REFERENCES
Adhikari, B.S., Rawat, Y.S. and Singh, S.P.(1995). Structure and
function of high altitude forests of central Himalaya I. Dry matter
dynamics. Annals of Botany, 75(3) ,
237-248.https://doi.org/10.1006/anbo.1995.1017
Anthony, W.D.A. and Klaus, J.P. (2004). The relative dominance
hypothesis explains interaction dynamics in mixed species Alnus
rubra/Pseudotsugamenziesii stands. Journal of
Ecology92(3) ,450-463.
https://doi.org/10.1111/j.0022-0477.2004.00888.x
Badalamenti, E., Battipaglia, G., Gristina, L., Novara, A., Rühl, J.,
Sala, G., Sapienza, L., Valentini, R. and La Mantia, T.(2019). Carbon
stock increases up to old growth forest along a secondary succession in
Mediterranean island ecosystems. PloS
one, 14(7), https://doi.org/10.1371/journal.pone.0220194
Becker, H., Uri, V., Aosaar, J., Varik, M., Mander, Ü.,Soosaar, K.,
Hansen, R., Teemusk, A., Morozov, G., Kutti, S. and Lõhmus, K. (2015).
The effects of clear-cut on net nitrogen mineralization and nitrogen
losses in a grey alder stand. Ecological engineering, 85,237-246.https://doi.org/10.1016/j.ecoleng.2015.10.006
Berrahmouni, N., Regato, P., & Parfondry, M. (2015). Global guidelines
for the restoration of degraded forests and landscapes in drylands.
Building resilience and benefiting livehoods.
Binkley, D., Sollins, P., Bell, R., Sachs, D. and Myrold, D. (1992).
Biogeochemistry of adjacent conifer and alder‐conifer
stands. Ecology, 73(6), 2022-2033.
https://doi.org/10.2307/1941452
Binkley, D. (2003). Seven decades of stand development in mixed and pure
stands of conifers and nitrogen-fixing red alder. Canadian Journal of
Forest Research. 33(11), 2274-2279. DOI: 10.1139/x03-158
Bissonnette, C., Fahlman, B., Peru, K.M., Khasa, D.P., Greer, C.W.,
Headley, J.V. and Roy, S.(2014). Symbiosis with Frankia sp. benefits the
establishment of Alnus viridis ssp. crispa and Alnus
incana ssp. rugosa in tailings sand from the Canadian oil sands
industry. Ecological engineering, 68,167-175.https://doi.org/10.1016/j.ecoleng.2014.03.061
Bradford, M. and Murphy, H.T.(2019). The importance of large-diameter
trees in the wet tropical rainforests of Australia. PloS
one, 14(5) .https://doi.org/10.1371/journal.
pone.0208377
Brookshire, E.N.J., Wurzburger, N., Currey, B., Menge, D.N., Oatham,
M.P. and Roberts, C.(2019). Symbiotic N fixation is sufficient to
support net aboveground biomass accumulation in a humid tropical
forest. Scientific reports, 9(1),1-10.https://doi.org/10.1038/s41598-019-43962-5
Callaway, R.M., and Walker, L.R. (1997). Competition and facilitation: a
synthetic approach to interactions in plant communities. Ecology,
78(7), 1958-1965.
https://doi.org/10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2
Chaer, G.M., Resende, A.S., Campello, E.F.C., de Faria, S.M. and Boddey,
R.M. (2011). Nitrogen-fixing legume tree species for the reclamation of
severely degraded lands in Brazil. Tree Physiology,31(2),139-149.https://doi.org/10.1093/treephys/tpq116
Conti, G. and Díaz, S. (2013). Plant functional diversity and carbon
storage–an empirical test in semi‐arid forest ecosystems. Journal
of Ecology, 101(1) , 18-28.https://doi.org/10.1111/1365-2745.12012
De Graaff, M.A., Classen, A.T., Castro, H.F. and Schadt, C.W. (2010).
