Acknowledgments
This study was supported by the Environment and Agronomy division of INRAE (funding “Pari Scientifique INRAE”). The authors would like to thank Magali Bodereau, Josiane Pichon, Josette Bonnefoy, Marine Lechevrel, Théo Lemercier, Julien Mignot and Christophe Muguet for their technical assistance and help with data analysis. They also thank Dr. Bae for the hormone analyses, Nicolas Elie from the CEMABIO platform for seed image analysis and Laurence Cantrill for editing the manuscript and providing relevant suggestions.
Bibliography
Aguirrezábal L., Martre P., Pereyra-Irujo G., Echarte M.M. & Izquierdo N. (2015) Improving grain quality: ecophysiological and modeling tools to develop management and breeding strategies. Crop Physiology , 423–465.
Akmouche Y., Cheneby J., Lamboeuf M., Elie N., Laperche A., Bertheloot J., … Brunel-Muguet S. (2019) Do nitrogen- and sulphur-remobilization-related parameters measured at the onset of the reproductive stage provide early indicators to adjust N and S fertilization in oilseed rape (Brassica napus L.) grown under N- and/or S-limiting supplies? Planta 250 , 2047–2062.
Aksouh-Harradj N.M., Campbell L.C. & Mailer R.J. (2006) Canola response to high and moderately high temperature stresses during seed maturation.Canadian Journal of Plant Science 86 , 967–980.
Aksouh N.M., Jacobs B.C., Stoddard F.L. & Mailer R.J. (2001) Response of canola to different heat stresses. Australian Journal of Agricultural Research 52 , 817–824.
Baek D., Pathange P., Chung J., Jiang J., Gao L., Oikawa A., … Shi H. (2010) A stress‐inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant, Cell & Environment 33 , 1383–1392.
Bailly C., Audigier C., Ladonne F., Wagner M.H., Coste F., Corbineau F. & Côme D. (2001) Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. Journal of Experimental Botany52 , 701–708.
Balfagón D., Sengupta S., Gómez-Cadenas A., Fritschi F.B., Azad R.K., Mittler R. & Zandalinas S.I. (2019) Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress. Plant physiology 181 , 1668–1682.
Bashir H., Ibrahim M.M., Bagheri R., Ahmad J., Arif I.A., Baig M.A. & Qureshi M.I. (2015) Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB PLANTS7 .
Baud S., Boutin J.P., Miquel M., Lepiniec L. & Rochat C. (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry 40 , 151–160.
Baux A., Colbach N., Allirand J.M., Jullien A., Ney B. & Pellet D. (2013) Insights into temperature effects on the fatty acid composition of oilseed rape varieties. European Journal of Agronomy49 , 12–19.
Baux A., Hebeisen T. & Pellet D. (2008) Effects of minimal temperatures on low-linolenic rapeseed oil fatty-acid composition. European Journal of Agronomy 29 , 102–107.
Bielach A., Hrtyan M. & Tognetti V.B. (2017) Plants under stress: Involvement of auxin and cytokinin. International Journal of Molecular Sciences 18 .
Bokszczanin K., Fragkostefanakis S., Bostan H., Bovy A., Chaturvedi P., Chiusano M.L., … Winter P. (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance.Frontiers in Plant Science 4 , 315.
Borisjuk L., Neuberger T., Schwender J., Heinzel N., Sunderhaus S., Fuchs J., … Rolletschek H. (2013) Seed architecture shapes embryo metabolism in oilseed rape. The Plant cell 25 , 1625–40.
Bruce T.J.A., Matthes M.C., Napier J.A. & Pickett J.A. (2007) Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science 173 , 603–608.
Brunel-Muguet S., D’Hooghe P., Bataillé M.-P., Larré C., Kim T.-H., Trouverie J., … Dürr C. (2015) Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.). Frontiers in Plant Science 6 .
Canvin D.T. (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops.Canadian Journal of Botany 43 , 63–69.
Chebrolu K.K., Fritschi F.B., Ye S., Krishnan H.B., Smith J.R. & Gillman J.D. (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12 , 1–14.
