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ABSTRACT

In this article, we employ the nonlinear complex Hirota-dynamical model which is one of the
famous and important standards to the nonlinear Schrédinger equation in which the third
derivative term represent the self-interaction in the high-frequency subsystem. Specially, in
plasma this term is isomorphic to the so known self-focusing effect. The bright, dark and
periodic optical soliton solutions to this equation will realized successfully for the first time in
the framework of the solitary wave ansatz method. Furthermore, in this connection at the
same time and parallel the extended simple equation method has been applied successfully to
achieve new impressive solitary wave solutions to this model. A comparison between the
obtained results and that satisfied in previous work has been established.

Keywords: The nonlinear complex Hirota-dynamical model; the solitary wave ansatz
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representation

1-Introduction

The main idea of this article focused on how we can realizing the bright, dark and periodic
soliton solution to the nonlinear complex (1+1)-dimensional Hirota equation (CHE) arising
in various fields of applied sciences. Two important impressive techniques are invited for this
purpose, the first one which recently appearing and listed with name the wave ansatz
method(SWAM) [1-3] that give surprise results for several problems. In this connection and
parallel the other one is introduced with name the extended simple equation method (ESEM)
[4] which has been perfectly used to achieve new optical solutions to this model. The wave
propagation modeling and wave motion plays a vital roles in coastal, ocean and beaches,
floating structures and maritime engineering. This modes can be used to identify various
nonlinear phenomena’s in different branches of physics and engineering sciences. Specially,
optic, plasma physics, electric communication and so on. In addition one of the famous and
important physical applications to Hirota equation is the propagation of optical pulses and
femtosecond pulse propagation in optical fibers [5]. Hirota dynamical model represents a
special case of the well known nonlinear Schrédinger equation arising in mathematical
physics which related to the complex modified KdV equation and nonlinear Schrodinger
equation which shows interaction of the lower-hybrid large-amplitude waves with finite-
frequency density perturbations in plasma physics [6].

It is important to find a mathematical model which represents the nonlinear complex Hirota
equation which have many applications in nonlinear physics. According to Seadawy [7] this
model can be introduced as,

iut+uXX+2‘u2‘u+iozuxxx+6ioz|u|2 u =0 1)
Where U =u(X,t) represents wave propagation and « is real constant.

Briefly, whena = 0equation (1) revere to the well known standard Schrodinger equation
which widely propagated in mathematical physics. Furthermore, the third derivatives term
which in plasma denotes self-focusing effect and in other branches indicates the nonlinear
self-interaction in the high-frequency subsystem.
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Many methods are established to solve nonlinear problems arising in different branches of
science and can be briefly proposed through references [8-26]. Specially, several tries were
admitted by small sequences of them through good established efforts to solve Hirota
equation by diverse methods [27-29].

2. Description of the solitary wave ansatz method

According to [1, 3] the solitary wave ansatz method solutions can be proposed as follows,
Consider the wave transformation,

u(x,t) = (x t)e"™" )
Where (X, t) is the amplitude portion, while R(x,t)is the phase portion of soliton.
Consequently it is easy to get these relations,

U, = (y, +ip R )"
u, =y, +iyR )e®
Uye = (W +2i, R, +i R, —yR7)E"
Uy, = (W +3iv, R —iwR’ -3y, R>+iyR , +3iy R, —-3wR R, )e"  (3)

The bright and dark soliton solutions admits as follows,

(1) The bright soliton solutions
w(x,t) = A sech®(t,), wheret, = B(x—w,t)and R(x,t) = kx — Qt
w, = ABwW,Rsech® (t,) tanh(t,)
w, =—ABRsech® (t,) tanh(t,)
v, =—AB’R(L+R)sech®?(t )+ AB’R?sech®(t,)
¥ = AB’R(R +1)(R + 2)sech®?(t,) tanh(t,) — AB°R®sech® (t,) tanh(t,)