Labile soil carbon inputs mediate the soil microbial community
composition and plant residue decomposition rates. New
Phytologist, 188(4),1055-1064.https://doi.org/10.1111/j.1469-8137.2010.03427.x
Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M.
C., & Wisniewski, J. (1994). Carbon pools and flux of global forest
ecosystems. Science, 263(5144), 185-190.DOI:
10.1126/science.263.5144.185
FAO (2017). Soil Organic Carbon: the hidden potential. Food and
Agriculture Organization of the United Nations Rome, Italy
Frouz, J., Vobořilová, V., Janoušová, I., Kadochová, Š. and Matějíček,
L. (2015). Spontaneous establishment of late successional tree species
English oak (Quercusrobur ) and European beech (Fagus
sylvatica ) at reclaimed alder plantation and unreclaimed post mining
sites. Ecological engineering,77,1-8.https://doi.org/10.1016/j.ecoleng.2015.01.001
Goebes, P., Schmidt, K., Seitz, S., Both, S., Bruelheide, H., Erfmeier,
A., Scholten, T. and Kühn, P.(2019). The strength of soil-plant
interactions under forest is related to a Critical Soil
Depth. Scientific reports, 9(1),1-12.https://doi.org/10.1038/s41598-019-45156-5
Gómez‐Aparicio, L. (2009). The role of plant interactions in the
restoration of degraded ecosystems: a meta‐analysis across life‐forms
and ecosystems. Journal of
Ecology, 97(6), 1202-1214.https://doi.org/10.1111/j.1365-2745.2009.01573.x
Gómez-Aparicio, L., Zamora, R., Gómez, J.M., Hódar, J.A., Castro, J. and
Baraza, E. (2004). Applying plant facilitation to forest restoration: a
meta‐analysis of the use of shrubs as nurse plants. Ecological
applications,14(4), 1128-1138.https://doi.org/10.1890/03-5084
Gough, C.M., Curtis, P.S., Hardiman, B.S., Scheuermann, C.M. and
Bond‐Lamberty, B.(2016). Disturbance, complexity, and succession of net
ecosystem production in North America’s temperate deciduous
forests. Ecosphere, 7(6), e01375. https://doi.org/10.1002/ecs2.1375
Hoogmoed, M., Cunningham, S.C., Baker, P.J., Beringer, J. and Cavagnaro,
T.R. (2014). Is there more soil carbon under nitrogen-fixing trees than
under non-nitrogen-fixing trees in mixed-species restoration
plantings?. Agriculture, ecosystems & environment. 188,80-84.https://doi.org/10.1016/j.agee.2014.02.013
Hu, Y., Su, Z., Li, W., Li, J. and Ke, X. (2015). Influence of tree
species composition and community structure on carbon density in a
subtropical forest. PLoS
One 10(8).https://doi.org/10.1371/journal.pone.0136984
Hui, D., Deng, Q., Tian, H., & Luo, Y. (2017). Climate change and
carbon sequestration in forest ecosystems. Handbook of climate
change mitigation and adaptation,555 ,
594.https://doi.org/10.1007/978-1-4614-6431-0_13-2
Joshi, R.K. and Garkoti, S.C. (2020). Litter dynamics, leaf area index
and forest floor respiration as indicators for understanding the role of
Nepalese alder in white oak forests in central Himalaya, India.
Ecological Indicators, 111,
106065.https://doi.org/10.1016/j.ecolind.2020.106065
Khan, A., Myrold, D.D., Misra, A.K.(2007). Distribution of Frankia
genotypes occupying Alnus nepalensis nodules with respect to altitude
and soil characteristics in the Sikkim Himalayas. Physiol. Plant,
130, 364e371. https://doi.org/10.1111/j.1399-3054.2006.00872.x.
