Acknowledgments
This study was supported by the Environment and Agronomy division of
INRAE (funding “Pari Scientifique INRAE”). The authors would like to
thank Magali Bodereau, Josiane Pichon, Josette Bonnefoy, Marine
Lechevrel, Théo Lemercier, Julien Mignot and Christophe Muguet for their
technical assistance and help with data analysis. They also thank Dr.
Bae for the hormone analyses, Nicolas Elie from the CEMABIO platform for
seed image analysis and Laurence Cantrill for editing the manuscript and
providing relevant suggestions.
Bibliography
Aguirrezábal L., Martre P., Pereyra-Irujo G., Echarte M.M. & Izquierdo
N. (2015) Improving grain quality: ecophysiological and modeling tools
to develop management and breeding strategies. Crop Physiology ,
423–465.
Akmouche Y., Cheneby J., Lamboeuf M., Elie N., Laperche A., Bertheloot
J., … Brunel-Muguet S. (2019) Do nitrogen- and
sulphur-remobilization-related parameters measured at the onset of the
reproductive stage provide early indicators to adjust N and S
fertilization in oilseed rape (Brassica napus L.) grown under N- and/or
S-limiting supplies? Planta 250 , 2047–2062.
Aksouh-Harradj N.M., Campbell L.C. & Mailer R.J. (2006) Canola response
to high and moderately high temperature stresses during seed maturation.Canadian Journal of Plant Science 86 , 967–980.
Aksouh N.M., Jacobs B.C., Stoddard F.L. & Mailer R.J. (2001) Response
of canola to different heat stresses. Australian Journal of
Agricultural Research 52 , 817–824.
Baek D., Pathange P., Chung J., Jiang J., Gao L., Oikawa A., …
Shi H. (2010) A stress‐inducible sulphotransferase sulphonates salicylic
acid and confers pathogen resistance in Arabidopsis. Plant, Cell
& Environment 33 , 1383–1392.
Bailly C., Audigier C., Ladonne F., Wagner M.H., Coste F., Corbineau F.
& Côme D. (2001) Changes in oligosaccharide content and antioxidant
enzyme activities in developing bean seeds as related to acquisition of
drying tolerance and seed quality. Journal of Experimental Botany52 , 701–708.
Balfagón D., Sengupta S., Gómez-Cadenas A., Fritschi F.B., Azad R.K.,
Mittler R. & Zandalinas S.I. (2019) Jasmonic Acid Is Required for Plant
Acclimation to a Combination of High Light and Heat Stress. Plant
physiology 181 , 1668–1682.
Bashir H., Ibrahim M.M., Bagheri R., Ahmad J., Arif I.A., Baig M.A. &
Qureshi M.I. (2015) Influence of sulfur and cadmium on antioxidants,
phytochelatins and growth in Indian mustard. AoB PLANTS7 .
Baud S., Boutin J.P., Miquel M., Lepiniec L. & Rochat C. (2002) An
integrated overview of seed development in Arabidopsis thaliana ecotype
WS. Plant Physiology and Biochemistry 40 , 151–160.
Baux A., Colbach N., Allirand J.M., Jullien A., Ney B. & Pellet D.
(2013) Insights into temperature effects on the fatty acid composition
of oilseed rape varieties. European Journal of Agronomy49 , 12–19.
Baux A., Hebeisen T. & Pellet D. (2008) Effects of minimal temperatures
on low-linolenic rapeseed oil fatty-acid composition. European
Journal of Agronomy 29 , 102–107.
Bielach A., Hrtyan M. & Tognetti V.B. (2017) Plants under stress:
Involvement of auxin and cytokinin. International Journal of
Molecular Sciences 18 .
Bokszczanin K., Fragkostefanakis S., Bostan H., Bovy A., Chaturvedi P.,
Chiusano M.L., … Winter P. (2013) Perspectives on deciphering
mechanisms underlying plant heat stress response and thermotolerance.Frontiers in Plant Science 4 , 315.
Borisjuk L., Neuberger T., Schwender J., Heinzel N., Sunderhaus S.,
Fuchs J., … Rolletschek H. (2013) Seed architecture shapes embryo
metabolism in oilseed rape. The Plant cell 25 , 1625–40.
