References
Achuo, A. E., Audenaert, K., Meziane, H., & Höfte, M. (2002). The
SA-dependent defense pathway is active against different pathogens in
tomato and tobacco. Meded Rijksuniv Gent Fak Landbouwkd Toegep
Biol Wet, 67 (2), 149-157.
Agut, B., Gamir, J., Jaques, J. A., & Flors, V. (2016). Systemic
resistance in citrus to Tetranychus urticae induced by conspecifics is
transmitted by grafting and mediated by mobile amino acids. J Exp
Bot, 67 (19), 5711-5723. doi:10.1093/jxb/erw335
Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke,
M., Van Breusegem, F., & Höfte, M. (2007). Resistance to Botrytis
cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves
timely production of hydrogen peroxide and cell wall modifications in
the epidermis. Plant Physiol, 144 (4), 1863-1877.
doi:10.1104/pp.107.099226
Aziz, A., Heyraud, A., & Lambert, B. (2004). Oligogalacturonide signal
transduction, induction of defense-related responses and protection of
grapevine against Botrytis cinerea. Planta, 218 (5), 767-774.
doi:10.1007/s00425-003-1153-x
Bais, H. P., Sudha, G., Suresh, B., & Ravishankar, G. A. (2001).
Permeabilization and in situ adsorption studies during growth and
coumarin production in hairy root cultures of Cichorium intybus L.Indian J Exp Biol, 39 (6), 564-571.
Barbero, F., Guglielmotto, M., Capuzzo, A., & Maffei, M. E. (2016).
Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA
(etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in
Lima Bean (Phaseolus lunatus) and Maize (Zea mays). Int J Mol Sci,
17 (10). doi:10.3390/ijms17101659
Bellincampi, D., Salvi, G., De Lorenzo, G., Cervone, F., Marfà, V.,
Eberhard, S., Darvill, A., Albersheim, P. (1993). Oligogalacturonides
inhibit the formation of roots on tobacco explants. Plant J , 4
(1), 207-213. doi:10.1046/j.1365-313X.1993.04010207.x
Benedetti, M., Mattei, B., Pontiggia, D., Salvi, G., Savatin, D. V., &
Ferrari, S. (2017). Methods of Isolation and Characterization of
Oligogalacturonide Elicitors. Methods Mol Biol, 1578 , 25-38.
doi:10.1007/978-1-4939-6859-6_3
Benedetti, M., Pontiggia, D., Raggi, S., Cheng, Z., Scaloni, F.,
Ferrari, S., . . . De Lorenzo, G. (2015). Plant immunity triggered by
engineered in vivo release of oligogalacturonides, damage-associated
molecular patterns. Proc Natl Acad Sci U S A, 112 (17), 5533-5538.
doi:10.1073/pnas.1504154112
Biastoff, S., Brandt, W., & Dräger, B. (2009). Putrescine
N-methyltransferase–the start for alkaloids. Phytochemistry,
70 (15-16), 1708-1718. doi:10.1016/j.phytochem.2009.06.012
Birkenmeier, G. F., & Ryan, C. A. (1998). Wound signaling in tomato
plants. Evidence that aba is not a primary signal for defense gene
activation. Plant Physiol, 117 (2), 687-693.
doi:10.1104/pp.117.2.687
Bishop, P. D., Makus, D. J., Pearce, G., & Ryan, C. A. (1981).
Proteinase inhibitor-inducing factor activity in tomato leaves resides
in oligosaccharides enzymically released from cell walls. Proc
Natl Acad Sci U S A, 78 (6), 3536-3540.
Bishop, P. D., Pearce, G., Bryant, J. E., & Ryan, C. A. (1984).
Isolation and characterization of the proteinase inhibitor-inducing
factor from tomato leaves. Identity and activity of poly- and
oligogalacturonide fragments. J Biol Chem, 259 (21), 13172-13177.
Cabrera, J. C., Boland, A., Messiaen, J., Cambier, P., & Van Cutsem, P.