(1) The dark soliton solutions
w(x,t) = A tanh®(t,), wheret, = B(x—w,t)and R(x,t) = kx — Qt
w, =—A,BRw,[tanh"(t,) — tanh " (t,)]
v, = A,BR[tanh™(t,) — tanh™"(t,)]
v, = AR(R-1)B?tanh"?(t) —2A,R’B? tanh" (t,) + 2A,R(R +1) B tanh " **(t,)
v = ARB[(R-1)(R-2)tanh*>(t) — (R-1)(R-2) + 2R?*) tanh**(t,) @
+((R+1(R+2)+2R?*) tanh**(t) — (R+1)(R+2) tanh**(t))]
3. Application:
The bright and dark soliton solutions to the nonlinear complex Hirota-
dynamical model
Substituting about u,,u,,u and u,  mentioned in the equation (3) at the proposed equation

(1), we get,



iy, +ipR)E +[w, +2iy,R +iyR —wR ]e"
+2y%y " +ialy,, +3iy R, —3y R’ —iyR’ (6)
+iyR , +3iy,R, —3wR R, +6ialy w* +iRy°]=0
Which splits into two real and imaginary parts are shown respectively as:

_V/Rt TV _l//sz + ZWS _Bal/jxxRx +CZI//R5 _al//Rxxx _BaV/xRxx _BaV/SRx =0, (7)

Vet 2lr//xRx +l//Rxx _3QWXR)3 tay, _30”//R R+ 6al//xl//4 =0 8

X" XX

Now; use the constructed relations (4) at the real part equation (7) and at the imaginary part
equation (8) respectively, we obtain:

(Q+B?R—k? —3akB*R* + ak®) A sech®

9)
+[3akB’R(R +1) — B’R(R +1)]A sech®?+[2—6ak]A’ sech™ =0
[ABRw, — 2kA BR — a AB°R® + 2ak® A BR]sech” tanh (10)
+aAB°R(R+1)(R +2)sech®? tanh—6a A’Rsech®® tanh = 0
From equations (9), (10), we can easily obtain:
Relipo3 oo k-at=t oY _063k=1 (11)
2 5 3 2 2
Thus, according to the constructed method the solution will be,
u(x,t) = Ae'® xsech® B(x—w;t)
u(x,t) = e'**13 « sech® (x —t)
1
u(x,t) =[Cos(x+0.13t) +iSin(x +0.13t)]sech?(x —t) (12)
Hence, the real part is
1
Reu(x,t) =[Cos(x+0.13t)]sech?(x—t) (13)

And the imaginary part is,
1

Imu(x,t) =[Sin(x+0.13t)]sech?(x —t) (14)



Figure 1. The bright soliton solution of real part Eq.(13) in 2D and 3D with values:

-1 Q=013 w=1k=1B=>,4=2 R=05
A h o d=3

Figure 2. The bright soliton solution imaginary part Eg.(14) in 2D and 3D with values:

A =1 Q:—O.13,Wl:1,k:1,B:§,a:§,R:O.5

Similarly, use the constructed relations (5) at the real part equation (7) and at the imaginary
part equation (8) respectively, we obtain:

(AQ—2AB?R? — AK? +aA, +6akA,B?R?) tanh®+ R(R —1)(A,B? — 3arkA,B?) tanh® 2+
R(R +1)(A,B? —3akA,B?) tanh ™%+ (2 — 6ark) AS tanh®® =0

(15)
[-A,wW,RB + 2kA,RB — 3a A,RBk? + aRB*((R —1)(R — 2) + 2R?)] tanh " *+
[AW,RB —2kA,RB + 3 A,RBk* + @RB®*((R +1)(R + 2) + 2R?)] tanh " + (16)
aRB*(R-1)(R -2)tanh**—a¢RB*(R +1)(R + 2) tanh "+
6aRBA; tanh>* '~ 6aRBA’ tanh®** =0
From equations (15), (16) we can easily obtain:
2
W2=k2+%,kx—Qt=%,Q=E+§A2= 178 (17)

2
24(W2 - g)

The solution according to the proposed method is,



u(x,t) = Ae'™ xtanh® (x —t)

2 il x-(21.2
17B eI[X (A2+3)t

2
24(W2 - g)

u(x,t) = }xtanho'5 B(x —w,t)

u(x,t) =1.063x '3 x tanh®s (x —1.3t)

1

u(x,t) =1.063x[Cos(x —48.7t) +iSin(x —48.7t)] x tanh 2 (x —1.3t)

