References
Achuo, A. E., Audenaert, K., Meziane, H., & Höfte, M. (2002). The SA-dependent defense pathway is active against different pathogens in tomato and tobacco. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, 67 (2), 149-157.
Agut, B., Gamir, J., Jaques, J. A., & Flors, V. (2016). Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. J Exp Bot, 67 (19), 5711-5723. doi:10.1093/jxb/erw335
Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F., & Höfte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol, 144 (4), 1863-1877. doi:10.1104/pp.107.099226
Aziz, A., Heyraud, A., & Lambert, B. (2004). Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta, 218 (5), 767-774. doi:10.1007/s00425-003-1153-x
Bais, H. P., Sudha, G., Suresh, B., & Ravishankar, G. A. (2001). Permeabilization and in situ adsorption studies during growth and coumarin production in hairy root cultures of Cichorium intybus L.Indian J Exp Biol, 39 (6), 564-571.
Barbero, F., Guglielmotto, M., Capuzzo, A., & Maffei, M. E. (2016). Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays). Int J Mol Sci, 17 (10). doi:10.3390/ijms17101659
Bellincampi, D., Salvi, G., De Lorenzo, G., Cervone, F., Marfà, V., Eberhard, S., Darvill, A., Albersheim, P. (1993). Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant J , 4 (1), 207-213. doi:10.1046/j.1365-313X.1993.04010207.x
Benedetti, M., Mattei, B., Pontiggia, D., Salvi, G., Savatin, D. V., & Ferrari, S. (2017). Methods of Isolation and Characterization of Oligogalacturonide Elicitors. Methods Mol Biol, 1578 , 25-38. doi:10.1007/978-1-4939-6859-6_3
Benedetti, M., Pontiggia, D., Raggi, S., Cheng, Z., Scaloni, F., Ferrari, S., . . . De Lorenzo, G. (2015). Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A, 112 (17), 5533-5538. doi:10.1073/pnas.1504154112
Biastoff, S., Brandt, W., & Dräger, B. (2009). Putrescine N-methyltransferase–the start for alkaloids. Phytochemistry, 70 (15-16), 1708-1718. doi:10.1016/j.phytochem.2009.06.012
Birkenmeier, G. F., & Ryan, C. A. (1998). Wound signaling in tomato plants. Evidence that aba is not a primary signal for defense gene activation. Plant Physiol, 117 (2), 687-693. doi:10.1104/pp.117.2.687
Bishop, P. D., Makus, D. J., Pearce, G., & Ryan, C. A. (1981). Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci U S A, 78 (6), 3536-3540.
Bishop, P. D., Pearce, G., Bryant, J. E., & Ryan, C. A. (1984). Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly- and oligogalacturonide fragments. J Biol Chem, 259 (21), 13172-13177.
Cabrera, J. C., Boland, A., Messiaen, J., Cambier, P., & Van Cutsem, P. (2008). Egg box conformation of oligogalacturonides: the time-dependent stabilization of the elicitor-active conformation increases its biological activity. Glycobiology, 18 (6), 473-482. doi:10.1093/glycob/cwn027
Camejo, D., Martí, M.C., Olmos, E., Torres, W., Sevilla, F., & Jimenez, A. (2012). Oligogalacturonides stimulate antioxidant system in alfalfa roots. Biol Plant 56 , 537–544. doi:10.1007/s10535-012-0107-1
Chao, W.S., Pautot, V., Holzer, F.M., Walling, L.L. (2000). Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A.Planta, 210 (4), 563‐573. doi:10.1007/s004250050045
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., . . . Xia, J. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res, 46 (W1), W486-W494. doi:10.1093/nar/gky310
Curvers, K., Seifi, H., Mouille, G., de Rycke, R., Asselbergh, B., Van Hecke, A., . . . Höfte, M. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol, 154 (2), 847-860. doi:10.1104/pp.110.158972
Davidsson, P., Broberg, M., Kariola, T., Sipari, N., Pirhonen, M., & Palva, E. T. (2017). Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. BMC Plant Biol, 17 (1), 19. doi:10.1186/s12870-016-0959-1
De Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018). Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol, 39 (11), 937-950. doi:10.1016/j.it.2018.09.006
Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., . . . Dewdney, J. (2008). Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant, 1 (3), 423-445. doi:10.1093/mp/ssn019
Doares, S. H., Syrovets, T., Weiler, E. W., & Ryan, C. A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A, 92 (10), 4095-4098.