(2008). Egg box conformation of oligogalacturonides: the time-dependent
stabilization of the elicitor-active conformation increases its
biological activity. Glycobiology, 18 (6), 473-482.
doi:10.1093/glycob/cwn027
Camejo, D., Martí, M.C., Olmos, E., Torres, W., Sevilla, F., & Jimenez,
A. (2012). Oligogalacturonides stimulate antioxidant system in alfalfa
roots. Biol Plant 56 , 537–544. doi:10.1007/s10535-012-0107-1
Chao, W.S., Pautot, V., Holzer, F.M., Walling, L.L. (2000). Leucine
aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A.Planta, 210 (4), 563‐573. doi:10.1007/s004250050045
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., . . .
Xia, J. (2018). MetaboAnalyst 4.0: towards more transparent and
integrative metabolomics analysis. Nucleic Acids Res, 46 (W1),
W486-W494. doi:10.1093/nar/gky310
Curvers, K., Seifi, H., Mouille, G., de Rycke, R., Asselbergh, B., Van
Hecke, A., . . . Höfte, M. (2010). Abscisic acid deficiency causes
changes in cuticle permeability and pectin composition that influence
tomato resistance to Botrytis cinerea. Plant Physiol, 154 (2),
847-860. doi:10.1104/pp.110.158972
Davidsson, P., Broberg, M., Kariola, T., Sipari, N., Pirhonen, M., &
Palva, E. T. (2017). Short oligogalacturonides induce pathogen
resistance-associated gene expression in Arabidopsis thaliana. BMC
Plant Biol, 17 (1), 19. doi:10.1186/s12870-016-0959-1
De Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018).
Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and
Repair. Trends Immunol, 39 (11), 937-950.
doi:10.1016/j.it.2018.09.006
Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De
Lorenzo, G., . . . Dewdney, J. (2008). Activation of defense response
pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol
Plant, 1 (3), 423-445. doi:10.1093/mp/ssn019
Doares, S. H., Syrovets, T., Weiler, E. W., & Ryan, C. A. (1995).
Oligogalacturonides and chitosan activate plant defensive genes through
the octadecanoid pathway. Proc Natl Acad Sci U S A, 92 (10),
4095-4098.
Duran-Flores, D., & Heil, M. (2017). Extracellular self-DNA as a
damage-associated molecular pattern (DAMP) that triggers self-specific
immunity induction in plants. Brain Behav Immun .
doi:10.1016/j.bbi.2017.10.010
Díaz, J., ten Have, A., & van Kan, J. A. (2002). The role of ethylene
and wound signaling in resistance of tomato to Botrytis cinerea.Plant Physiol, 129 (3), 1341-1351. doi:10.1104/pp.001453
El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez,
M. C., Daayf, F., . . . Bouarab, K. (2011). Botrytis cinerea manipulates
the antagonistic effects between immune pathways to promote disease
development in tomato. Plant Cell, 23 (6), 2405-2421.
doi:10.1105/tpc.111.083394
Erb, M., Lenk, C., Degenhardt, J., & Turlings, T. C. (2009). The
underestimated role of roots in defense against leaf attackers.Trends Plant Sci, 14 (12), 653-659.
doi:10.1016/j.tplants.2009.08.006
Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F. M.,
& Dewdney, J. (2007). Resistance to Botrytis cinerea induced in
Arabidopsis by elicitors is independent of salicylic acid, ethylene, or
jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant
Physiol, 144 (1), 367-379. doi:10.1104/pp.107.095596
Ferrari, S., Plotnikova, J. M., De Lorenzo, G., & Ausubel, F. M.
(2003). Arabidopsis local resistance to Botrytis cinerea involves
salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2,
EDS5 or PAD4. Plant J, 35 (2), 193-205.
