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Abstract

Based on the good properties of reproducing kernel space, a new method com-

bining the simplified reproducing kernel method (SRKM) and homotopy per-

turbation method (HPM) for solving the nonlinear Volterra-Fredholm integro-

differential equations (V-FIDE) is proposed. The HPM can convert nonlinear

problems into linear problems. And then using the SRKM to solve linear prob-

lems. The uniform convergence of the approximate solution is proved. Some

numerical examples are prepared to illustrate the efficiency and rapidity of this

method.
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1. Introduction

In this paper, we mainly discuss the nonlinear Volterra-Fredholm integro-

differential equations:u
′(x) + q(x)u(x) + λ1

∫ x

0
K1(x, t)F (u(t)) dt+ λ2

∫ 1

0
K2(x, t)G(u(t)) dt = y(x),

u(a) = α.

(1.1)
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The parameters λ1, λ2 are constant. F (u(x)) and G(u(x)) are constant coef-

ficient polynomial with respect to u(x). The V-FIDE has been widely used5

in physics, biological and engineering[1-3]. In order to obtain accurate numer-

ical solutions more quickly, many methods to solve such problems have been

proposed in recent years. The author of [1] introduced the Taylor polynomi-

al method. E.Ba proposed the triangular functions method and the opera-

tional matrix with block-pulse functions in [2-3]. Hybrid Legendre polynomials10

and block-pulse functions approach were applied in [4]. In [5], the author dis-

cussed the Laplace discrete Adomian decomposition method over the integro-

differential equation. J.Biazar and M.Eslami [12] presented He’s homotopy per-

turbation method. F.S.Zulkarnain et al. [13] using the modified decomposition

method obtained approximate solution of nonlinear Volterra-Fredholm integral15

equation. The numerical solvability of nonlinear V-FIDE and other related

equations can be found in [6-8]. The authors in [14] formulated homotopy

approximation technique for solving V-FIDE. In [15] the reproducing kernel

method was applied to solve nonlinear equations. But the traditional reproduc-

ing kernel method is difficult to deal with the integral term, while the homotopy20

perturbation method can be effectively dealt with the integral term. Because

the traditional reproducing kernel method needs orthogonalization, the calcu-

lation method is complex and time-consuming, our method avoids the Smith

orthogonalization process, thus saving the calculation time and running mem-

ory. This article discusses the nonlinear V-FIDE by using SRKM and HPM in25

the reproducing kernel space, so that the equation can achieve higher accuracy.

In this paper, we described the homotopy perturbation theory in section

2. The reproducing kernel theory will be shown in sections 3 and 4. Some

numerical examples are presented in section 5. In the end the conclusions are

remarks.30
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2. Homotopy perturbation method

According to the theory of homotopy perturbation, we embed a small param-

eter p(p ∈ [0, 1]) by constructing a homotopy map. The parameter p changes

from 0 to 1, then the solution to the nonlinear equation u(x) follows the ho-

motopy path from the initial value problem to the original problem. And the35

solutions that satisfy the homotopy path can be expanded into a power series

with respect to p.

To deal with the nonlinear part, we construct a homotopy for Eq.(1.1):u
′(x) + q(x)u(x) + pλ1

∫ x

0
K1(x, t)F (u(t)) dt+ pλ2

∫ 1

0
K2(x, t)G(u(t)) dt = y(x),

u(a) = α.

(2.1)

when p = 0, the Eq.(2.1) is an initial value problem:u
′(x) + q(x)u(x) = y(x),

u(a) = α.

(2.2)

when p = 1, Eq.(2.1) is the original problem (1.1). According to the theory of

homotopy perturbation, the solution of the operator equation that the homotopy

path satisfies can be written as a power series about p:

u(x, p) = u0(x) + pu1(x) + p2u2(x) + . . .+ pnun(x) + . . .

In this way, when p→ 1, the approximate solution of the nonlinear operator

equation is obtained

u(x) = lim
p→1

u(x, p) = u0(x) + u1(x) + u2(x) + . . .

