REFERENCES
Adhikari, B.S., Rawat, Y.S. and Singh, S.P.(1995). Structure and function of high altitude forests of central Himalaya I. Dry matter dynamics. Annals of Botany, 75(3) , 237-248.https://doi.org/10.1006/anbo.1995.1017
Anthony, W.D.A. and Klaus, J.P. (2004). The relative dominance hypothesis explains interaction dynamics in mixed species Alnus rubra/Pseudotsugamenziesii stands. Journal of Ecology92(3) ,450-463. https://doi.org/10.1111/j.0022-0477.2004.00888.x
Badalamenti, E., Battipaglia, G., Gristina, L., Novara, A., Rühl, J., Sala, G., Sapienza, L., Valentini, R. and La Mantia, T.(2019). Carbon stock increases up to old growth forest along a secondary succession in Mediterranean island ecosystems. PloS one, 14(7), https://doi.org/10.1371/journal.pone.0220194
Becker, H., Uri, V., Aosaar, J., Varik, M., Mander, Ü.,Soosaar, K., Hansen, R., Teemusk, A., Morozov, G., Kutti, S. and Lõhmus, K. (2015). The effects of clear-cut on net nitrogen mineralization and nitrogen losses in a grey alder stand. Ecological engineering, 85,237-246.https://doi.org/10.1016/j.ecoleng.2015.10.006
Berrahmouni, N., Regato, P., & Parfondry, M. (2015). Global guidelines for the restoration of degraded forests and landscapes in drylands. Building resilience and benefiting livehoods.
Binkley, D., Sollins, P., Bell, R., Sachs, D. and Myrold, D. (1992). Biogeochemistry of adjacent conifer and alder‐conifer stands. Ecology, 73(6), 2022-2033. https://doi.org/10.2307/1941452
Binkley, D. (2003). Seven decades of stand development in mixed and pure stands of conifers and nitrogen-fixing red alder. Canadian Journal of Forest Research. 33(11), 2274-2279. DOI: 10.1139/x03-158
Bissonnette, C., Fahlman, B., Peru, K.M., Khasa, D.P., Greer, C.W., Headley, J.V. and Roy, S.(2014). Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecological engineering, 68,167-175.https://doi.org/10.1016/j.ecoleng.2014.03.061
Bradford, M. and Murphy, H.T.(2019). The importance of large-diameter trees in the wet tropical rainforests of Australia. PloS one, 14(5) .https://doi.org/10.1371/journal. pone.0208377
Brookshire, E.N.J., Wurzburger, N., Currey, B., Menge, D.N., Oatham, M.P. and Roberts, C.(2019). Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Scientific reports, 9(1),1-10.https://doi.org/10.1038/s41598-019-43962-5
Callaway, R.M., and Walker, L.R. (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 78(7), 1958-1965. https://doi.org/10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2
Chaer, G.M., Resende, A.S., Campello, E.F.C., de Faria, S.M. and Boddey, R.M. (2011). Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology,31(2),139-149.https://doi.org/10.1093/treephys/tpq116
Conti, G. and Díaz, S. (2013). Plant functional diversity and carbon storage–an empirical test in semi‐arid forest ecosystems. Journal of Ecology, 101(1) , 18-28.https://doi.org/10.1111/1365-2745.12012
De Graaff, M.A., Classen, A.T., Castro, H.F. and Schadt, C.W. (2010). Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188(4),1055-1064.https://doi.org/10.1111/j.1469-8137.2010.03427.x
Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185-190.DOI: 10.1126/science.263.5144.185
FAO (2017). Soil Organic Carbon: the hidden potential. Food and Agriculture Organization of the United Nations Rome, Italy