Knoth, J.L., Kim, S.H., Ettl, G.J. and Doty, S.L. (2014). Biological
nitrogen fixation and biomass accumulation within poplar clones as a
result of inoculations with diazotrophic endophyte consortia. New
Phytologist, 201(2), 599-609.https://doi.org/10.1111/nph.12536
Krishna, M., Singh, S.K., Tripathi, J.K., Chaturvedi, R. and Garkoti,
S.C. (2019). Effect of alder on soil bacteria offers an alternative
explanation to the role played by alder in rock
weathering. Proceedings of the National Academy of Sciences ,
p.201910718.
Lal, R. (2004). Soil carbon sequestration to mitigate climate change,
Geoderma, 123, 1–22.
Lambers, H., Nascimento, D.L., Oliveira, R.S. and Shi, J. (2019). Do
cluster roots of red alder play a role in nutrient acquisition from
bedrock?. Proceedings of the National Academy of Sciences, 116(24),
pp.11575-11576.
Lebrija-Trejos, E., Meave, J.A., Poorter, L., Pérez-García, E.A. and
Bongers, F. (2010). Pathways, mechanisms and predictability of
vegetation change during tropical dry forest
succession. Perspectives in Plant Ecology, Evolution and
Systematics, 12(4),267-275.https://doi.org/10.1016/j.ppees.2010.09.002
Lorenc-Plucińska, G., Walentynowicz, M. and Niewiadomska, A. (2013).
Capabilities of alders (Alnus incana and A. glutinosa ) to
grow in metal-contaminated soil. Ecological engineering, 58,214-227.https://doi.org/10.1016/j.ecoleng.2013.07.002
Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D.,
Alonso, A., Anderson‐Teixeira, K.J., Andrade, A., Baltzer, J., Becker,
K.M. and Blomdahl, E.M.(2018). Global importance of large‐diameter
trees. Global Ecology and Biogeography, 27(7), 849-864. DOI:
10.1111/geb.12747
Lutz, J.A., Larson, A.J., Swanson, M.E. and Freund, J.A. (2012).
Ecological importance of large-diameter trees in a temperate
mixed-conifer forest. PloS
one, 7(5).https://doi.org/10.1371/journal.pone.0036131
Martin, A.R., Thomas, S.C. (2011). A reassessment of carbon content in
tropical trees. PLoS One ,6 (8), e23533.
https://doi.org/10.1371/journal.pone.0023533
Macedo, M.O., Resende, A.S., Garcia, P.C., Boddey, R.M., Jantalia, C.P.,
Urquiaga, S., Campello, E.F.C. and Franco, A.A.(2008). Changes in soil C
and N stocks and nutrient dynamics 13 years after recovery of degraded
land using leguminous nitrogen-fixing trees. Forest Ecology and
Management,255(5-6), 1516-1524.
https://doi.org/10.1016/j.foreco.2007.11.007
Myrold, D.D., Huss-Dannel, K. (1994). Population dynamics of
alder-infective Frankia in a forest soil with and without host trees.Soil Biol. Biochem, 26, 533e540.
https://doi.org/10.1016/0038-0717(94)90239-9
Nelson, D.W. and Sommers, L.E. (1996). Total carbon, organic carbon, and
organic matter. Methods of soil analysis: Part 3 Chemical
methods, 5, 961-1010.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz,
W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G. and
Ciais, P.(2011). A large and persistent carbon sink in the world’s
forests. Science, 333(6045), 988-993. DOI:
10.1126/science.1201609
Pandit, R., Parrota, J., Anker, Y., Coudel, E., Diaz Morejón, C.F.,
Harris, J., Karlen, D.L., Kertész, A., Mariño De Posada, J.L. and
Ntshotsho Simelane, P. (2018). Responses to halt land degradation and to
restore degraded land. IPBES.