Let the k derivatives of F and G and set p = 0:
∞∑

n=0

pn(u′n(x)+q(x)un(x))+pλ1

∫ x

0

K1(x, t)

∞∑
k=0

Akp
kdt+pλ2

∫ 1

0

K2(x, t)

∞∑
k=0

Bkp
kdt = y(x).

where

F (

∞∑
n=0

pnun(x)) =

∞∑
k=0

1

k!

dk

dpk
F (

∞∑
n=0

pnun(x)) |p=0=

∞∑
k=0

Akp
k,

G(

∞∑
n=0

pnun(x)) =

∞∑
k=0

1

k!

dk

dpk
G(

∞∑
n=0

pnun(x)) |p=0=

∞∑
k=0

Bkp
k.
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Comparing the coefficients of pi on both sides of this equation and set them40

equal, we can get when k = 0

u
′
0(x) + q(x)u0(x) = y(x),

u(a) = α.

(2.3)

for pk+1,


u′k(x) + q(x)uk(x) = −λ1p

∫ x

0
K1(x, t)

∞∑
k=0

Akp
kdt− λ2p

∫ 1

0
K2(x, t)

∞∑
k=0

Bkp
kdt,

uk(a) = α.

(2.4)

Adding the solution uk of Eq.(2.3) and (2.4), we obtain the true solutions

to nonlinear equations

un(x) = u0(x) + u1(x) + u2(x) + . . .

3. Reproducing kernel Hilbert space45

We will solve the Eq.(1.1) with the support of the reproducing kernel space

theory.

Definition 3.1. ([9]) Let F 6= 0.The reproducing kernel function R : F×F → C

of Hilbert space H defined by

(a) R(·, x) ∈ H for all x ∈ F ;

(b) 〈u,R(·, x)〉 = u(x) for all x ∈ F and all u ∈ H.

To solve Eq.(1.1), the reproducing kernel space W 2
2 [a, b] and W 1

2 [a, b] are

introduced next.

Definition 3.2. ([9]) Reproducing kernel Hilbert space W 2
2 [a, b] is defined by

W 2
2 [a, b] ={u(x) | u′(x) is an absolutely continuous real value function in [a, b],

u′′(x) ∈ L2[a, b]}.
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The inner product and norm in W 2
2 [a, b] are given as

〈u, v〉W 2
2

=

∫ b

a

(uv + 2u′v′ + u′′v′′)dx, u, v ∈W 2
2 [a, b],

‖u‖W 2
2

=
√
〈u, u〉W 2

2
.

Similar to W 2
2 [a, b], we define inner production and norm of W 1

2 [a, b] as

follows:

W 1
2 [a, b] = {u(x) | u(x) is an absolutely continuous real value function in[a, b],

u′(x) ∈ L2[a, b]}.

〈u, v〉W 1
2

= u(a)v(a) +

∫ b

a

u′v′dx, u, v ∈W 1
2 [a, b],

‖u‖W 1
2

=
√
〈u, u〉W 1

2
.

Similar to the proof in [10], we can prove that the space W 2
2 [a, b] and W 1

2 [a, b] are

complete inner product spaces and reproducing kernel spaces with reproducing

kernel functions Rx(y) and rx(y)

Rx(y) = xy +
xy2

2
− y3

6
, y ≤ x,

when y > x,Rx(y) = Ry(x).

rx(y) =

1− a+ x, y > x,

1− a+ y, y ≤ x.

4. Description of the method50

In section 2, we describe the Homotopy perturbation method for nonlin-

ear equation. To solve the Eq.(2.4), we introduce reproducing kernel method.

Denote a liner operator L : W 2
2 [a, b]→W 1

2 [a, b], the Eq.(2.4) is equivalent toLu(x) = f(x),

un(a) = α, n = 0, 1, 2, . . .

(4.1)

where Lu(x) = u′n(x) + q(x)un(x). It’s easy to prove that L is a bounded linear

operator. Let ψi(x) = L∗rs(t)(xi), i = 1, 2, · · · , rs(t) is the reproducing kernel,55
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where {xi} is subset on [a, b], and L∗ is the adjoint operator of L. We can obtain

the following conclusions:

Lemma 4.1.

 L∗rs(t)(xi) = LRs(t)(xi), i = 1, 2, · · ·

rs(t) is the reproducing kernel for W 2
2 [a, b].

Proof. According to the properties of the reproducing kernel function and the

properties of the conjugate operator,

(L∗rs)(t) = 〈L∗rs, Rt〉W 2
2

= 〈rs, LRt〉W 1
2

= (LRt)(s) = (LRs)(t).

Theorem 4.1. If {xi}∞i=1 is a set of mutually distinct dense points defined on60

[a, b]. Then {ψi(x)}∞i=1 is linearly independent and a complete system of space

W 2
2 [a, b].