Bruce T.J.A., Matthes M.C., Napier J.A. & Pickett J.A. (2007) Stressful
“memories” of plants: Evidence and possible mechanisms. Plant
Science 173 , 603–608.
Brunel-Muguet S., D’Hooghe P., Bataillé M.-P., Larré C., Kim T.-H.,
Trouverie J., … Dürr C. (2015) Heat stress during seed filling
interferes with sulfur restriction on grain composition and seed
germination in oilseed rape (Brassica napus L.). Frontiers in
Plant Science 6 .
Canvin D.T. (1965) The effect of temperature on the oil content and
fatty acid composition of the oils from several oil seed crops.Canadian Journal of Botany 43 , 63–69.
Chebrolu K.K., Fritschi F.B., Ye S., Krishnan H.B., Smith J.R. &
Gillman J.D. (2016) Impact of heat stress during seed development on
soybean seed metabolome. Metabolomics 12 , 1–14.
Chitnis V.R., Gao F., Yao Z., Jordan M.C., Park S. & Ayele B.T. (2014)
After-ripening induced transcriptional changes of hormonal genes in
wheat seeds: The cases of brassinosteroids, ethylene, cytokinin and
salicylic acid. PLoS ONE 9 , 1–14.
Christidis N., Jones G.S. & Stott P.A. (2015) Dramatically increasing
chance of extremely hot summers since the 2003 European heatwave.5 , 46–49.
Clarke S.M., Cristescu S.M., Miersch O., Harren F.J.M., Wasternack C. &
Mur L.A.J. (2009) Jasmonates act with salicylic acid to confer basal
thermotolerance in Arabidopsis thaliana. New Phytologist182 , 175–187.
Clarke S.M., Mur L.A.J., Wood J.E. & Scott I.M. (2004) Salicylic acid
dependent signaling promotes basal thermotolerance but is not essential
for acquired thermotolerance in Arabidopsis thaliana. Plant
Journal 38 , 432–447.
Crisp P.A., Ganguly D., Eichten S.R., Borevitz J.O. & Pogson B.J.
(2016) Reconsidering plant memory: Intersections between stress
recovery, RNA turnover, and epigenetics. Science Advances2 , e1501340–e1501340.
D’Hooghe P., Dubousset L., Gallardo K., Kopriva S., Avice J.-C. &
Trouverie J. (2014) Evidence for Proteomic and Metabolic Adaptations
Associated with Alterations of Seed Yield and Quality in Sulfur-limited
Brassica napus L. Molecular & Cellular Proteomics 13 ,
1165–1183.
D’Hooghe P., Escamez S., Trouverie J. & Avice J.-C. (2013) Sulphur
limitation provokes physiological and leaf proteome changes in oilseed
rape that lead to perturbation of sulphur, carbon and oxidative
metabolisms. BMC plant biology 13 , 23.
Debeaujon I. & Koornneef M. (2000) Gibberellin Requirement for
Arabidopsis Seed Germination Is Determined Both by Testa Characteristics
and Embryonic Abscisic Acid 1 .
Deng X. & Scarth R. (1998) Temperature effects on fatty acid
composition during development of low-linolenic oilseed rape (Brassica
napus L.). Journal of the American Oil Chemists’ Society75 , 759–766.
Ding Y., Fromm M. & Avramova Z. (2012) Multiple exposures to drought
“train” transcriptional responses in Arabidopsis. Nature
communications 3 , 740.
Dornbos D.L. & Mullen R.E. (1992) Soybean seed protein and oil contents
and fatty acid composition adjustments by drought and temperature.Journal of the American Oil Chemists Society 69 ,
228–231.
Finkelstein R. (2013) Abscisic Acid Synthesis and Response. The
Arabidopsis Book 11 , e0166.
Gangl R., Behmüller R. & Tenhaken R. (2015) Molecular cloning of AtRS4,
a seed specific multifunctional RFO synthase/galactosylhydrolase in
Arabidopsis thaliana. Frontiers in Plant Science 6 , 789.
Gauthier M., Pellet D., Monney C., Herrera J.M., Rougier M. & Baux A.
(2017) Fatty acids composition of oilseed rape genotypes as affected by
solar radiation and temperature. Field Crops Research212 , 165–174.