Hence, the real part is
1

Reu(x,t) =1.063x[Cos(x —48.7t)] x tanh2 (x —1.3t) (18)
And the imaginary part is,

1

Imu(x,t) =1.063x[Sin(x —48.7t)]x tanh 2 (x —1.3t) (19)
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Figure 3. The dark soliton solution of Real part Eq.(18) in 2D and 3D with values:

A =1.063, Q=48.7,w, =13k =1,B:1,a=%,R=0.5
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Figure 4 . The dark soliton solution imaginary part Eq.(19) in 2D and 3D with values:

A =1.063, Q=487,w, :1.3,k:1,B:1,a:%,R:0.5




4. The extended simple equation method

To propose the description algorithm for the extended simple equation method ESEM [4], let
us firstly propose in this section the general form of the nonlinear evolution equation by
introducing the function R as a function of h(x, t) and its partial derivatives as,

R(h,h,, N, hy Ry =0 (20)

That involves the highest order derivatives and nonlinear terms. With the aid of the
transformation  h(x,t) =h(¢), < = wx + kt equation (20) can be reduced to the following

ODE:

S(h,h,h".......... )=0 (21)
Where S is a function in h({) and its total derivatives, while ’:di

The constructed solution according to this method is:
V() =2 AV (22)
Where the positive integer min Eqg. (22) can be located by balancing the highest order
derivative term and the nonlinear term, while the arbitrary constants A could be calculated
later, the function ¢(¢) satisfies the following new ansatz equation
y'($)=a tay +ay’ (23)
Where a,, 8, and a, other arbitrary constants which admit these two cases;

(1) If a, =a, =0it will transform the Riccati equation [30], [31], which has the following
solutions;

v(S) =—‘Vaa‘2ﬁ2 tan(y/a, (S +¢,). a2, 0 (24)

()= (o - 2050 g, <00 -0 =51

2

(2) If a,=a,=0,it will transform the Bernoulli equation [32], which has the following

solutions;
_ a Expla (¢ + )]
S Y=Y R 9
_ —a Expla (¢ + )]
V)= el re 20 27)

And the general solution to ansatz equation (23) is as follows:

4 _ 2
w (<) =ai[a1 4a,a, —af tan (@@WLQ)D"‘%% >~ af,az =0, (28)



a,

4 _ 2
e i[aﬁm tanh(@(§+§o)n’4a@z ~a/,3, <0, (39

Where the integer ¢, is constancy of integration
Finally, substituting for equation (22) at equation (23) and equating the coefficients of
different powers of ' to zero, we can easily obtain a system of algebraic equations, when one

solves it, he can get the values of the unknown parameters mentioned in these methods.
Furthermore, substituting about these obtained parameters at equation (23) then the required
solution has been realized.

5. The exact solutions according to the extended simple equation method
In this section, we will apply the proposed method to the suggested equation (1)
mentioned above,

iU, +u, + 2‘u2‘u +iau,, +6ia|u u, =0
According to this method, the solution is:
u(x,t) = @(&) e ™, & =kx+wt, 1 = gqx + St (30)

u, =ispe"” +wgp'e”,

(31)
u, =igge™ +kg'e", (32)
u, =—q’ge" +2ikqe’ e +k’g"e™, (33)
uxxx — _iq3¢ei,u _3kq2¢reiy + 3qu 2¢rreiy + k3¢mei,u, (34)
ju?k 9%, (ju7]), = 2kee" (35)

Substituting about the above relation at the nonlinear complex Hirota- dynamical model we
get:

—ope” +iwg e +k’g"e + 2ikqe’ e —q’pe +2¢° e

radipe —Biakqld e —3aqkige™ +iak’s" et +12iakgiy e =0,  (36)

From which we can separate the following real and imaginary parts respectively
Re. —0p—0°¢+k’¢"+20° +aq’p—3agk’s”=0, (37)
Im  (aq®-q°-3)p+k?’(1-3agk?®)¢" +2¢° =0, (38)

Firstly we will study the real part,

Re. —8¢—0°¢+K’¢"+20° +aq’p—3agk’s”=0,
Balancing the nonlinear term and the higher order derivatives term at equation (37) implies
3m = m+ 2 from which we get m =1, hence the solution is,