Frouz, J., Vobořilová, V., Janoušová, I., Kadochová, Š. and Matějíček, L. (2015). Spontaneous establishment of late successional tree species English oak (Quercusrobur ) and European beech (Fagus sylvatica ) at reclaimed alder plantation and unreclaimed post mining sites. Ecological engineering,77,1-8.https://doi.org/10.1016/j.ecoleng.2015.01.001
Goebes, P., Schmidt, K., Seitz, S., Both, S., Bruelheide, H., Erfmeier, A., Scholten, T. and Kühn, P.(2019). The strength of soil-plant interactions under forest is related to a Critical Soil Depth. Scientific reports, 9(1),1-12.https://doi.org/10.1038/s41598-019-45156-5
Gómez‐Aparicio, L. (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta‐analysis across life‐forms and ecosystems. Journal of Ecology, 97(6), 1202-1214.https://doi.org/10.1111/j.1365-2745.2009.01573.x
Gómez-Aparicio, L., Zamora, R., Gómez, J.M., Hódar, J.A., Castro, J. and Baraza, E. (2004). Applying plant facilitation to forest restoration: a meta‐analysis of the use of shrubs as nurse plants. Ecological applications,14(4), 1128-1138.https://doi.org/10.1890/03-5084
Gough, C.M., Curtis, P.S., Hardiman, B.S., Scheuermann, C.M. and Bond‐Lamberty, B.(2016). Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests. Ecosphere, 7(6), e01375. https://doi.org/10.1002/ecs2.1375
Hoogmoed, M., Cunningham, S.C., Baker, P.J., Beringer, J. and Cavagnaro, T.R. (2014). Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings?. Agriculture, ecosystems & environment. 188,80-84.https://doi.org/10.1016/j.agee.2014.02.013
Hu, Y., Su, Z., Li, W., Li, J. and Ke, X. (2015). Influence of tree species composition and community structure on carbon density in a subtropical forest. PLoS One 10(8).https://doi.org/10.1371/journal.pone.0136984
Hui, D., Deng, Q., Tian, H., & Luo, Y. (2017). Climate change and carbon sequestration in forest ecosystems. Handbook of climate change mitigation and adaptation,555 , 594.https://doi.org/10.1007/978-1-4614-6431-0_13-2
Joshi, R.K. and Garkoti, S.C. (2020). Litter dynamics, leaf area index and forest floor respiration as indicators for understanding the role of Nepalese alder in white oak forests in central Himalaya, India. Ecological Indicators, 111, 106065.https://doi.org/10.1016/j.ecolind.2020.106065
Khan, A., Myrold, D.D., Misra, A.K.(2007). Distribution of Frankia genotypes occupying Alnus nepalensis nodules with respect to altitude and soil characteristics in the Sikkim Himalayas. Physiol. Plant, 130, 364e371. https://doi.org/10.1111/j.1399-3054.2006.00872.x.
Knoth, J.L., Kim, S.H., Ettl, G.J. and Doty, S.L. (2014). Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytologist, 201(2), 599-609.https://doi.org/10.1111/nph.12536
Krishna, M., Singh, S.K., Tripathi, J.K., Chaturvedi, R. and Garkoti, S.C. (2019). Effect of alder on soil bacteria offers an alternative explanation to the role played by alder in rock weathering. Proceedings of the National Academy of Sciences , p.201910718.
Lal, R. (2004). Soil carbon sequestration to mitigate climate change, Geoderma, 123, 1–22.
Lambers, H., Nascimento, D.L., Oliveira, R.S. and Shi, J. (2019). Do cluster roots of red alder play a role in nutrient acquisition from bedrock?. Proceedings of the National Academy of Sciences, 116(24), pp.11575-11576.