González-Centeno M.R., Comas-Serra F., Femenia A., Rosselló C. & Simal
S. (2015) Effect of power ultrasound application on aqueous extraction
of phenolic compounds and antioxidant capacity from grape pomace (Vitis
vinifera L.): Experimental kinetics and modeling. Ultrasonics
Sonochemistry 22 , 506–514.
González-Centeno M.R., Jourdes M., Femenia A., Simal S., Rosselló C. &
Teissedre P.-L. (2012) Proanthocyanidin Composition and Antioxidant
Potential of the Stem Winemaking Byproducts from 10 Different Grape
Varieties (Vitis vinifera L.). Journal of Agricultural and Food
Chemistry 60 , 11850–11858.
Grami B. & Stefansson B. (1977) Gene action for protein and oil content
in summer rape. Canadian Journal of Plant Science 57 .
Groot M.P., Kooke R., Knoben N., Vergeer P., Keurentjes J.J.B., Ouborg
N.J. & Verhoeven K.J.F. (2016) Effects of Multi-Generational Stress
Exposure and Offspring Environment on the Expression and Persistence of
Transgenerational Effects in Arabidopsis thaliana. PLoS ONE11 , 1–16.
Guilioni L., Wéry J. & Lecoeur J. (2003) High temperature and water
deficit may reduce seed number in field pea purely by decreasing plant
growth rate. Functional Plant Biology 30 , 1151–1164.
Guilioni L., Wery J. & Tardieu F. (1997) Heat stress-induced abortion
of buds and flowers in pea: Is sensitivity linked to organ age or to
relations between reproductive organs? Annals of Botany80 , 159–168.
Hasanuzzaman M., Bhuyan M.H.M.B., Mahmud J.A., Nahar K., Mohsin S.M.,
Parvin K. & Fujita M. (2018) Interaction of sulfur with phytohormones
and signaling molecules in conferring abiotic stress tolerance to
plants. Plant Signaling and Behavior 13 , 1–5.
Hatzig S. V., Nuppenau J.N., Snowdon R.J. & Schießl S. V. (2018)
Drought stress has transgenerational effects on seeds and seedlings in
winter oilseed rape (Brassica napus L.). BMC Plant Biology18 , 1–13.
Hilker M. & Schmülling T. (2019) Stress priming, memory, and signalling
in plants. Plant Cell and Environment 42 , 753–761.
Hoegh-Guldberg O., Jacob D., Taylor M., Bindi M., Brown S., Camilloni
I., … Zhou G. (2018) Impacts of 1.5oC Global
Warming on Natural and Human Systems. In In: Global Warming of
1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C
above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to the
threat of climate cha . (eds V. Masson-Delmotte, P. Zhai, H. Pörtner, D.
Roberts, J. Skea, P. Shukla, … T. Waterfield), p. 32 pp.
Huang R., Liu Z., Xing M., Yang Y., Wu X., Liu H. & Liang W. (2019)
Heat Stress Suppresses Brassica napus Seed Oil Accumulation by
Inhibition of Photosynthesis and BnWRI1 Pathway. Plant and Cell
Physiology 60 , 1457–1470.
Kinoshita T. & Seki M. (2014) Epigenetic memory for stress response and
adaptation in plants. Plant and Cell Physiology 55 ,
1859–1863.
Kopriva S., Talukdar D., Takahashi H., Hell R., Sirko A., D’Souza S.F.
& Talukdar T. (2016) Editorial: Frontiers of Sulfur Metabolism in Plant
Growth, Development, and Stress Response. Frontiers in Plant
Science 6 , 1220.
Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E. &
Scharf K.D. (2007) Complexity of the heat stress response in plants.Current Opinion in Plant Biology 10 , 310–316.
Kumar S. (2018) Epigenetic memory of stress responses in plants.J. Phytochem. Biochem 2 , e102.
Lancashire P.D., Bleiholder H., Van Den Boom T., Langelüddeke P., Stauss
R., Weber E., Witzenberger A. (1991). A uniform decimal code for growth
stages of crops and weeds. Annals of applied Biology119 , 561-601.
Lee S. & Park C.-M. (2010) Modulation of reactive oxygen species by
salicylic acid in arabidopsis seed germination under high salinity.Plant Signaling & Behavior 5 , 1534.
Leprince O., Pellizzaro A., Berriri S. & Buitink J. (2017) Late seed
maturation: Drying without dying. Journal of Experimental Botany68 , 827–841.