PO =22 A AY (39)

' 2
Where V' =a, +a,v+a,Vv

Case 5-1: Whena, =0=V' =a, +a,V*, consequently

¢ == ailél +Aa, + A1a2V2 —a,A, (40)



" _ 2a§A_1
= V3
@’ = AV +3A AV +3(A AT+ ANV HBAAA

A®  3A A 1
e QT WAE

Substituting for equations (39-42) at equation (37) and collecting and equating the

coefficients of different powers of y/i to zero, we can easily obtain this system of algebraic
equations

A +k*a(1-3aq) =0

6A’A, =0

2a,a,k*(1-3aq) +6(A A + A)+(aq®-q*-5) =0

(aq’—q° -8)+12AA , +2A =0

2a,a,k*(1-3aq) +6(A A + A)+(aq®-q*-5) =0

6A%A =0

A’ +k*al(1-3aq) =0 (43)
When one solves this system, he can obtain,
The second and the six part of equation (43) implies A, =0, hence substitute at the other

+ 2a0?./2A_1 +2Aa,a,v+2Aa Vv (41)

(42)

parts of equation about A, = 0 and solve them analytically we get,

a, =J_r§,a2 =05k=1LA =11 A, :ig, A, =0,6=+0.7, (44)
From which we can get 7-differents solutions namely, we will plot only one case which is (1)

(5.1.a) a, :%,a2 :0.5,k:1,Ai:1,A_1:§,A0 =0,6 =407,

v(¢) = Y22 tan(fam, (£ +&,), (&) =1.15tan[0.57(x +t +1)],

&
@,,(¢) =0.57 cot[0.58(x +t +1)]+1.15tan[0.58(x +t +1)] (45)

al

Figure 5.1.a The periodic soliton solution real part Eq.(45) in 2D and 3D with values:

ao :§’a2 20.5’k:1,A1:1,A71 :%,Ab 20,5:‘\/0.7,40:2

(5.1-b) a, =—§,a2 =05k=1A=1A, :%,AD =0,6=0.7,



w($) = —V—:“’az tanh(y/—a,a,¢ —%), ~V(¢) =1.15tanh[0.57(x +t +0.34)],

@,,(&) =0.57 coth[0.58(x +t +0.34)] +1.15tanh[0.58(x +t + 0.34)] (45)

IS

PLE
e
J 6 [
Figure 5.1.b The periodic soliton solution real part Eq.(45) in 2D and 3D with values:

aoz—g,a,z :0.5,k:1,A1:1,A1:§,A):0,5:\/0.7,,0:—1,4’0:2

By the same manner we can easily drown the other 6-cases.

Case 5- 2: Now we will study the second case of the constructed method for the real part:
Whena, =0=V' =aVv+ a2v2 , consequently from the above equation,

@’ =':‘—§1+A)2 +A2v2+%+2A1A1+2AbAlV (46)

¢ = Aa,v’ + Aayv— a1v'°2\1 —a,A, (47)

@' =2Aa Vv’ +3Aaa,v’ + Aa’Vv+ A‘l\?ia? + afvé_l (48)
@° = AV +3A AV +3(A A+ AA IV +EAAA,

A 3A A 1 (49)
e e e (VRO

Substituting for equations (46-49) at equation (37) and collecting and equating the
coefficients of different powers of /' to zero, we can easily obtain this system of algebraic
equations
k’a’(1-3aq)+ A’ =0
k?*a,a,(1—3aq)+2A,A =0
(aq®-q*—05)+k*a’(1-3aq) +6(A A +A)=0
(aq®—q*—5)++2A +12A A =0 (50)
(aq®—q° -5)+k’aa,(1-3aq) +6(A,A + A2) =0
k?a’(1-3aq)+6AA°, =0
2A° =0

The last part of equation (50) implies A, =0, hence when we substitute at the six part give



one of probability values a which isa, =0 and in this case there are no solutions.