doi:10.1046/j.1365-313x.2003.01794.x
Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., &
Lorenzo, G. D. (2013). Oligogalacturonides: plant damage-associated
molecular patterns and regulators of growth and development. Front
Plant Sci, 4 , 49. doi:10.3389/fpls.2013.00049
Fowler, J. H., Narváez-Vásquez, J., Aromdee, D. N., Pautot, V., Holzer,
F. M., & Walling, L. L. (2009). Leucine aminopeptidase regulates
defense and wound signaling in tomato downstream of jasmonic acid.Plant Cell, 21 (4), 1239-1251. doi:10.1105/tpc.108.065029
Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F. M., De
Lorenzo, G., & Ferrari, S. (2008). The AtrbohD-mediated oxidative burst
elicited by oligogalacturonides in Arabidopsis is dispensable for the
activation of defense responses effective against Botrytis cinerea.Plant Physiol, 148 (3), 1695-1706. doi:10.1104/pp.108.127845
Galletti, R., Ferrari, S., & De Lorenzo, G. (2011). Arabidopsis MPK3
and MPK6 play different roles in basal and oligogalacturonide- or
flagellin-induced resistance against Botrytis cinerea. Plant
Physiol, 157 (2), 804-814. doi:10.1104/pp.111.174003
Gamir, J., Pastor, V., Cerezo, M., & Flors, V. (2012). Identification
of indole-3-carboxylic acid as mediator of priming against
Plectosphaerella cucumerina. Plant Physiol Biochem, 61 , 169-179.
doi:10.1016/j.plaphy.2012.10.004
Gamir, J., Pastor, V., Kaever, A., Cerezo, M., & Flors, V. (2014).
Targeting novel chemical and constitutive primed metabolites against
Plectosphaerella cucumerina. Plant J, 78 (2), 227-240.
doi:10.1111/tpj.12465
Gravino, M., Locci, F., Tundo, S., Cervone, F., Savatin, D. V., & De
Lorenzo, G. (2017). Immune responses induced by oligogalacturonides are
differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2.Mol Plant Pathol, 18 (4), 582-595. doi:10.1111/mpp.12419
Gravino, M., Savatin, D. V., Macone, A., & De Lorenzo, G. (2015).
Ethylene production in Botrytis cinerea- and oligogalacturonide-induced
immunity requires calcium-dependent protein kinases. Plant J,
84 (6), 1073-1086. doi:10.1111/tpj.13057
Gust, A. A., Pruitt, R., & Nürnberger, T. (2017). Sensing Danger: Key
to Activating Plant Immunity. Trends Plant Sci, 22 (9), 779-791.
doi:10.1016/j.tplants.2017.07.005
Gómez, S., Ferrieri, R. A., Schueller, M., & Orians, C. M. (2010).
Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics
in tomato. New Phytol, 188 (3), 835-844.
doi:10.1111/j.1469-8137.2010.03414.x
Hernandez-Mata, G., Mellado Rojas, M.E., Richards-Lewis, A.,
Lopez-Bucio, J., Beltran-Peña, E., Soriano-Bello, E.L. (2010) Plant
Immunity induced by oligogalacturonides alters root growth in a process
involving flavonoid accumulation in Arabidopsis thaliana. J Plant
Growth Regul 29, 441-454. doi:10.1007/s00344-010-9156-x
Heil, M., & Land, W. G. (2014). Danger signals - damaged-self
recognition across the tree of life. Front Plant Sci, 5 , 578.
doi:10.3389/fpls.2014.00578
Hewitt, E.J. (1966). Sand and Water Culture Methods Used in the Study of
Plant Nutrition. In: Hudson JP, eds: Technical Communication No. 22
(Revised 2nd Edition) of the Commonwealth Bureau of Horticulture and
Plantation Crops, East Malling, Maidstone, Kent: Farnham Royal, England:
Commonwealth Agricultural Bureaux. doi:10.1017/S0014479700021852
Hilleary, R., & Gilroy, S. (2018). Systemic signaling in response to
wounding and pathogens. Curr Opin Plant Biol, 43 , 57-62.
doi:10.1016/j.pbi.2017.12.009
Häkkinen, S. T., Rischer, H., Laakso, I., Maaheimo, H., Seppänen-Laakso,
T., & Oksman-Caldentey, K. M. (2004). Anatalline and other methyl
jasmonate-inducible nicotine alkaloids from Nicotiana tabacum cv. By-2
cell cultures. Planta Med, 70 (10), 936-941.