Chitnis V.R., Gao F., Yao Z., Jordan M.C., Park S. & Ayele B.T. (2014) After-ripening induced transcriptional changes of hormonal genes in wheat seeds: The cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS ONE 9 , 1–14.
Christidis N., Jones G.S. & Stott P.A. (2015) Dramatically increasing chance of extremely hot summers since the 2003 European heatwave.5 , 46–49.
Clarke S.M., Cristescu S.M., Miersch O., Harren F.J.M., Wasternack C. & Mur L.A.J. (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist182 , 175–187.
Clarke S.M., Mur L.A.J., Wood J.E. & Scott I.M. (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant Journal 38 , 432–447.
Crisp P.A., Ganguly D., Eichten S.R., Borevitz J.O. & Pogson B.J. (2016) Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Science Advances2 , e1501340–e1501340.
D’Hooghe P., Dubousset L., Gallardo K., Kopriva S., Avice J.-C. & Trouverie J. (2014) Evidence for Proteomic and Metabolic Adaptations Associated with Alterations of Seed Yield and Quality in Sulfur-limited Brassica napus L. Molecular & Cellular Proteomics 13 , 1165–1183.
D’Hooghe P., Escamez S., Trouverie J. & Avice J.-C. (2013) Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms. BMC plant biology 13 , 23.
Debeaujon I. & Koornneef M. (2000) Gibberellin Requirement for Arabidopsis Seed Germination Is Determined Both by Testa Characteristics and Embryonic Abscisic Acid 1 .
Deng X. & Scarth R. (1998) Temperature effects on fatty acid composition during development of low-linolenic oilseed rape (Brassica napus L.). Journal of the American Oil Chemists’ Society75 , 759–766.
Ding Y., Fromm M. & Avramova Z. (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nature communications 3 , 740.
Dornbos D.L. & Mullen R.E. (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature.Journal of the American Oil Chemists Society 69 , 228–231.
Finkelstein R. (2013) Abscisic Acid Synthesis and Response. The Arabidopsis Book 11 , e0166.
Gangl R., Behmüller R. & Tenhaken R. (2015) Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana. Frontiers in Plant Science 6 , 789.
Gauthier M., Pellet D., Monney C., Herrera J.M., Rougier M. & Baux A. (2017) Fatty acids composition of oilseed rape genotypes as affected by solar radiation and temperature. Field Crops Research212 , 165–174.
González-Centeno M.R., Comas-Serra F., Femenia A., Rosselló C. & Simal S. (2015) Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry 22 , 506–514.
González-Centeno M.R., Jourdes M., Femenia A., Simal S., Rosselló C. & Teissedre P.-L. (2012) Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry 60 , 11850–11858.
Grami B. & Stefansson B. (1977) Gene action for protein and oil content in summer rape. Canadian Journal of Plant Science 57 .
Groot M.P., Kooke R., Knoben N., Vergeer P., Keurentjes J.J.B., Ouborg N.J. & Verhoeven K.J.F. (2016) Effects of Multi-Generational Stress Exposure and Offspring Environment on the Expression and Persistence of Transgenerational Effects in Arabidopsis thaliana. PLoS ONE11 , 1–16.
Guilioni L., Wéry J. & Lecoeur J. (2003) High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Functional Plant Biology 30 , 1151–1164.
Guilioni L., Wery J. & Tardieu F. (1997) Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Annals of Botany80 , 159–168.
Hasanuzzaman M., Bhuyan M.H.M.B., Mahmud J.A., Nahar K., Mohsin S.M., Parvin K. & Fujita M. (2018) Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signaling and Behavior 13 , 1–5.
Hatzig S. V., Nuppenau J.N., Snowdon R.J. & Schießl S. V. (2018) Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biology18 , 1–13.
Hilker M. & Schmülling T. (2019) Stress priming, memory, and signalling in plants. Plant Cell and Environment 42 , 753–761.