Perakis, S.S., and Pett-Ridge, J.C. (2019). Nitrogen-fixing red alder
trees tap rock-derived nutrients. Proceedings of the National
Academy of Sciences, 116(11), 5009-5014
Popkin, G. (2019). How much can forests fight climate
change?Nature, 565, 280-282 doi:
10.1038/d41586-019-00122-z
Preem, J.K., Truu, J., Truu, M., Mander, Ü.,Oopkaup, K., Lõhmus, K.,
Helmisaari, H.S., Uri, V. and Zobel, M.(2012). Bacterial community
structure and its relationship to soil physico-chemical characteristics
in alder stands with different management histories. Ecological
Engineering, 49,10-17.https://doi.org/10.1016/j.ecoleng.2012.08.034
Raina, A.K., Gupta, M.K. (2009). Soil and vegetation studies in relation
to present material of Garhwal Himalayas, Uttarakhand, India. Ann.
For, 17 (1), 71–82.
Rana, S.K., Rana, H.K., Shrestha, K.K., Sujakhu, S. and Ranjitkar,
S.(2018). Determining bioclimatic space of Himalayan alder for
agroforestry systems in Nepal. Plant
diversity, 40(1), 1-18.https://doi.org/10.1016/j.pld.2017.11.002
Rawat, Y.S., & Singh, J.S. (1988). Structure and function of Oak forest
in Central Himalaya. I. dry matter Dynamics. Annals of Botany,
(62), 397-41 DOI: 10.1093/oxfordjournals.aob.a087673
Resh, S.C., Binkley, D., Parrotta, J.A. (2002). Greater soil carbon
sequestration under nitrogen-fixing trees compared with Eucalyptus
species. Ecosystems, 5, 217–231
https://doi.org/10.1007/s10021-001-0067-3.
Robinson, S. J., van den Berg, E., Meirelles, G. S., &Ostle, N. (2015).
Factors influencing early secondary succession and ecosystem carbon
stocks in Brazilian Atlantic Forest. Biodiversity and
conservation, 24(9),2273-2291.https://doi.org/10.1007/s10531-015-0982-9
Sakalli, A.(2013). A~ simple model for predicting the
global distribution of the N 2 fixing host genus Alnus
Mill.: impact of climate change on the global distribution in
2100. Biogeosciences Discussions, 10(8), 13049-13095.
https://doi.org/10.5194/bgd-10-13049-2013.
Sakalli, A., 2017.Sakalli, A. (2017). Simulation of potential
distribution and migration of Alnus spp. under climate
change. Appl. Ecol. Environ. Res, 15(4),1039-1070.https://doi.org/10.15666/aeer/1504_10391070.
Semwal, R.L., Nautiyal, S., Maikhuri, R.K., Rao, K.S. and Saxena,
K.G.(2013). Growth and carbon stocks of multipurpose tree species
plantations in degraded lands in Central Himalaya, India. Forest
ecology and management, 310, 450-459. DOI: 10.1016/j.foreco.2013.08.023
Sharma C.M., Gairola, S., Baduni, N.P., Ghildiyal, S.K., and Suyal, S.
(2011). Variation in carbon stocks on different slope aspects in seven
major forest types of temperate region of Garhwal Himalaya.India.
J. Biosci. 36(4), 701-708.
https://doi.org/10.1007/s12038-011-9103-4
Shanin, V., Komarov, A. and Mäkipää, R. (2014). Tree species composition
affects productivity and carbon dynamics of different site types in
boreal forests. Eur J Forest
Res, 133, 273–286.
https://doi.org/10.1007/s10342-013-0759-1
Sharma, E. &Ambhasht, R.S. (1991). Biomass, Productivity and Energetics
in Himalayan Alder Plantations. Annals of Botany (67),285-293.https://doi.org/10.1093/oxfordjournals.aob.a088138
Sharma, E., Sharma, R., Pradhan, M. (1998). Ecology of Himalayan alder
(Alnus nepalensis D. Don). PINSA, B64, 5978.
Sharma, R.P. (2011). Allometric models for total-tree and component-tree
biomass of Alnus nepalensis D. Don in Nepal. The Indian
Forester, 137 (12), 1386-1390.