doi:10.1055/s-2004-832620
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444 (7117), 323-329. doi:10.1038/nature05286
Kaever, A., Landesfeind, M., Feussner, K., Morgenstern, B., Feussner,
I., & Meinicke, P. (2014). Meta-analysis of pathway enrichment:
combining independent and dependent omics data sets. PLoS One,
9 (2), e89297. doi:10.1371/journal.pone.0089297
Kohnen-Johannsen, K. L., & Kayser, O. (2019). Tropane Alkaloids:
Chemistry, Pharmacology, Biosynthesis and Production. Molecules,
24 (4). doi:10.3390/molecules24040796
Kundu, A., Mishra, S., & Vadassery, J. (2018). Spodoptera
litura-mediated chemical defense is differentially modulated in older
and younger systemic leaves of Solanum lycopersicum. Planta,
248 (4), 981-997. doi:10.1007/s00425-018-2953-3
Lionetti, V., Fabri, E., De Caroli, M., Hansen, A. R., Willats, W. G.,
Piro, G., & Bellincampi, D. (2017). Three Pectin Methylesterase
Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to.Plant Physiol, 173 (3), 1844-1863. doi:10.1104/pp.16.01185
Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores:
chemical aspects. Annu Rev Plant Biol, 63 , 431-450.
doi:10.1146/annurev-arplant-042110-103854
O’Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O.
and Bowles, D.J. (1996). Ethylene as a signal mediating the wound
response of tomato plants. Science 274 , 1914–1917
doi:10.1016/S1360-1385(97)88388-4
Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is
generated systemically in plant leaves by wounding and systemin via the
octadecanoid pathway. Proc Natl Acad Sci U S A, 96 (11),
6553-6557.
Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A.,
Patui, S., & Vianello, A. (2013). Plant flavonoids–biosynthesis,
transport and involvement in stress responses. Int J Mol Sci,
14 (7), 14950-14973. doi:10.3390/ijms140714950
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van
Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by
beneficial microbes. Annu Rev Phytopathol, 52 , 347-375.
doi:10.1146/annurev-phyto-082712-102340
Reymond, P., Grünberger, S., Paul, K., Müller, M., & Farmer, E. E.
(1995). Oligogalacturonide defense signals in plants: large fragments
interact with the plasma membrane in vitro. Proc Natl Acad Sci U S
A, 92 (10), 4145-4149. doi:10.1073/pnas.92.10.4145
Román, M., Fernández, I., Wyatt, T., Sahrawy, M., Heil, M., Pozo, M. J.
(2011). Elicitation of foliar resistance mechanisms transiently impairs
root association with arbuscular mycorrhizal fungi. Journal of
Ecology , 99 (1), 36-45. doi:10.1111/j.1365-2745.2010.01752.x
Sanmartín, N., Pastor, V., Pastor-Fernández, J., Flors, V., Pozo, M. J.,
& Sánchez-Bel, P. (2020). Role and mechanisms of callose priming in
mycorrhiza-induced resistance. J Exp Bot, 71 (9), 2769-2781.
doi:10.1093/jxb/eraa030
Savatin, D. V., Ferrari, S., Sicilia, F., & De Lorenzo, G. (2011).
Oligogalacturonide-auxin antagonism does not require posttranscriptional
gene silencing or stabilization of auxin response repressors in
Arabidopsis. Plant Physiol, 157 (3), 1163-1174.
doi:10.1104/pp.111.184663
Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014).
Wounding in the plant tissue: the defense of a dangerous passage.Front Plant Sci, 5 , 470. doi:10.3389/fpls.2014.00470
Schilmiller, A. L., & Howe, G. A. (2005). Systemic signaling in the
wound response. Curr Opin Plant Biol, 8 (4), 369-377.
doi:10.1016/j.pbi.2005.05.008
Scranton, M. A., Yee, A., Park, S. Y., & Walling, L. L. (2012). Plant
leucine aminopeptidases moonlight as molecular chaperones to alleviate
stress-induced damage. J Biol Chem, 287 (22), 18408-18417.
doi:10.1074/jbc.M111.309500
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G.
(2006). XCMS: processing mass spectrometry data for metabolite profiling
using nonlinear peak alignment, matching, and identification. Anal
Chem, 78 (3), 779-787. doi:10.1021/ac051437y
Smith, J. E., Mengesha, B., Tang, H., Mengiste, T., & Bluhm, B. H.