Proof. Assume
n∑

i=1

ciψi(x) = 0,

because L is invertible, and

n∑
i=1

ciψi(x) =

n∑
i=1

ciLRxi
(x) = L(

n∑
i=1

ciRxi
(x)),

that is
n∑

i=1

ciRxi
(x) = 0.

We derive that ci = 0(i = 1, 2, . . . , n), so {ψi(x)}∞i=1 is linearly independent. In

addition, for u(x) ∈W 2
2 [a, b], if

〈u(x), ψi〉W 2
2

= u(xi) = 0, i = 1, 2, . . .

because of the density of {xi}∞i=1 and continuity of u(x), we have u(x) ≡ 0.

Therefore {ψi(x)}∞i=1 is a complete system.
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Let ϕ1(x) = R(x, a) and Sn+1 = span{ψ1(x), ψ2(x), . . . , ψn(x), ϕ1(x)}. De-65

fine an orthogonal projection operator Pn : W 2
2 [a, b]→W 1

2 [a, b]. We can obtain

the follow conclusions:

Theorem 4.2. If u ∈ W 2
2 [a, b] is the solution of Eq.(4.1), then un = Pnu

satisfies the following equations:

〈un, ψi〉 = f(xi, u(xi)), i = 1, 2, . . . , n,

〈un, ϕ1〉 = α.
(4.2)

Proof. On account of the self-conjugation of the operator Pn and the properties

of the reproducing kernel, it can be obtained that

〈Pnu, ψi〉W 2
2

= 〈u, ψi〉W 2
2

= 〈u, L∗rxi
〉W 2

2
= 〈Lu, rxi

〉W 1
2

= Lu(xi)

= f(xi, u(xi)), i = 1, 2, . . . , n.

〈Pnu, ϕ1〉W 2
2

= 〈u, Pnϕ1〉W 2
2

= 〈u, ϕ1〉W 2
2

= 〈u,Ra〉W 2
2

= u(a) = α.

70

Theorem 4.3. un(x) is the approximate solution of eq.(4.1), and un(x) uni-

formly converges to u(x) on [a, b].

Proof. Obviously, ‖un − u‖ → 0 holds as n → ∞ in W 2
2 [a, b]. So that un(x) is

the approximate solution of Eq.(4.1). Besides,

| un(x)− u(x) |=| 〈un − u,Rx(y)〉W 2
2
|≤ ‖un − u‖W 2

2
‖Rx(y)‖W 2

2
.

Note that Rx(y) is continuous on [a, b], thus

| un(x)− u(x) |≤M ‖un − u‖ → 0.

we obtain un(x) converges uniformly to u(x) on [a, b].

Consequently, un ∈ SN+1 is the approximation solution of Eq.(4.1) can be

expressed in the form75

un(x) = b1ϕ1 +

n∑
j=1

ajψj(x). (4.3)
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Then substituting Eq.(4.3) into Eq.(4.2), we can obtain the coefficients of ϕ1

and each ψj(x)

b1 〈ϕ1, ϕ1〉+

n∑
j=1

aj 〈ψj(x), ϕ1〉 = α,

b1 〈ϕ1, ψi〉+

n∑
j=1

aj 〈ψj(x), ψi〉 = f(xi, u(xi)). i = 1, 2, . . . , n.

(4.4)

Let

G =



〈ϕ1, ϕ1〉 〈ψ1, ϕ1〉 〈ψ2, ϕ1〉 . . . 〈ψn, ϕ1〉

〈ϕ1, ψ1〉 〈ψ1, ψ1〉 〈ψ1, ψ1〉 . . . 〈ψn, ψ1〉

〈ϕ1, ψ2〉 〈ψ1, ψ2〉 〈ψ2, ψ2〉 . . . 〈ψn, ψ2〉
...

...
...

...
...

〈ϕ1, ψn〉 〈ψ1, ψn〉 〈ψ2, ψn〉 . . . 〈ψn, ψn〉



f =



α

f(x1, u(x1))

f(x2, u(x2))
...

f(xn, u(xn))


Thus, we have (b1, a1, a2, . . . , an)T = G−1f as required.

5. Numerical examples

To demonstrate the feasibility of the present method, some numerical exam-

ples are given to illustrate its effectiveness.