Lebrija-Trejos, E., Meave, J.A., Poorter, L., Pérez-García, E.A. and Bongers, F. (2010). Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12(4),267-275.https://doi.org/10.1016/j.ppees.2010.09.002
Lorenc-Plucińska, G., Walentynowicz, M. and Niewiadomska, A. (2013). Capabilities of alders (Alnus incana and A. glutinosa ) to grow in metal-contaminated soil. Ecological engineering, 58,214-227.https://doi.org/10.1016/j.ecoleng.2013.07.002
Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., Anderson‐Teixeira, K.J., Andrade, A., Baltzer, J., Becker, K.M. and Blomdahl, E.M.(2018). Global importance of large‐diameter trees. Global Ecology and Biogeography, 27(7), 849-864. DOI: 10.1111/geb.12747
Lutz, J.A., Larson, A.J., Swanson, M.E. and Freund, J.A. (2012). Ecological importance of large-diameter trees in a temperate mixed-conifer forest. PloS one,  7(5).https://doi.org/10.1371/journal.pone.0036131
Martin, A.R., Thomas, S.C. (2011). A reassessment of carbon content in tropical trees. PLoS One ,6 (8), e23533. https://doi.org/10.1371/journal.pone.0023533
Macedo, M.O., Resende, A.S., Garcia, P.C., Boddey, R.M., Jantalia, C.P., Urquiaga, S., Campello, E.F.C. and Franco, A.A.(2008). Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management,255(5-6), 1516-1524. https://doi.org/10.1016/j.foreco.2007.11.007
Myrold, D.D., Huss-Dannel, K. (1994). Population dynamics of alder-infective Frankia in a forest soil with and without host trees.Soil Biol. Biochem, 26, 533e540. https://doi.org/10.1016/0038-0717(94)90239-9
Nelson, D.W. and Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961-1010.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G. and Ciais, P.(2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. DOI: 10.1126/science.1201609
Pandit, R., Parrota, J., Anker, Y., Coudel, E., Diaz Morejón, C.F., Harris, J., Karlen, D.L., Kertész, A., Mariño De Posada, J.L. and Ntshotsho Simelane, P. (2018). Responses to halt land degradation and to restore degraded land. IPBES.
Perakis, S.S., and Pett-Ridge, J.C. (2019). Nitrogen-fixing red alder trees tap rock-derived nutrients. Proceedings of the National Academy of Sciences, 116(11), 5009-5014
Popkin, G. (2019). How much can forests fight climate change?Nature, 565, 280-282 doi: 10.1038/d41586-019-00122-z
Preem, J.K., Truu, J., Truu, M., Mander, Ü.,Oopkaup, K., Lõhmus, K., Helmisaari, H.S., Uri, V. and Zobel, M.(2012). Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecological Engineering, 49,10-17.https://doi.org/10.1016/j.ecoleng.2012.08.034
Raina, A.K., Gupta, M.K. (2009). Soil and vegetation studies in relation to present material of Garhwal Himalayas, Uttarakhand, India. Ann. For, 17 (1), 71–82.
Rana, S.K., Rana, H.K., Shrestha, K.K., Sujakhu, S. and Ranjitkar, S.(2018). Determining bioclimatic space of Himalayan alder for agroforestry systems in Nepal. Plant diversity, 40(1), 1-18.https://doi.org/10.1016/j.pld.2017.11.002
Rawat, Y.S., & Singh, J.S. (1988). Structure and function of Oak forest in Central Himalaya. I. dry matter Dynamics. Annals of Botany, (62), 397-41 DOI: 10.1093/oxfordjournals.aob.a087673
Resh, S.C., Binkley, D., Parrotta, J.A. (2002). Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems, 5, 217–231 https://doi.org/10.1007/s10021-001-0067-3.
Robinson, S. J., van den Berg, E., Meirelles, G. S., &Ostle, N. (2015). Factors influencing early secondary succession and ecosystem carbon stocks in Brazilian Atlantic Forest. Biodiversity and conservation, 24(9),2273-2291.https://doi.org/10.1007/s10531-015-0982-9
Sakalli, A.(2013). A~ simple model for predicting the global distribution of the N 2 fixing host genus Alnus Mill.: impact of climate change on the global distribution in 2100. Biogeosciences Discussions, 10(8), 13049-13095. https://doi.org/10.5194/bgd-10-13049-2013.
Sakalli, A., 2017.Sakalli, A. (2017). Simulation of potential distribution and migration of Alnus spp. under climate change. Appl. Ecol. Environ. Res, 15(4),1039-1070.https://doi.org/10.15666/aeer/1504_10391070.