(2014). Resistance to Botrytis cinerea in Solanum lycopersicoides
involves widespread transcriptional reprogramming. BMC Genomics,
15 , 334. doi:10.1186/1471-2164-15-334
Simpson, S. D., Ashford, D. A., Harvey, D. J., and Bowles, D. J. (1998).
Short chain oligogalacturonides induce ethylene production and
expression of the gene encoding aminocyclopropane1-carboxylic acid
oxidase in tomato plants. Glycobiology 8 , 579–583.
doi:10.1093/glycob/8.6.579
Steinbrenner, A. D., Gómez, S., Osorio, S., Fernie, A. R., & Orians, C.
M. (2011). Herbivore-induced changes in tomato (Solanum lycopersicum)
primary metabolism: a whole plant perspective. J Chem Ecol,
37 (12), 1294-1303. doi:10.1007/s10886-011-0042-1
Sun, J. Q., Jiang, H. L., & Li, C. Y. (2011).
Systemin/Jasmonate-mediated systemic defense signaling in tomato.Mol Plant, 4 (4), 607-615. doi:10.1093/mp/ssr008
Thain, J. F. (1995). Electrophysiology. Methods Cell Biol, 49 ,
259-274.
Tian, D., Peiffer, M., De Moraes, C. M., & Felton, G. W. (2014). Roles
of ethylene and jasmonic acid in systemic induced defense in tomato
(Solanum lycopersicum) against Helicoverpa zea. Planta, 239 (3),
577-589. doi:10.1007/s00425-013-1997-7
Treutter, D. (2005). Significance of flavonoids in plant resistance and
enhancement of their biosynthesis. Plant Biol (Stuttg), 7 (6),
581-591. doi:10.1055/s-2005-873009
Tytgat, T. O., Verhoeven, K. J., Jansen, J. J., Raaijmakers, C. E.,
Bakx-Schotman, T., McIntyre, L. M., . . . van Dam, N. M. (2013). Plants
know where it hurts: root and shoot jasmonic acid induction elicit
differential responses in Brassica oleracea. PLoS One, 8 (6),
e65502. doi:10.1371/journal.pone.0065502
van Kan, J. A., Joosten, M. H., Wagemakers, C. A., van den
Berg-Velthuis, G. C., & de Wit, P. J. (1992). Differential accumulation
of mRNAs encoding extracellular and intracellular PR proteins in tomato
induced by virulent and avirulent races of Cladosporium fulvum.Plant Mol Biol, 20 (3), 513-527. doi:10.1007/BF00040610
Vega-Muñoz, I., Feregrino-Pérez, A. A., Torres-Pacheco, I., &
Guevara-González, R. G. (2018). Exogenous fragmented DNA acts as a
damage-associated molecular pattern (DAMP) inducing changes in CpG DNA
methylation and defence-related responses in Lactuca sativa. Funct
Plant Biol, 45 (10), 1065-1072. doi:10.1071/FP18011
Zipfel, C., & Oldroyd, G. E. (2017). Plant signalling in symbiosis and
immunity. Nature, 543 (7645), 328-336. doi:10.1038/nature22009
Table 1. Transcriptional regulation of phytohormone
biosynthetic genes upon OG treatment. Quantitative RT-qPCR analysis of
LOXD (lypoxigenase D, involved in JA biosynthesis), NCED
(9-cis-epoxycarotenoid dioxygenase, involved in ABA biosynthesis, and
ACO1 (ACC Oxidase 1, coding for the enzyme responsible for the limiting
step in ET biosynthesis) in leaves and roots of OG treated plants.
Changes related to local responses were evaluated in treated leaves and
roots. Systemic responses were evaluated in roots and upper leaves upon
OG treatment in leaves (LT) or in upper leaves upon OG treatment in
roots (RT). Numbers correspond to the fold induction of the gene
expression levels in treated vs control plants. Values are normalized
relative to the tomato housekeeping gene Actin. Bold numbers indicate
significant differences (t-test; p-value<0.05).