Sheikh, M.A.,Munesh, K., and Bussmann, R.W. (2009). Altitudinal
variation in soil organic carbon stock in coniferous subtropical and
broadleaf temperate forests in Garhwal Himalaya. Carbon Balance
and Management, 4: 6. https://doi.org/10.1186/1750-0680-4-6
Singh, S.P.(2014). Attributes of Himalayan forest ecosystems: they are
not temperate forests. Proc. Indian Natn. Sci. Acad. 80,221–233. https://doi.org/10.16943/ptinsa/2014/v80i2/55103.
Susaeta, A., Carter, D.R. and Adams, D.C. (2014). Sustainability of
forest management under changing climatic conditions in the southern
United States: Adaptation strategies, economic rents and carbon
sequestration. Journal of environmental management, 139,80-87. DOI:10.1016/j.jenvman.2014.02.033
Slik, J.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian,
M., Blanc, L., Bongers, F., Boundja, P., Clark, C. and Collins, M.
(2013). Large trees drive forest aboveground biomass variation in moist
lowland forests across the tropics. Global ecology and
biogeography, 22(12), 1261-1271.https://doi.org/10.1111/geb.12092
Swanson, M.E., Franklin, J.F., Beschta, R.L., Crisafulli, C.M.,
DellaSala, D.A., Hutto, R.L., Lindenmayer, D.B. and Swanson, F.J.
(2011). The forgotten stage of forest succession: early‐successional
ecosystems on forest sites. Frontiers in Ecology and the
Environment 9(2), 117-125. https://doi.org/10.1890/090157
Taeroe, A., Mustapha, W.F., Stupak, I. and Raulund-Rasmussen, K. (2017).
Do forests best mitigate CO2 emissions to the atmosphere by setting them
aside for maximization of carbon storage or by management for fossil
fuel substitution?. Journal of environmental
management, 197, 117-129.DOI:10.1016/j.jenvman.2017.03.051
Temperton, V.M., Grayston, S.J., Jackson, G., Barton, C.V.M., Millard,
P. and Jarvis, P.G.(2003). Effects of elevated carbon dioxide
concentration on growth and nitrogen fixation in Alnus glutinosain a long-term field experiment. Tree Physiology, 23(15),1051-1059.https://doi.org/10.1093/treephys/23.15.1051
Uri, V., Aosaar, J., Varik, M., Becker, H., Ligi, K., Padari, A., Kanal,
A. and Lõhmus, K. (2014). The dynamics of biomass production, carbon and
nitrogen accumulation in grey alder (Alnus incana (L.) Moench)
chronosequence stands in Estonia. Forest Ecology and Management,
327 , 106-117. https://doi.org/10.1016/j.foreco.2014.04.040
Uri, V., Kukumägi, M., Aosaar, J., Varik, M., Becker, H., Soosaar, K.,
Morozov, G., Ligi, K., Padari, A., Ostonen, I. and Karoles, K. (2017).
Carbon budgets in fertile grey alder (Alnus incana (L.) Moench.)
stands of different ages. Forest Ecology and Management, 396,55-67. DOI: 10.1016/j.foreco.2017.04.004
Verma, A.K. and Garkoti, S.C. (2019). Population structure, soil
characteristics and carbon stock of the regenerating banj oak forests in
Almora, Central Himalaya. Forest Science and
Technology, 15(3), 117-127.https://doi.org/10.1080/21580103.2019.1620135
Walker, J. and Reddell, P. (2007). Retrogressive succession and
restoration on old landscapes. In Linking restoration and ecological
succession (pp. 69-89). Springer, New York, NY.
https://doi.org/10.1007/978-0-387-35303-6_4
Walker, L. R., and del Moral, R. (2009). Lessons from primary succession
for restoration of severely damaged habitats. Applied Vegetation
Science, 12(1), 55-67.
https://doi.org/10.1111/j.1654-109X.2009.01002.x
Table 1. Geographical and vegetation characteristics across six
study sites in central Himalaya