But for the other parts of equations (50) if A, =0the other parts then we can easily
analytically obtain,

3_ N2 _
o= e % "KM A = (Gaa-0Kal, A, =0.A, =0
aq’-q’ -3 o’
a== 2 @Bag D) 8, =Lk =1 A =+/Baq-1)k’*a; ,A,=0,A, =0,

a, =+2,a, =i1,k=1,A1=J_rZ,k=1,A1=0,A)=0,5=0.7,a=%,q=5 (51)

These obtained results admits 7-solutions, we will choose only two from of them,

Case 5-2.a:
a=2a2a, =1,k=1,A1=2,k=1,A1=0,A\)=0,5=0.7,0:=%,q=5,§0 =1

v(<$) :ai{al 4a,a, _812 tan[%l%af(g+§o)}]’4a132 - a’f!az >0,

v(¢)=-2+2tan(x+t+1),

?,,($) =—4+4tan(x+t+1), (52)

10 I
Figure 5.2.a The periodic soliton solution real part Eq.(52) in 2D and 3D with values:

Tl

6122,8.2 :1,k:1,A1:2,k:1,A_1:o;A):01520'7’a:%1q:5’g0 :1
Case 5-2.b:
1
a=-24a, =—1,k=1,A&=2,k=1,A71=0,A) =0,5=0.7,a=§,q=5 (53)

v(¢) :ai[a1+1/4a1a2 -a/ tanh(—mzzaf(§+§o)}],4aia2 >a’,a, <0,

v(¢) =2—-2tanh(x+t+1),



?,,()=4—-4tanh(x+t+1), (54)

110 15 5 10
Figure 5.2.b The periodic soliton solution real part Eg.(54) in 2D and 3D with values:

a,=-2,a, =—1,k=1,A1=2,k=1,A1=0,A)=O,5=O.7,a=%,q=5

By the same manner we can easily drown the other 6-cases.

Secondly, we will study the imaginary term:
Im. W' + 2kae’ —3akq’e’ + ak’s” +12ake’s’ =0, (55)

Equation (55) implies that

(W+2kq —3akq® )¢’ +12ake’d' + ak’¢"” = 0,
Integrating once, we get

(W+ 2kq —3akq? o + dake® + ak’s” =0, (56)
Balancing the nonlinear term and the highest order derivative term at equation (56) implies
that 3m = m+ 2hence m =1and the solution is,

PE) =224 A+ AY 67)
Where V' = a, +a,\V +a,Vv’
Case 6.1: Whena, =0=V' =a, +a,V*, consequently
,_ 280A, | 23,3,A

- L+ 2A8,a,V+2AaV° (58)
v v

@' = AV’ +3AAV +3(ALA + ANV +BAAA,
3 2
R DL AR yan a8
v Vv Vv
Substituting for equations (57-59) at equation (56) and collecting and equating the

(59)

coefficients of different powers of ' to zero, we can easily obtain this system of algebraic
equations

2A +k*ai =0

4ak(3A’A,) =0

2aa,a,k® +12ak (A A + A2) + (W, +2gk —3akq?) =0

(W, + 20k —3akq®) + 24akA A | +4akA: =0

2A% +k%a2 =0



4ak(3A%A,) =0
(W, + 20k —3akq®) + 2aa,a,k’® +12ak (A A + A2) =0 (60)
The second and the six part of equation (60) implies A, =0, hence substitute at the other

parts of equation about A, = 0 and solve them analytically we get,

. 1 1 1
= +13\2i,a, =+ k=LA==,A, =13 A=0w,=2,0=5a== (61)
d a, 4\/§i Ai 8 1 Ab 2 q 3
From which we can get 4-differents solutions namely, we will plot only one case which is (1)

Case (6-1.a)

. 1 1 1
=13J2i,a, =——— k=1L A==,A. =13 A =0,w,=2,q=5,aa==
Q, \/_ a, 4\/§i A g A 2 q (24 3

w(Q)= VP tan(\/aoaz (& +S0)

2

v (¢)=10.2tan(1.84 + 2),

0, ($) —%cot[l 8x+1. 8t+2]+%tan[l 8x+1.8t+2]

I
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Figure 6.1.a. The periodic soliton solution imaginary part Eq.(62) in 2D and 3D with values:

a0=13\/§i,a2=Tk 1&—— L =13 A =0,W, =2,¢, =2

Case (6.1.b)

