6), where g = (gij)3×3 satisfies g ∈ L2 ∩W 1,r with 3 < r <∞.
Then there exists a constant C > 0, depending on r, such that

‖∇v‖L∞ ≤ C (1 + ln(e+ ‖∇g‖Lr)‖g‖L∞ + ‖g‖L2) . (2.69)

We are now in a position of estimating the Lp-norm of the gradient of density.

Proof of Proposition 2.2. First, it is easily derived from (1.1) that for any 2 ≤ p ≤ 6,

d

dt
‖∇ρ‖Lp ≤ C‖∇u‖L∞‖∇ρ‖Lp + C‖∇2u‖Lp

≤ C (1 + ‖∇u‖L∞) ‖∇ρ‖Lp + C (1 + ‖√ρu̇‖Lp) ,
(2.70)

where we have also used the theory of elliptic system to get that

‖∇2u‖Lp ≤ C (1 + ‖√ρu̇‖Lp + ‖∇ρ‖Lp) , 2 ≤ p ≤ 6. (2.71)

To estimate ‖∇u‖L∞ , we decompose u into two parts: v and w, where

µ∆v + (µ+ λ)divv = ∇(P (ρ)− P (ρs))
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and w = u− v satisfies
µ∆w + (µ+ λ)divw = ρu̇+ (ρ− ρs)∇f

with the Navier’s type boundary conditions (1.6) for v and w on ∂Ω. Then it follows from
Lemma 2.11 that for p ∈ (3,∞),

‖∇v‖L∞ ≤ C (1 + ln(e+ ‖∇(ρ− ρs)‖Lp)‖ρ− ρs‖L∞ + ‖ρ− ρs‖L2)

≤ C (1 + ln(e+ ‖∇ρ‖Lp)) .
(2.72)

In view of the theory of elliptic system, one has

‖∇2w‖Lp ≤ C (1 + ‖√ρu̇‖Lp) ,

which, together with the Sobolev’s embedding inequality, gives

‖∇w‖L∞ ≤ C
(
‖∇w‖Lp + ‖∇2w‖Lp

)
≤ C (1 + ‖√ρu̇‖L2 + ‖√ρu̇‖Lp) , (2.73)

where we have used the fact that

‖∇w‖L2 ≤ C (‖∇u‖L2 + ‖∇v‖L2) ≤ C (‖∇u‖L2 + ‖ρ− ρs‖L2) ≤ C.

Substituting (2.72) and (2.73) into (2.70), we arrive at

d

dt
‖∇ρ‖Lp ≤ C (1 + ln(e+ ‖∇ρ‖Lp)) ‖∇ρ‖Lp

+ C (1 + ‖√ρu̇‖L2 + ‖√ρu̇‖Lp) (1 + ‖∇ρ‖Lp) ,

and hence,

d

dt
ln (e+ ‖∇ρ‖Lp) ≤ C (1 + ln(e+ ‖∇ρ‖Lp)) + C (1 + ‖√ρu̇‖L2 + ‖√ρu̇‖Lp) ,

which, combined with (2.67), shows that ‖∇ρ‖Lp is bounded for any 3 < p < 6. As an immediate
result, one also infers from (2.71) that ‖∇2u‖Lp ∈ Lq(0, T ), and thus, ‖∇u‖L∞ ∈ L1(0, T ) due to
the Sobolev embedding’s inequality. This, together with (2.70) with p = 2, yields that ‖∇ρ‖L2

is bounded. The proof of Proposition 2.2 is therefore complete. �

3 Proof of Theorem 1.1

With the help of the Propositions 2.1 and 2.2, we can now prove Theorem 1.1. Indeed, we can first
construct approximate solutions with positive density by applying the local existence theorem
due to Matsumura-Nishida [23], then combine Proposition 2.1 with the bootstrap arguments to
extend the local approximate solutions globally in time under the smallness condition of initial
energy (i.e., (2.6)), and finally pass to the limit based on the global uniform a priori estimates
in Propositions 2.1 and 2.2. Since the proofs are standard and analogous to that in [19, 20],
we omit here for simplicity. Note that the large-time behavior stated in (1.23) is an immediate
result of the t-independent estimates given by Proposition 2.1.

Next, we prove the uniqueness of the solutions, which is an immediate consequence of the
following more general result.
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Theorem 3.1 Let (ρ, u) ∈ V be a weak solution of (1.1)–(1.7) on Ω× [0, T ], where

V ,

{
(ρ, u)

∣∣∣∣∣ρ− ρ∞ ∈ C([0, T ];L2 ∩ L∞), ρu ∈ C([0, T ];L2),
√
ρu ∈ L∞(0, T ;L2), ∇u ∈ L2(0, T ;L2)

}
. (3.1)

Assume that (ρ̃, ũ) ∈ V is another solution of (1.1)–(1.7) on R3 × [0, T ], which enjoys the same
data f and (ρ0,m0) with u0 being well defined by m0 = ρ0u0 as that of (ρ, u) and possesses the
additional regularities:

∇ρ̃ ∈ L∞(0, T ;L3), ∇ũ ∈ L1(0, T ;L∞),
√
t(ũt + ũ · ∇ũ) ∈ L2(0, T ;L3). (3.2)

Then, it holds that (ρ, u) = (ρ̃, ũ) almost everywhere on R3 × [0, T ].