Hoegh-Guldberg O., Jacob D., Taylor M., Bindi M., Brown S., Camilloni I., … Zhou G. (2018) Impacts of 1.5oC Global Warming on Natural and Human Systems. In In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate cha . (eds V. Masson-Delmotte, P. Zhai, H. Pörtner, D. Roberts, J. Skea, P. Shukla, … T. Waterfield), p. 32 pp.
Huang R., Liu Z., Xing M., Yang Y., Wu X., Liu H. & Liang W. (2019) Heat Stress Suppresses Brassica napus Seed Oil Accumulation by Inhibition of Photosynthesis and BnWRI1 Pathway. Plant and Cell Physiology 60 , 1457–1470.
Kinoshita T. & Seki M. (2014) Epigenetic memory for stress response and adaptation in plants. Plant and Cell Physiology 55 , 1859–1863.
Kopriva S., Talukdar D., Takahashi H., Hell R., Sirko A., D’Souza S.F. & Talukdar T. (2016) Editorial: Frontiers of Sulfur Metabolism in Plant Growth, Development, and Stress Response. Frontiers in Plant Science 6 , 1220.
Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E. & Scharf K.D. (2007) Complexity of the heat stress response in plants.Current Opinion in Plant Biology 10 , 310–316.
Kumar S. (2018) Epigenetic memory of stress responses in plants.J. Phytochem. Biochem 2 , e102.
Lancashire P.D., Bleiholder H., Van Den Boom T., Langelüddeke P., Stauss R., Weber E., Witzenberger A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of applied Biology119 , 561-601.
Lee S. & Park C.-M. (2010) Modulation of reactive oxygen species by salicylic acid in arabidopsis seed germination under high salinity.Plant Signaling & Behavior 5 , 1534.
Leprince O., Pellizzaro A., Berriri S. & Buitink J. (2017) Late seed maturation: Drying without dying. Journal of Experimental Botany68 , 827–841.
Liu L., Liu F., Chu J., Yi X., Fan W., Tang T., … Zhao X. (2019) A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.).BMC Plant Biology 19 , 1–18.
Marchand L., Pelosi C., González-Centeno M.R., Maillard A., Ourry A., Galland W., … Brunel-Muguet S. (2016) Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol.Chemosphere 156 .
Meng J., Wang L., Wang J., Zhao X., Cheng J., Yu W., … Gong Z. (2018) METHIONINE ADENOSYLTRANSFERASE 4 mediates DNA and histone methylation. Plant Physiology 177 , pp.00183.2018.
Molinier J., Ries G., Zipfel C. & Hohn B. (2006) Transgeneration memory of stress in plants. Nature 442 , 1046–1049.
Morrison M.J. & Stewart D.W. (2002) Heat stress during flowering in summer Brassica. Crop Science 42 , 797–803.
Mukwevho E., Ferreira Z. & Ayeleso A. (2014) Potential Role of Sulfur-Containing Antioxidant Systems in Highly Oxidative Environments.Molecules 2014, Vol. 19, Pages 19376-19389 19 , 19376–19389.
Nikiforova V., Freitag J., Kempa S., Adamik M., Hesse H. & Hoefgen R. (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: Interlacing of biosynthetic pathways provides response specificity. Plant Journal 33 , 633–650.
Nishizawa A., Yabuta Y. & Shigeoka S. (2008) Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage.Plant Physiology 147 , 1251–1263.
Niu Y., Wu G.-Z., Ye R., Lin W.-H., Shi Q.-M., Xue L.-J., … Xue H.-W. (2009) Global Analysis of Gene Expression Profiles in Brassica napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation with Arabidopsis thaliana. Molecular Plant 2 , 1107–1122.
Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K., Lesk C., al. et, … al. et (2016) Transcriptional Regulatory Network of Plant Heat Stress Response. Trends in Plant Science 0 , 84–87.
Pan X., Welti R. & Wang X. (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols 5 , 986–992.
Pekrun C., Lutman P.J.W. & Baeumer K. (1997) Germination behaviour of dormant oilseed rape seeds in relation to temperature. Weed Research 37 , 419–431.
Poisson E., Trouverie J., Brunel-Muguet S., Akmouche Y., Pontet C., Pinochet X. & Avice J.C. (2019) Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Frontiers in Plant Science 10 .