Example 5.1 Consider the nonlinear integro-differential equation:

u′(x) + u(x) +
1

2

∫ x

0

xu2(t)dt− 1

4

∫ 1

0

tu3(t)dt = y(x).

where y(x) = 2x+ x2 + 1
10x

6 − 1
32 , with the initial condition u(0) = 0, and the80

exact solution u(x) = x2. Comparison of the numerical results and absolute

error listed in Table 1, our method is more accurate than the method in [4] as

n = 64. The red line is exact solution and the blue points are the approximate

solution in Figure 1.
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Figure 1: Approximate solution of Example 5.1

Table 1: Numerical result and absolute error for Example 5.185

x Exact solution Presented method In[4] Absolute error

0.0 0.000000 0.000000 0.000000 0.00000

0.1 0.010000 0.010002 0.010917 1.6697E-6

0.2 0.040000 0.040003 0.041703 3.3887E-6

0.3 0.090000 0.090005 0.092364 5.0243E-6

0.4 0.160000 0.160006 0.162911 6.7948E-6

0.5 0.250000 0.250008 0.253371 8.5438E-6

0.6 0.360000 0.360010 0.364244 1.0344E-5

0.7 0.490000 0.490012 0.493830 1.2289E-5

0.8 0.640000 0.640014 0.642375 1.4131E-5

0.9 0.810000 0.810016 0.810337 1.6191E-5

1.0 1.000000 1.000018 0.998506 1.8166E-5

Example 5.2 For the following nonlinear integro-differential equation:

u′(x) + u(x)− 2

∫ x

0

sin(x)u2(t)dt = cosx+ (1− x)sinx+ cosxsin2x.

with the initial condition u(0) = 0, and the exact solution u(x) = sinx. Table 2

illustrates the approximate solution and absolute error, comparison of the nu-

merical results and absolute error listed in Table 2, our method is more accurate

than the method in [4] as n = 64. Figure 2 describes the image of exact solution90
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and approximate solution by our method.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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0.6

0.8

Figure 2: Approximate solution of Example 5.2

Table 2: Numerical result and absolute error for Example 5.2

x Exact solution Presented method Absolute error in[4] Absolute error

0.0 0.000000 0.000000 0.000032 4.11116E-13

0.1 0.099833 0.099832 0.099825 1.52134E-6

0.2 0.198669 0.198666 0.198678 3.09097E-6

0.3 0.295520 0.295516 0.295603 4.56079E-6

0.4 0.389418 0.389412 0.389605 6.13961E-6

0.5 0.479425 0.479418 0.479398 7.68377E-6

0.6 0.564642 0.564633 0.563598 9.28797E-6

0.7 0.644217 0.644207 0.642606 1.10732E-5

0.8 0.717356 0.717343 0.715049 1.28998E-5

0.9 0.783326 0.783312 0.779882 1.51106E-5

1.0 0.841470 0.841453 0.837683 1.75819E-5

Example 5.3 Consider the nonlinear Volterra-Fredholm integro-differential e-

quation

u′(x) =
1

5
x5 −

∫ x

0

(u2(t)− 2)dt, u(0) = 0.

with the exact solution given by u(x) = x2. Comparison of the numerical

results and absolute error listed in Table 3, our method is more accurate than95
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the method in [5] as n = 64. The exact solution and approximate solution by

our method are shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
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0.8

1.0

Figure 3: Approximate solution of Example 5.3

Table 3: Numerical result and absolute error for Example 5.3

x Exact solution Presented method In[5] Absolute error in[5] Absolute error

0.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.2 0.04000000 0.040000000 0.03999986 1.41640E-7 5.77316E-15

0.4 0.16000000 0.160000000 0.15999094 9.05930E-6 3.98628E-11

0.6 0.36000000 0.360000011 0.35989712 1.02879E-4 1.13421E-8

0.8 0.64000000 0.640000628 0.63942742 5.72582E-4 6.28234E-7

1.0 1.00000000 1.000014077 0.99787295 2.12705E-3 1.40770E-5

5. Conclusions100

In this work, the simplified reproducing kernel method and homotopy pertur-

bation method were applied successfully for solving the nonlinear V-FIDE. We

got the uniformly approximate solution. Besides, compared with the method

of Hybrid Legendre polynomials[4], Laplace discrete adomian decomposition

method[5], the convergence speed and accuracy of solution were better. Numer-105

ical experiments confirm the new algorithm is efficient and stable.
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