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Abstract

In this paper we apply the fractional integrals with arbitrary
order depending on the fractional operators of Riemann type
(ABR) and Caputo type (ABC) with kernels of Mittag Lefller
in three parameters Ey, (), t) for solving the time fractional
parabolic nonlinear equation. We utilize these operators with
homotopy analysis method (HAM) for constructing the new
scheme for generating the successive approximations. This
procedure are used successfully on two examples for finding
the solutions. The effectiveness and accuracy are verified by
clarifying the convergence region in the h-curves as well as by
calculating the residual error and the results were accurate.
Depending on this results, this treatment can be used to
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find the approximate solutions to many fractional differential
equations.

Keywords Mittag Lefller Kernel ; Homotopy analysis method |,
Time fractional parabolic nonlinear equation
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1. Introduction

Differential equations play an important role in modeling real-world prob-
lems in biology, physics, engineering, and many areas in chemistry. Each of
these applications can be modeled through differential equations [4, 5]. Re-
cently, many applications in the field have been modeled through fractional
differential equations: fluid mechanics ([1] - [3]), chemistry [6], biology [18],
viscoelasticity (see [8] and [9]), engineering, finance, and physics [10, 11, 12],
and so on. In addition,there are a lot of papers that have a new approach
and their applied of fractional type operators with exponential or ML ker-
nels [13]-[24].

Recently, many researchers have caught the attention of modeling many
real-world problems using fractional operators Mittag-Leffler (ML) kernels.
These kernels are actually not singular and has one parameter. These ker-
nels actually useful and has an advantage in facilitating and simplifying
the modeling and solution of many problems numerically. In a more recent
time, Abdeljawad and Baleanu are used Mittag-Leffler kernel but with three
parameters. They formulated the corresponding integral operators with ar-
bitrary ML parameters and study their action on the Atangana-Baleanu
fractional derivative in the Caputo sense (ABC) fractional operators. One
of the most advantages of the used for the new Mittag-LefHler kernel is the
existence of the solution for fractional differential equations. For example
the solution of the fractional differential equation §2€ D¢y(t) = a, y(0) = B
where a, 8 are constant does not exist for 0 < a < 1, whereas via the new
definition the solution exists [26]. Further more general discussion to this
issue by means of a necessary vanishing condition on the right hand side of
the ABC initial value problem can be found in [27]. Very recently, the au-
thors in [28] studied the relation between two models of fractional calculus
which are defined using three-parameter Mittag-Leffler functions: the Prab-
hakar definition and a recently defined extension of the Atangana-Baleanu
definition given in [25, 26].

In this paper we study approximate solutions using HAM for the time
fractional parabolic equations. To the best of our knowledge, this is the
first study of the time fractional parabolic equations by HAM based on the
fractional integrals with arbitrary order with the kernels of Mittag Lefller
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with three parameters.

The present paper is organized as follows. The second is devoted to intro-
duce the preliminaries and notations. The third is devoted to construct the
scheme of HAM with new fractional integral. While the forth for applying
the new scheme with two examples. Conclusions are presented in section
five.

2. PRELIMINARIES AND NOTATIONS

In this section, we introduce some definitions and properties for the gen-
eralized ABC fractional derivative which introduced by Abdeljawad and
Baleanu in 2018 [25]and in [26], where Abdeljawad set up a study for more
basics and properties of these operators and in [29] originated the discrete
versions.

Definition 1. [25] The generalized ABC fractional derivative with kernel
EJ (A t) where 0 < oo <1, Re(p) >0,y € R, and X\ = =%, is defined by

ABC na /
(arepmn fa) = 12 [ By, 000 - 0 ()

where
tak—l—/.t 1

/\k —_—
Z k:'F ak + )

and (y)k:'y(v—l—l)...(y—i-k—l).

Remark 1. We noted that if « = p = v — 1, we obtained the standard first
deriwative f'(x).

Theorem 2.1. The ABC fractional derivative for z where > 0, (o+p) >
0 given by

C M (o) } : I'(s 1)>‘k(7)kxak pp-l M(a)l'(8+1)
AB a, i,y .8 = i X
0 1—« k'F(kO[-f—ﬁ—i-,U,) l—«o QH 6( ’ )

Proof: Using the definition of generalized ABC fractional derivative and
the series of EJ (), t) we have

ABC ooy 8 A (y (x — t)h el -1,
0 T 1—(1/2 k'Fak+u)Bt t
_ M b LD o
B 1—042//\ k'Fak—ku)ﬁt dat
| M(a) AT )Nt
l—a E'T(ka+ 5+ w)
M(a)I'(8 +1)

1—q« ,;H-ﬂ()‘ x)
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Remark 2. Upon Remark 1 and Theorem 2.1, we conclude that

M@+ ) o a

iﬂ?E&ﬂ-ﬁ-l(}‘vl‘)_ﬁx , B>0,2>0, A= I—a (1)

The analogous limit of (2) in the power law case (Caputo-fractional case) is
T 1

lim (5+1) P = gaPt, (2)

a—1 m

Example: The generalized ABC fractional derivatives for f(z) = 23 +
221 for various order of o and p with v = 1 are given in figure 1. It is
clear that not only « but also p can change the behavior of the derivative
of function in the generalized ABC fractional derivative sense.
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FIGURE 1. S‘BCDO"“W (333 + 2331'5) for various values of a, u
with v = 1.