Remark 3.1. Obviously, the solutions (ρ, u) obtained in Theorem 1.1 belong to the set V and
satisfy (3.2). Indeed, by virtue of (1.22) and the Hölder inequality, one gets that

∇ρ ∈ L∞(0, T ;L3), ∇u ∈ L1(0, T ;L∞),

and ∫ T

0
t‖ut + u · ∇u‖2L3dt ≤

∫ T

0
t
(
‖ut‖L2‖∇ut‖L2 + ‖∇u‖2L2‖∇2u‖2L2

)
dt

≤ C(T )

∫ T

0

(
‖√ρut‖2L2 + t‖∇ut‖2L2 + t‖∇2u‖2L2

)
dt

≤ C,

where we have used the following Poincaré type inequality:

‖v‖2L2 ≤ C
(
‖√ρv‖2L2 + ‖∇v‖2L2

)
, ∀ v ∈ H1, (3.3)

due to the Cauchy-Schwarz’s inequality and the fact that∫
|v|2dx ≤ ρ−1

∫
ρs|v|2dx ≤ C

∫ (
ρ|v|2 + |ρ− ρs||v|2

)
dx

≤ C
(
‖√ρv‖2L2 + ‖ρ− ρs‖L3‖v‖1/2

L2 ‖∇v‖
3/2
L2

)
.

Proof of Theorem 3.1. Let (ρ, u) and (ρ̃, ũ) be the solutions of the problem (1.1)–(1.7) as the
ones given in Theorem 3.1. Define R , ρ− ρ̃ and U , u− ũ. Then it is easy to check that the
pair of functions (R,U) satisfies

Rt + ρdivU +Rdivũ+ U · ∇R+ ũ · ∇R+ U · ∇ρ̃ = 0, (3.4)

and

ρUt + ρu · ∇U +∇(P (ρ)− P (ρ̃))− µ∆U − (µ+ λ)∇divU

= −ρU · ∇ũ+R∇f −R(ũt + ũ · ∇ũ).
(3.5)

with zero initial conditions and the Navier’s type boundary conditions:

(U1, U2, U3) = β(∂3U
1, ∂3U

2, 0)(x, t), x ∈ ∂Ω, t > 0 (3.6)

21



Since ‖R‖L∞ ≤ ‖ρ‖L∞ + ‖ρ̃‖L∞ , by (3.6) we obtain after multiplying (3.4) by R in L2 and
integrating by parts that

d

dt
‖R‖2L2 ≤ C‖ρ‖L∞‖∇U‖L2‖R‖L2 + C‖∇ũ‖L∞‖R‖2L2

+ C‖R‖L∞‖∇U‖L2‖R‖L2 + C‖U‖L6‖∇ρ̃‖L3‖R‖L2

≤ C (‖ρ‖L∞ + ‖ρ̃‖L∞ + ‖∇ρ̃‖L3) ‖∇U‖L2‖R‖L2 + C‖∇ũ‖L∞‖R‖2L2

≤ C‖∇U‖L2‖R‖L2 + C‖∇ũ‖L∞‖R‖2L2 ,

which, combined with the fact that ∇ũ ∈ L1(0, T ;L∞), gives

‖R(t)‖L2 ≤ C
∫ t

0
‖∇U‖L2ds ≤ C

√
t

(∫ t

0
‖∇U‖2L2ds

)1/2

. (3.7)

Next, multiplying (3.5) by U in L2 and integrating by parts, we have from (3.6) that

1

2

d

dt
‖√ρU‖2L2 + µ‖∇U‖2L2 + (µ+ λ)‖divU‖2L2 + µ

∫
∂Ω
β−1|U |2dS

≤ C‖R‖L2‖∇U‖L2 + C‖∇ũ‖L∞‖
√
ρU‖2L2 + C‖R‖L2‖∇f‖L3‖U‖L6

+ C‖ũt + ũ · ∇ũ‖L3‖R‖L2‖U‖L6

≤ µ

2
‖∇U‖2L2 + C‖∇ũ‖L∞‖

√
ρU‖2L2 + C

(
1 + ‖ũt + ũ · ∇ũ‖2L3

)
‖R‖2L2 ,

and hence, by virtue of (3.7) we find

d

dt
‖√ρU‖2L2 + ‖∇U‖2L2 + µ

∫
∂Ω
β−1|U |2dS

≤ C
(
1 + ‖∇ũ‖L∞ + t‖ũt + ũ · ∇ũ‖2L3

)(
‖√ρU‖2L2 +

∫ t

0
‖∇U‖2L2ds

)
,

(3.8)

where it follows from (3.2) that(
1 + ‖∇ũ‖L∞ + t‖ũt + ũ · ∇ũ‖2L3

)
∈ L1(0, T ).

In view of the continuity of (ρ, ρ̃) and (ρu, ρ̃ũ), we have

‖√ρU(t)‖2L2 =

∫
ρ(u− ũ) · (u− ũ)dx

=

∫
(ρu− ρ̃ũ) · (u− ũ)dx+

∫
(ρ− ρ̃)ũ · (u− ũ)dx

≤ C (‖ρu− ρ̃ũ‖L2 + ‖ρ− ρ̃‖L3‖ũ‖L6) (‖u‖L2 + ‖ũ‖L2)

≤ C (‖ρu− ρ̃ũ‖L2 + ‖ρ− ρ̃‖L3)→ 0 as t→ 0,

which, combined with (3.7), (3.8) and the Gronwall’s inequality, shows that R = 0 and U = 0
a.e. This finishes the proof of Theorem 3.1. �
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