Liu L., Liu F., Chu J., Yi X., Fan W., Tang T., … Zhao X. (2019)
A transcriptome analysis reveals a role for the indole GLS-linked auxin
biosynthesis in secondary dormancy in rapeseed (Brassica napus L.).BMC Plant Biology 19 , 1–18.
Marchand L., Pelosi C., González-Centeno M.R., Maillard A., Ourry A.,
Galland W., … Brunel-Muguet S. (2016) Trace element
bioavailability, yield and seed quality of rapeseed (Brassica napus L.)
modulated by biochar incorporation into a contaminated technosol.Chemosphere 156 .
Meng J., Wang L., Wang J., Zhao X., Cheng J., Yu W., … Gong Z.
(2018) METHIONINE ADENOSYLTRANSFERASE 4 mediates DNA and histone
methylation. Plant Physiology 177 , pp.00183.2018.
Molinier J., Ries G., Zipfel C. & Hohn B. (2006) Transgeneration memory
of stress in plants. Nature 442 , 1046–1049.
Morrison M.J. & Stewart D.W. (2002) Heat stress during flowering in
summer Brassica. Crop Science 42 , 797–803.
Mukwevho E., Ferreira Z. & Ayeleso A. (2014) Potential Role of
Sulfur-Containing Antioxidant Systems in Highly Oxidative Environments.Molecules 2014, Vol. 19, Pages 19376-19389 19 ,
19376–19389.
Nikiforova V., Freitag J., Kempa S., Adamik M., Hesse H. & Hoefgen R.
(2003) Transcriptome analysis of sulfur depletion in Arabidopsis
thaliana: Interlacing of biosynthetic pathways provides response
specificity. Plant Journal 33 , 633–650.
Nishizawa A., Yabuta Y. & Shigeoka S. (2008) Galactinol and Raffinose
Constitute a Novel Function to Protect Plants from Oxidative Damage.Plant Physiology 147 , 1251–1263.
Niu Y., Wu G.-Z., Ye R., Lin W.-H., Shi Q.-M., Xue L.-J., … Xue
H.-W. (2009) Global Analysis of Gene Expression Profiles in Brassica
napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation
with Arabidopsis thaliana. Molecular Plant 2 ,
1107–1122.
Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K., Lesk C., al.
et, … al. et (2016) Transcriptional Regulatory Network of Plant
Heat Stress Response. Trends in Plant Science 0 , 84–87.
Pan X., Welti R. & Wang X. (2010) Quantitative analysis of major plant
hormones in crude plant extracts by high-performance liquid
chromatography–mass spectrometry. Nature Protocols 5 ,
986–992.
Pekrun C., Lutman P.J.W. & Baeumer K. (1997) Germination behaviour of
dormant oilseed rape seeds in relation to temperature. Weed
Research 37 , 419–431.
Poisson E., Trouverie J., Brunel-Muguet S., Akmouche Y., Pontet C.,
Pinochet X. & Avice J.C. (2019) Seed yield components and seed quality
of oilseed rape are impacted by sulfur fertilization and its
interactions with nitrogen fertilization. Frontiers in Plant
Science 10 .
Prerostova S., Dobrev P.I., Kramna B., Gaudinova A., Knirsch V., Spichal
L., Zatloukal M., Vankova R. (2020) Heat Acclimation and Inhibition of
Cytokinin Degradation Positively Affect Heat Stress Tolerance of
Arabidopsis. Frontiers in Plant Science 11 , 1–14.
Ruuska S.A., Girke T., Benning C. & Ohlrogge J.B. (2002) Contrapuntal
Networks of Gene Expression during Arabidopsis Seed Filling. The
Plant Cell 14 , 1191–1206.
Sage T.L., Bagha S., Lundsgaard-Nielsen V., Branch H.A., Sultmanis S. &
Sage R.F. (2015) The effect of high temperature stress on male and
female reproduction in plants. Field Crops Research 182 ,
30–42.
Schulte L.R., Ballard T., Samarakoon T., Yao L., Vadlani P., Staggenborg
S. & Rezac M. (2013) Increased growing temperature reduces content of
polyunsaturated fatty acids in four oilseed crops. Industrial
Crops and Products 51 , 212–219.