Definition 2. Let f be a continuous function defined on an interval [a, b]
and assume 0 < a < 1l,u > 0. Then the left fractional integral of two
parameters o and [ is defined by,

l-—a «

(BRI ) o) = S N + g )

where (1P f)(x) = ﬁ [F(x = s)P~1f(s)ds is the Riemann-Liowville frac-

tional integrals for f(x) of order B.
Remark 3. [26] If v = 1, then (3BCTHABC Doy () = f(z) — f(a).
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More general properties and formulations under the existence of the third
parameter v # 1 can be found in [26]

3. SOLUTION BY HOMOTOPY ANALYSIS METHOD

In this section we consider the parabolic fractional nonlinear differential
equation in the sense of generalized ABC, which can be written in the form
0P D u(x, t) = Nlu(z, t)] (3)

subject to the initial condition u(x,0) = f(x). According to the homotopy
analysis method framework, we write the unknown function u(z,t) in the
form of Taylor series

$(ul(@,t);q) = uo(x,t) + > un(x,t)q’ (4)
=1

where ¢ € [0, 1] is the embedding parameter. Now we construct the homo-
topy map
(1=q) L$(u(x, 1); q)—uo(x, )] = hq(e DI p(u(z, t); )= N{b(u(, 1); q)])
(5)
where L is called the linear operator, & is the convergent control parameter.
Differentiate Eq. (5) n-times with respect to g and set ¢ = 0, then divide
by n!, we get

L[un - Xnunfl] = h(OABCDta’#ﬁunfl + Rn[ﬁnfl])

where

1 9"(gN|g(x,t;q)])
Ry 1] = ! dq" ‘qu’
_J 0, n<l,
Xn = 1, n>1,
The initial condition becomes

o
Bz, 0;)) = uo(z,0) + > us(w, 0)q’ = £(x),
i=0
so that u;(x,0) =0 for i = 1,2,3,... and ugp(z,0) = f(z).
By take the linear operator as L ={B¢ D", For sake of simplicity, we
consider v = 1. Thus our fractional derivative depends on « and p.

ABC DIy (2,1) — Xnttno1(2,0)] = [FBOD Ty (2,8) + Ra[T 1]

and U ,_1 = {ug, w1y ..., up—1}.

Now, apply OABCI %K on the above equation, with the help of Remark 5, we
have

un = O+ -1 (2, 1) = (Xn + B)un—1(2,0) + AT (R [W n-1](6)
We then end up with the series solution given by

u(@,t) = ug(z,t) + > _ui(x,t). (7)

=1
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Finally we note that, we should have an initial guess ug(x,t) which satisfy
the initial condition. For that, we simply assume wug(z,t) = f(x).

4. APPLICATIONS

In this section, we apply HAM to the fractional parabolic nonlinear equa-
tion in the generalized ABC sense.

Example 1. Consider the nonlinear parabolic PDE in the generalized ABC
fractional derivative sense.

SBE DYy (1, 8) = Uy (2, t) + au(z, t) — bu?(z,t). (8)
1

Vaz\ 2"
=
When o = p = 1 the equation has the exact solution [30]
1

vaxr _ 5at 2°

According to the framework of HAM, we choose the initial guess ug(z,t) =

flx) = #, which then gives the following set of infinite linear

e

subject to the initial condition u(x,0) =

u(z,t) =

9)

fractional differential equations:

SBCDY T [y (2,8) — Xntin—1(z,1)] = B [FBOD My (2,t) — (un—1)za(2, 1)
n—1
—aup—1(z,t) + bz wj(x, t)un—1—j(z,t) |,
§=0
forn =1,2,.... Then, applying {)*BCI “H on the above equation, one obtains
Un = (Xn + R)un—1(2,t) — (xn + A)un—1(z,0) +
n—1
hoPOIOM | = (tp1 (2, )z — Qun_1(2,8) + b > uj(, t)un_1_;(z,1)
§=0

(10)