Duran-Flores, D., & Heil, M. (2017). Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants. Brain Behav Immun . doi:10.1016/j.bbi.2017.10.010
Díaz, J., ten Have, A., & van Kan, J. A. (2002). The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.Plant Physiol, 129 (3), 1341-1351. doi:10.1104/pp.001453
El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., . . . Bouarab, K. (2011). Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell, 23 (6), 2405-2421. doi:10.1105/tpc.111.083394
Erb, M., Lenk, C., Degenhardt, J., & Turlings, T. C. (2009). The underestimated role of roots in defense against leaf attackers.Trends Plant Sci, 14 (12), 653-659. doi:10.1016/j.tplants.2009.08.006
Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F. M., & Dewdney, J. (2007). Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol, 144 (1), 367-379. doi:10.1104/pp.107.095596
Ferrari, S., Plotnikova, J. M., De Lorenzo, G., & Ausubel, F. M. (2003). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J, 35 (2), 193-205. doi:10.1046/j.1365-313x.2003.01794.x
Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., & Lorenzo, G. D. (2013). Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci, 4 , 49. doi:10.3389/fpls.2013.00049
Fowler, J. H., Narváez-Vásquez, J., Aromdee, D. N., Pautot, V., Holzer, F. M., & Walling, L. L. (2009). Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid.Plant Cell, 21 (4), 1239-1251. doi:10.1105/tpc.108.065029
Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F. M., De Lorenzo, G., & Ferrari, S. (2008). The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea.Plant Physiol, 148 (3), 1695-1706. doi:10.1104/pp.108.127845
Galletti, R., Ferrari, S., & De Lorenzo, G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol, 157 (2), 804-814. doi:10.1104/pp.111.174003
Gamir, J., Pastor, V., Cerezo, M., & Flors, V. (2012). Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant Physiol Biochem, 61 , 169-179. doi:10.1016/j.plaphy.2012.10.004
Gamir, J., Pastor, V., Kaever, A., Cerezo, M., & Flors, V. (2014). Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina. Plant J, 78 (2), 227-240. doi:10.1111/tpj.12465
Gravino, M., Locci, F., Tundo, S., Cervone, F., Savatin, D. V., & De Lorenzo, G. (2017). Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2.Mol Plant Pathol, 18 (4), 582-595. doi:10.1111/mpp.12419
Gravino, M., Savatin, D. V., Macone, A., & De Lorenzo, G. (2015). Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. Plant J, 84 (6), 1073-1086. doi:10.1111/tpj.13057
Gust, A. A., Pruitt, R., & Nürnberger, T. (2017). Sensing Danger: Key to Activating Plant Immunity. Trends Plant Sci, 22 (9), 779-791. doi:10.1016/j.tplants.2017.07.005
Gómez, S., Ferrieri, R. A., Schueller, M., & Orians, C. M. (2010). Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol, 188 (3), 835-844. doi:10.1111/j.1469-8137.2010.03414.x
Hernandez-Mata, G., Mellado Rojas, M.E., Richards-Lewis, A., Lopez-Bucio, J., Beltran-Peña, E., Soriano-Bello, E.L. (2010) Plant Immunity induced by oligogalacturonides alters root growth in a process involving flavonoid accumulation in Arabidopsis thaliana. J Plant Growth Regul 29, 441-454. doi:10.1007/s00344-010-9156-x
Heil, M., & Land, W. G. (2014). Danger signals - damaged-self recognition across the tree of life. Front Plant Sci, 5 , 578. doi:10.3389/fpls.2014.00578
Hewitt, E.J. (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. In: Hudson JP, eds: Technical Communication No. 22 (Revised 2nd Edition) of the Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, Maidstone, Kent: Farnham Royal, England: Commonwealth Agricultural Bureaux. doi:10.1017/S0014479700021852
Hilleary, R., & Gilroy, S. (2018). Systemic signaling in response to wounding and pathogens. Curr Opin Plant Biol, 43 , 57-62. doi:10.1016/j.pbi.2017.12.009
Häkkinen, S. T., Rischer, H., Laakso, I., Maaheimo, H., Seppänen-Laakso, T., & Oksman-Caldentey, K. M. (2004). Anatalline and other methyl jasmonate-inducible nicotine alkaloids from Nicotiana tabacum cv. By-2 cell cultures. Planta Med, 70 (10), 936-941. doi:10.1055/s-2004-832620
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444 (7117), 323-329. doi:10.1038/nature05286
Kaever, A., Landesfeind, M., Feussner, K., Morgenstern, B., Feussner, I., & Meinicke, P. (2014). Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLoS One, 9 (2), e89297. doi:10.1371/journal.pone.0089297
Kohnen-Johannsen, K. L., & Kayser, O. (2019). Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules, 24 (4). doi:10.3390/molecules24040796
Kundu, A., Mishra, S., & Vadassery, J. (2018). Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta, 248 (4), 981-997. doi:10.1007/s00425-018-2953-3
Lionetti, V., Fabri, E., De Caroli, M., Hansen, A. R., Willats, W. G., Piro, G., & Bellincampi, D. (2017). Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to.Plant Physiol, 173 (3), 1844-1863. doi:10.1104/pp.16.01185
Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol, 63 , 431-450. doi:10.1146/annurev-arplant-042110-103854
O’Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O. and Bowles, D.J. (1996). Ethylene as a signal mediating the wound response of tomato plants. Science 274 , 1914–1917 doi:10.1016/S1360-1385(97)88388-4
Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A, 96 (11), 6553-6557.
Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., & Vianello, A. (2013). Plant flavonoids–biosynthesis, transport and involvement in stress responses. Int J Mol Sci, 14 (7), 14950-14973. doi:10.3390/ijms140714950
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol, 52 , 347-375. doi:10.1146/annurev-phyto-082712-102340
Reymond, P., Grünberger, S., Paul, K., Müller, M., & Farmer, E. E. (1995). Oligogalacturonide defense signals in plants: large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci U S A, 92 (10), 4145-4149. doi:10.1073/pnas.92.10.4145
Román, M., Fernández, I., Wyatt, T., Sahrawy, M., Heil, M., Pozo, M. J. (2011). Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. Journal of Ecology , 99 (1), 36-45. doi:10.1111/j.1365-2745.2010.01752.x
Sanmartín, N., Pastor, V., Pastor-Fernández, J., Flors, V., Pozo, M. J., & Sánchez-Bel, P. (2020). Role and mechanisms of callose priming in mycorrhiza-induced resistance. J Exp Bot, 71 (9), 2769-2781. doi:10.1093/jxb/eraa030
Savatin, D. V., Ferrari, S., Sicilia, F., & De Lorenzo, G. (2011). Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. Plant Physiol, 157 (3), 1163-1174. doi:10.1104/pp.111.184663
Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: the defense of a dangerous passage.Front Plant Sci, 5 , 470. doi:10.3389/fpls.2014.00470
Schilmiller, A. L., & Howe, G. A. (2005). Systemic signaling in the wound response. Curr Opin Plant Biol, 8 (4), 369-377. doi:10.1016/j.pbi.2005.05.008
Scranton, M. A., Yee, A., Park, S. Y., & Walling, L. L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J Biol Chem, 287 (22), 18408-18417. doi:10.1074/jbc.M111.309500
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 78 (3), 779-787. doi:10.1021/ac051437y
Smith, J. E., Mengesha, B., Tang, H., Mengiste, T., & Bluhm, B. H. (2014). Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming. BMC Genomics, 15 , 334. doi:10.1186/1471-2164-15-334
Simpson, S. D., Ashford, D. A., Harvey, D. J., and Bowles, D. J. (1998). Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane1-carboxylic acid oxidase in tomato plants. Glycobiology 8 , 579–583. doi:10.1093/glycob/8.6.579
Steinbrenner, A. D., Gómez, S., Osorio, S., Fernie, A. R., & Orians, C. M. (2011). Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective. J Chem Ecol, 37 (12), 1294-1303. doi:10.1007/s10886-011-0042-1
Sun, J. Q., Jiang, H. L., & Li, C. Y. (2011). Systemin/Jasmonate-mediated systemic defense signaling in tomato.Mol Plant, 4 (4), 607-615. doi:10.1093/mp/ssr008
Thain, J. F. (1995). Electrophysiology. Methods Cell Biol, 49 , 259-274.
Tian, D., Peiffer, M., De Moraes, C. M., & Felton, G. W. (2014). Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta, 239 (3), 577-589. doi:10.1007/s00425-013-1997-7
Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg), 7 (6), 581-591. doi:10.1055/s-2005-873009
Tytgat, T. O., Verhoeven, K. J., Jansen, J. J., Raaijmakers, C. E., Bakx-Schotman, T., McIntyre, L. M., . . . van Dam, N. M. (2013). Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLoS One, 8 (6), e65502. doi:10.1371/journal.pone.0065502
van Kan, J. A., Joosten, M. H., Wagemakers, C. A., van den Berg-Velthuis, G. C., & de Wit, P. J. (1992). Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum.Plant Mol Biol, 20 (3), 513-527. doi:10.1007/BF00040610
Vega-Muñoz, I., Feregrino-Pérez, A. A., Torres-Pacheco, I., & Guevara-González, R. G. (2018). Exogenous fragmented DNA acts as a damage-associated molecular pattern (DAMP) inducing changes in CpG DNA methylation and defence-related responses in Lactuca sativa. Funct Plant Biol, 45 (10), 1065-1072. doi:10.1071/FP18011
Zipfel, C., & Oldroyd, G. E. (2017). Plant signalling in symbiosis and immunity. Nature, 543 (7645), 328-336. doi:10.1038/nature22009
Table 1. Transcriptional regulation of phytohormone biosynthetic genes upon OG treatment. Quantitative RT-qPCR analysis of LOXD (lypoxigenase D, involved in JA biosynthesis), NCED (9-cis-epoxycarotenoid dioxygenase, involved in ABA biosynthesis, and ACO1 (ACC Oxidase 1, coding for the enzyme responsible for the limiting step in ET biosynthesis) in leaves and roots of OG treated plants. Changes related to local responses were evaluated in treated leaves and roots. Systemic responses were evaluated in roots and upper leaves upon OG treatment in leaves (LT) or in upper leaves upon OG treatment in roots (RT). Numbers correspond to the fold induction of the gene expression levels in treated vs control plants. Values are normalized relative to the tomato housekeeping gene Actin. Bold numbers indicate significant differences (t-test; p-value<0.05).