13|\/§a_—k1 ==,A, =13, oW, =2,q=5a==,p=-1
a = 4I\F A.l Ao q= P

OOIH

w({) = _V—:‘oaz tanh(, /_—aoazé’_%)'
y(¢) =10.2tanh(1.8¢ +0.34),

»,,() = —coth[l 8x+1.8t +0. 34]+%tanh[l 8x+1.8t +0.34]

0,,(¢) =—1.27 coth[1.8x +1.8t + 0.34] +1.28 tanh[1.8x + 1.8t + 0.34] (62)



004, +
00|}
/. ‘ X
2 4
10|t
ooal |

Figure 6. 1.b. The periodic soliton solution imaginary part Eq.(62) in 2D and 3D with values:

a0=13\/§ i’azzL k=1,A1=%,A1=13,A)=0,W2=2,§0:2

W20

In the same manner, we can plot the other 3-cases.
Case 6.2: Now we will study the second case of the constructed method for the imaginary

part:
Case 6.2.a: Whena, =0=V' =aVv+ a2v2 , consequently from the above equation,

2
@ =A—j+A§+AZVZ+%+2A&A4+2AbA&V (63)
v v
' A

¢'=Aa,v* +Aay - % A, (64)

2
@' =2Aa Vv’ +3Aaa,v’ + Aa’Vv+ Ad, 3 'g‘*l (65)

v v

@' = AV’ +3AAV +3(ALA + ARV +BAAA,

3 2
PR e (Y Y WOL

Vv Vv Vv
Substituting for equations (63-66) at equation (38) and collecting and equating the

coefficients of different powers of ' to zero, we can easily obtain this system of algebraic

(66)

equations
k’al +2A7 =0
k*a,a, +4AA =0
(W, + 20k —3akq®) + ak’a’ +12ak (A A + AY) =0
(W, + 20Kk —3akq®) + ak* Al +6ak*A A =0 (67)
(W, + 20k —3akg®) + ak’aa, +12ak(A A + A) =0
k?a’?+12A,A, =0
4akA’, =0
The last part of equation (67) implies A , =0, hence when we substitute at the six part give
one of probability values a,which isa, =0 but for the other parts of equations (67) if
A, =0, A, = Othe other parts then we can easily analytically obtain,
a=2Ia, :2,k:1,A_L=iL,A_l:O,AO =+v39 i,w,=2,{,=2,k=1,q=5

J39



4 Py
V)= & 4a1a2—aftan£—”fal(4+;o)J

v({) =-1+1.8tan(1.7¢ + 2),

0, () =~/39+ %[—1+1.8tan(1.7§ +2)],

739

0,,(&)=6+0.4tan(1.74 + 2)],
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Figure 6.2.a. The periodic soliton solution imaginary part Eq.(62) in 2D and 3D with values:
. i :
a=2ia=2k=LA=—+~,A,=0A=v391,w,=2,{,=2,k=1,q=5

J39

7-Results and Discussion

We briefly summarize the results in this paper which splits into two distinct parts as follows:

e Inthe first part, the bright and dark soliton solutions of the nonlinear complex Hirota-
dynamical model which play a significant role in different branches of physics have
been established for the first time in the framework of the solitary wave ansatz
method.

When we compare our obtained solutions with these previously realized through
different authors [27-29] using various methods, we find that the proposed method
gives a new accurate solitary solutions.

o While the second part concerned with demonstrating the new impressive abundant
exact and hence solitary wave solutions according to the ESEM which have never
been achieved before.

8-Conclusion

In this article, we use the (SWAM) as a new basic technique successfully for the first
time to obtain the bright and dark soliton solutions as new solitary solutions to the nonlinear
complex Hirota- dynamical model. Our obtained results are new and more accurate compared
with these realized by other authors [27- 29] whose used different techniques to discussing
this model. In a similar vein and in parallel direction, new impressive solitary wave solutions
have been demonstrated for the first time in the framework of the ESEM. Furthermore, on a
related subject, the new solitary solutions realized with the aid of these two different
techniques will add future studies to all phenomena concerned with this model
experimentally. The performance to each one of these two methods is reliable and effective
and can be applied to many other nonlinear complex evolution equations as well as it can be
considered as benchmark against the numerical solutions.
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