Prerostova S., Dobrev P.I., Kramna B., Gaudinova A., Knirsch V., Spichal L., Zatloukal M., Vankova R. (2020) Heat Acclimation and Inhibition of Cytokinin Degradation Positively Affect Heat Stress Tolerance of Arabidopsis. Frontiers in Plant Science 11 , 1–14.
Ruuska S.A., Girke T., Benning C. & Ohlrogge J.B. (2002) Contrapuntal Networks of Gene Expression during Arabidopsis Seed Filling. The Plant Cell 14 , 1191–1206.
Sage T.L., Bagha S., Lundsgaard-Nielsen V., Branch H.A., Sultmanis S. & Sage R.F. (2015) The effect of high temperature stress on male and female reproduction in plants. Field Crops Research 182 , 30–42.
Schulte L.R., Ballard T., Samarakoon T., Yao L., Vadlani P., Staggenborg S. & Rezac M. (2013) Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Industrial Crops and Products 51 , 212–219.
Serrano N., Ling Y., Bahieldin A. & Mahfouz M.M. (2019) Thermopriming reprograms metabolic homeostasis to confer heat tolerance.Scientific Reports 9 , 1–14.
Sharma M. & Laxmi A. (2016) Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. Frontiers in Plant Science6 , 1129.
Shu K., Liu X., Xie Q. & He Z. (2016) Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant9 , 34–45.
Soares C., Carvalho M.E.A., Azevedo R.A. & Fidalgo F. (2019) Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany 161 , 4–25.
Soengas P., Rodríguez V.M., Velasco P. & Cartea M.E. (2018) Effect of Temperature Stress on Antioxidant Defenses in Brassica oleracea.ACS Omega 3 , 5237–5243.
Szydłowska‐Czerniak A., Amarowicz R. & Szłyk E. (2010) Antioxidant capacity of rapeseed meal and rapeseed oils enriched with meal extract.European Journal of Lipid Science and Technology 112 , 750–760.
Toh S., Kamiya Y., Kawakami N., Nambara E., McCourt P. & Tsuchiya Y. (2012) Thermoinhibition uncovers a role for strigolactones in arabidopsis seed germination. Plant and Cell Physiology53 , 107–117.
Trnka M., Rötter R.P., Ruiz-Ramos M., Kersebaum K.C., Olesen J.E., Žalud Z. & Semenov M.A. (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change 4 , 637–643.
Tuan P.A., Yamasaki Y., Kanno Y., Seo M. & Ayele B.T. (2019) Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes.Scientific Reports 9 , 1–7.
Wahid A., Gelani S., Ashraf M. & Foolad M.R. (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany61 , 199–223.
Wang X., Cai J., Liu F., Dai T., Cao W., Wollenweber B. & Jiang D. (2014) Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry 74 , 185–192.
Wang X. & Liiang D. (2017) Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture 16 , 2709–2716.
Wang X., Xin C., Cai J., Zhou Q., Dai T., Cao W. & Jiang D. (2016) Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Frontiers in plant science 7 , 501.
Xia X.J., Zhou Y.H., Shi K., Zhou J., Foyer C.H. & Yu J.Q. (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany 66 , 2839–2856.
Xie Z., Zhang Z.-L., Hanzlik S., Cook E. & Shen Q.J. (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Molecular Biology 64 , 293–303.
Young L.W., Wilen R.W. & Bonham-Smith P.C. (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany 55 , 485–495.
Tables
Table 1: Yield and yield components distinguishing the two pools of pods (i.e. podsL< 5cmpodsL≥ 5cm at the beginning of the T-modality application) for the two S conditions (HS and LS) under the T-modalities. For a given S condition, letters indicate the ranking among T-modalities (including T-control) (Tukey multiple comparisons test). For a given T-modality, symbols in the HS column indicate significant differences between HS and LS conditions (T-test). F-values and levels of significance are given for S, T and T x S effects. Levels of significance: ns non-significant. p<0.05 *, p<0.01**, p<0.001*** .