Semwal, R.L., Nautiyal, S., Maikhuri, R.K., Rao, K.S. and Saxena, K.G.(2013). Growth and carbon stocks of multipurpose tree species plantations in degraded lands in Central Himalaya, India. Forest ecology and management, 310, 450-459. DOI: 10.1016/j.foreco.2013.08.023
Sharma C.M., Gairola, S., Baduni, N.P., Ghildiyal, S.K., and Suyal, S. (2011). Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya.India. J. Biosci. 36(4), 701-708. https://doi.org/10.1007/s12038-011-9103-4
Shanin, V., Komarov, A. and Mäkipää, R. (2014). Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. Eur J Forest Res133,   273–286. https://doi.org/10.1007/s10342-013-0759-1
Sharma, E. &Ambhasht, R.S. (1991). Biomass, Productivity and Energetics in Himalayan Alder Plantations. Annals of Botany (67),285-293.https://doi.org/10.1093/oxfordjournals.aob.a088138
Sharma, E., Sharma, R., Pradhan, M. (1998). Ecology of Himalayan alder (Alnus nepalensis D. Don). PINSA, B64, 5978.
Sharma, R.P. (2011). Allometric models for total-tree and component-tree biomass of Alnus nepalensis D. Don in Nepal. The Indian Forester, 137 (12), 1386-1390.
Sheikh, M.A.,Munesh, K., and Bussmann, R.W. (2009). Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management, 4: 6. https://doi.org/10.1186/1750-0680-4-6
Singh, S.P.(2014). Attributes of Himalayan forest ecosystems: they are not temperate forests. Proc. Indian Natn. Sci. Acad. 80,221–233. https://doi.org/10.16943/ptinsa/2014/v80i2/55103.
Susaeta, A., Carter, D.R. and Adams, D.C. (2014). Sustainability of forest management under changing climatic conditions in the southern United States: Adaptation strategies, economic rents and carbon sequestration. Journal of environmental management, 139,80-87. DOI:10.1016/j.jenvman.2014.02.033
Slik, J.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C. and Collins, M. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global ecology and biogeography, 22(12), 1261-1271.https://doi.org/10.1111/geb.12092
Swanson, M.E., Franklin, J.F., Beschta, R.L., Crisafulli, C.M., DellaSala, D.A., Hutto, R.L., Lindenmayer, D.B. and Swanson, F.J. (2011). The forgotten stage of forest succession: early‐successional ecosystems on forest sites. Frontiers in Ecology and the Environment 9(2), 117-125. https://doi.org/10.1890/090157
Taeroe, A., Mustapha, W.F., Stupak, I. and Raulund-Rasmussen, K. (2017). Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?. Journal of environmental management, 197, 117-129.DOI:10.1016/j.jenvman.2017.03.051
Temperton, V.M., Grayston, S.J., Jackson, G., Barton, C.V.M., Millard, P. and Jarvis, P.G.(2003). Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosain a long-term field experiment. Tree Physiology, 23(15),1051-1059.https://doi.org/10.1093/treephys/23.15.1051
Uri, V., Aosaar, J., Varik, M., Becker, H., Ligi, K., Padari, A., Kanal, A. and Lõhmus, K. (2014). The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. Forest Ecology and Management, 327 , 106-117. https://doi.org/10.1016/j.foreco.2014.04.040
Uri, V., Kukumägi, M., Aosaar, J., Varik, M., Becker, H., Soosaar, K., Morozov, G., Ligi, K., Padari, A., Ostonen, I. and Karoles, K. (2017). Carbon budgets in fertile grey alder (Alnus incana (L.) Moench.) stands of different ages. Forest Ecology and Management, 396,55-67. DOI: 10.1016/j.foreco.2017.04.004
Verma, A.K. and Garkoti, S.C. (2019). Population structure, soil characteristics and carbon stock of the regenerating banj oak forests in Almora, Central Himalaya. Forest Science and Technology, 15(3), 117-127.https://doi.org/10.1080/21580103.2019.1620135
Walker, J. and Reddell, P. (2007). Retrogressive succession and restoration on old landscapes. In Linking restoration and ecological succession (pp. 69-89). Springer, New York, NY. https://doi.org/10.1007/978-0-387-35303-6_4
Walker, L. R., and del Moral, R. (2009). Lessons from primary succession for restoration of severely damaged habitats. Applied Vegetation Science, 12(1), 55-67. https://doi.org/10.1111/j.1654-109X.2009.01002.x
Table 1. Geographical and vegetation characteristics across six study sites in central Himalaya