Serrano N., Ling Y., Bahieldin A. & Mahfouz M.M. (2019) Thermopriming
reprograms metabolic homeostasis to confer heat tolerance.Scientific Reports 9 , 1–14.
Sharma M. & Laxmi A. (2016) Jasmonates: Emerging Players in Controlling
Temperature Stress Tolerance. Frontiers in Plant Science6 , 1129.
Shu K., Liu X., Xie Q. & He Z. (2016) Two Faces of One Seed: Hormonal
Regulation of Dormancy and Germination. Molecular Plant9 , 34–45.
Soares C., Carvalho M.E.A., Azevedo R.A. & Fidalgo F. (2019) Plants
facing oxidative challenges—A little help from the antioxidant
networks. Environmental and Experimental Botany 161 ,
4–25.
Soengas P., Rodríguez V.M., Velasco P. & Cartea M.E. (2018) Effect of
Temperature Stress on Antioxidant Defenses in Brassica oleracea.ACS Omega 3 , 5237–5243.
Szydłowska‐Czerniak A., Amarowicz R. & Szłyk E. (2010) Antioxidant
capacity of rapeseed meal and rapeseed oils enriched with meal extract.European Journal of Lipid Science and Technology 112 ,
750–760.
Toh S., Kamiya Y., Kawakami N., Nambara E., McCourt P. & Tsuchiya Y.
(2012) Thermoinhibition uncovers a role for strigolactones in
arabidopsis seed germination. Plant and Cell Physiology53 , 107–117.
Trnka M., Rötter R.P., Ruiz-Ramos M., Kersebaum K.C., Olesen J.E., Žalud
Z. & Semenov M.A. (2014) Adverse weather conditions for European wheat
production will become more frequent with climate change. Nature
Climate Change 4 , 637–643.
Tuan P.A., Yamasaki Y., Kanno Y., Seo M. & Ayele B.T. (2019)
Transcriptomics of cytokinin and auxin metabolism and signaling genes
during seed maturation in dormant and non-dormant wheat genotypes.Scientific Reports 9 , 1–7.
Wahid A., Gelani S., Ashraf M. & Foolad M.R. (2007) Heat tolerance in
plants: An overview. Environmental and Experimental Botany61 , 199–223.
Wang X., Cai J., Liu F., Dai T., Cao W., Wollenweber B. & Jiang D.
(2014) Multiple heat priming enhances thermo-tolerance to a later high
temperature stress via improving subcellular antioxidant activities in
wheat seedlings. Plant Physiology and Biochemistry 74 ,
185–192.
Wang X. & Liiang D. (2017) Priming: A promising strategy for crop
production in response to future climate. Journal of Integrative
Agriculture 16 , 2709–2716.
Wang X., Xin C., Cai J., Zhou Q., Dai T., Cao W. & Jiang D. (2016) Heat
Priming Induces Trans-generational Tolerance to High Temperature Stress
in Wheat. Frontiers in plant science 7 , 501.
Xia X.J., Zhou Y.H., Shi K., Zhou J., Foyer C.H. & Yu J.Q. (2015)
Interplay between reactive oxygen species and hormones in the control of
plant development and stress tolerance. Journal of Experimental
Botany 66 , 2839–2856.
Xie Z., Zhang Z.-L., Hanzlik S., Cook E. & Shen Q.J. (2007) Salicylic
acid inhibits gibberellin-induced alpha-amylase expression and seed
germination via a pathway involving an abscisic-acid-inducible WRKY
gene. Plant Molecular Biology 64 , 293–303.
Young L.W., Wilen R.W. & Bonham-Smith P.C. (2004) High temperature
stress of Brassica napus during flowering reduces micro- and
megagametophyte fertility, induces fruit abortion, and disrupts seed
production. Journal of Experimental Botany 55 , 485–495.
Tables
Table 1: Yield and yield components distinguishing the two
pools of pods (i.e. podsL< 5cmpodsL≥ 5cm at the beginning of the T-modality
application) for the two S conditions (HS and LS) under the
T-modalities. For a given S condition, letters indicate the ranking
among T-modalities (including T-control) (Tukey multiple comparisons
test). For a given T-modality, symbols in the HS column indicate
significant differences between HS and LS conditions (T-test). F-values
and levels of significance are given for S, T and T x S effects. Levels
of significance: ns non-significant. p<0.05 *,
p<0.01**, p<0.001*** .