The first two terms are given by

At (1= o)l (a — p+2) + al(2 — p)t?) (f(@)(a — bf (2)) + f"(x))
F2—pwlhla—p+2) ’

ui(z,t) = —

up(x,t) = ht' " (g1 — go + g3 — g1 + gs) ,
where
o2 ht2etl (an(a:) +2f"(x)(a — 2bf(x)) — 3abf(x)? + 262 f(x)® — 2bf'(x)? + f(4)(x))

g = T(2a — 24+ 3) ’
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2(a — 1)ahtot! (an(x) +2f"(x)(a — 2bf(z)) — 3abf (x)? + 2% f(x)% — 2bf'(x)? + f(4)(z))
Ila—2u+3) ’

g2 =

(o = 1)%0t (a®f () + 2" (x)(a — 2bf (x)) — 3abf(x)* + 20° f(x)® — 2bf'(x)* + [ ())
I'(3 —2p) ’

g3 =

i = a(h+ Dt (f(z)(a — bf () + f"(x))
Ia—p+2) ’
(a =1)(h+D)t" (f(z)(a —bf(x)) + f"(z))
L2 - p) '
By the same manner, we find us, u4, . ..ux and the M-th order of approxi-
mate solution is defined by

gs =

M

u(z, t) =~ up(z,t) + Zui(:r,t).

i=1

The approximate solution depends on the value of A, so firstly, we fixed
= a =1 and we find the optimal value of & by using least square method.
For that, we define the residual error

Res(x,t) =48C DOV u(x,t) — uga(x, t) — au(z, t) + bu?(z, t),

and consider the function
N1 N

1
‘= (N1 + 1) (N2 +1) ZZR682($¢,t]‘)

i=0 j=0

where x; = NilLJrl = ]\fﬁl, K is the endpoint of time and L is the endpoint
of space along x.

It is clear that, the solution depends of the fractional parameters o and
w. For simply, we assume o« = p and vary « from 0 to 1. The h— curve for
several values of a with ¢ = 0.02,b = 0.03 plotted in figure 2, the horizontal
line that is parallel to the x-axis is representing the convergent region. We
can also minimize the (() to find the optimal value of % as given in figure 3.
The solution u(z,t) for different values of o are given in figure 4. Moreover,
the residual error for the solution with various values of « are plotted in
figure 5. It is worthily to mention that, if 4 = 1 and vary 0 < a < 1
(which is the standard ABC derivative) the solution does not satisfy the
initial condition.

Example 2. Consider the nonlinear parabolic equation with 0 < a <1

SBCDI T (2, t) = ugy () — pu(, t) (11)

subject to the initial condition u(x,0) = \/%zgfrl.
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FIGURE 2. h— curve for example 1 with y = a =1,0.5,0.2.
Using 4-order of approximation.
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FIGURE 3. Average residual error with & for a = 0.8,0.5,0.2.

The exact solution when o« = p = 1 is u(x,t) = \/%%. Similar to

the first example, we choose the initial guess uo(x,t) = f(x) = \/%xgil.

The n— order can be written as

un, = (Xn + R)un—1(2,t) — (Xn + R)up—1(x,0) +
n—1 J
thCIa’# _(un—l (.T, t))xw +p Z Z uk(‘r7 t)uk—j (‘7:7 t)un—l—j(ma t)
j=0 k=0

(12)
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FIGURE 4. u(z,t) for example 1 with different value of «
where (a),(b),(c),(d) for « = 1,0.8,0.5,0.2 respectively.

FIGURE 5. Residual error function for example 1 with dif-
ferent value of o where (a),(b),(c) for & = 0.8,0.5,0.2 respec-
tively.
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FIGURE 6. h— curve for example 2 with different values of a.
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FIGURE 7. Average residual error with A for « = 0.9,0.5.

The first term is
) = 1 (0@ = 0) (15— * T3
’ I2-p) Tla-p+2))

Using this manner, we find the other M —terms. Now, fixed p = 10,y =
1,u = o and we vary « from 0 to 1. The h—cureve is plotted in figure 6.
The average residual error for « = 0.9 and 0.5 are presented in figure 7. The
exact solution for « = u = 1 and the solution for different values of « are
given in figure 8. Finally, we noted that the solution for 4 = 1 = + is the
standared ABC fractional sense, but this solution does not satisfying the
initial condition.
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FIGURE 8. Residual error function for example 2 with dif-
ferent value of o where (a),(b) for a = 0.9, 0.5 respectively.

FIGURE 9. u(x,t) for example 2 with different value of «
where (a),(b),(c) for « = 1,0.9,0.5 respectively.
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5. Conclusion

In this paper, we haveapplied the Homotopy Analysis Method using the
fractional integrals with arbitrary order depending on the fractional opera-
tors of Riemann type (ABR) and Caputo type (ABC) with kernels of Mittag
Lefller in three parameters. We investigated the approximate solutions of
the time fractional order parabolic equation. The accuracy of the approxi-
mate solutions was verified by comparing the proximate solutions with exact
solutions at the case of classical parabolic equation. While in the case of
fractional parabolic we satisfied the accuracy of the approximate solutions
by computing the average residual error. In all cases the order of the errors
are very small and a good agreement found.
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