Conclusions and unmet needs
NSAIDs, LT modifiers and biologicals are used every day in clinical practice in treatment of viral infections and common respiratory or allergic diseases. Although a significant progress has been made in our understanding how these medications act and how they affect eicosanoid pathways, there are still no sufficient data available to fully address all issues important for prediction of their activities affecting immune response and estimation of their clinical efficacy. This consensus report summarises up to date knowledge in this complex area and identifies major knowledge gaps and unmet needs to be addressed in the future.
Unmet needs
References
1. Sokolowska M, Rovati GE, Diamant Z, et al. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy. 2021;76(1):114-130.
2. Sheehan WJ, Mauger DT, Paul IM, et al. Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma. The New England journal of medicine. 2016;375(7):619-630.
3. Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and bacteria in acute asthma exacerbations–a GA(2) LEN-DARE systematic review. Allergy. 2011;66(4):458-468.
4. Turunen R, Koistinen A, Vuorinen T, et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.2014;25(8):796-803.
5. Christensen A, Kesti O, Elenius V, et al. Human bocaviruses and paediatric infections. The Lancet Child & adolescent health.2019;3(6):418-426.
6. Simoes EA, Carbonell-Estrany X, Rieger CH, et al. The effect of respiratory syncytial virus on subsequent recurrent wheezing in atopic and nonatopic children. The Journal of allergy and clinical immunology. 2010;126(2):256-262.
7. Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. The New England journal of medicine. 2013;368(19):1791-1799.
8. McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators of inflammation. 2012;2012:236345.
9. Jakiela B, Gielicz A, Plutecka H, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. American journal of respiratory cell and molecular biology. 2014;51(2):229-241.
10. Seymour ML, Gilby N, Bardin PG, et al. Rhinovirus infection increases 5-lipoxygenase and cyclooxygenase-2 in bronchial biopsy specimens from nonatopic subjects. The Journal of infectious diseases. 2002;185(4):540-544.
11. Bancos S, Bernard MP, Topham DJ, Phipps RP. Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells. Cellular immunology.2009;258(1):18-28.
12. Ryan EP, Pollock SJ, Murant TI, Bernstein SH, Felgar RE, Phipps RP. Activated human B lymphocytes express cyclooxygenase-2 and cyclooxygenase inhibitors attenuate antibody production. J Immunol. 2005;174(5):2619-2626.
13. Graham NM, Burrell CJ, Douglas RM, Debelle P, Davies L. Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers.The Journal of infectious diseases. 1990;162(6):1277-1282.
14. Shirey KA, Lai W, Pletneva LM, et al. Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal immunology.2014;7(3):549-557.
15. Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213-227.
16. Shirey KA, Pletneva LM, Puche AC, et al. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent. Mucosal immunology. 2010;3(3):291-300.
17. Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol. 2013;13(1):59-66.
18. Coulombe F, Jaworska J, Verway M, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity.2014;40(4):554-568.
19. Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep. 2016;6:27912.
20. Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. The Journal of clinical investigation. 2011;121(12):4921-4930.
21. Andreakos E, Papadaki M, Serhan CN. Dexamethasone, pro-resolving lipid mediators and resolution of inflammation in COVID-19.Allergy. 2021;76(3):626-628.
22. Moore N, Bosco-Levy P, Thurin N, Blin P, Droz-Perroteau C. NSAIDs and COVID-19: A Systematic Review and Meta-analysis. Drug safety.2021;44(9):929-938.
23. Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis in streptozotocin-induced diabetic rats. Cardiology.2015;131(2):97-106.
24. Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. Embo j. 2017;36(1):5-24.
25. Alfajaro MM, Choi JS, Kim DS, et al. Activation of COX-2/PGE2 Promotes Sapovirus Replication via the Inhibition of Nitric Oxide Production. Journal of virology. 2017;91(3).
26. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829-2845.
27. Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. The Journal of clinical investigation. 2011;121(12):4921-4930.
28. Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res. 2021;62:100129.
29. Sokolowska M, Chen LY, Liu Y, et al. Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages. J Immunol. 2015;194(11):5472-5487.
30. Vijay R, Fehr AR, Janowski AM, et al. Virus-induced inflammasome activation is suppressed by prostaglandin D<sub>2</sub>/DP1 signaling. Proceedings of the National Academy of Sciences.2017;114(27):E5444-E5453.
31. Martha JW, Pranata R, Lim MA, Wibowo A, Akbar MR. Active prescription of low-dose aspirin during or prior to hospitalization and mortality in COVID-19: A systematic review and meta-analysis of adjusted effect estimates. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2021;108:6-12.
32. Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI).Allergy. 2020;75(10):2445-2476.
33. Chen JS, Alfajaro MM, Chow RD, et al. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. Journal of virology. 2021.
34. Archambault AS, Zaid Y, Rakotoarivelo V, et al. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients.Faseb j. 2021;35(6):e21666.
35. Schwarz B, Sharma L, Roberts L, et al. Cutting Edge: Severe SARS-CoV-2 Infection in Humans Is Defined by a Shift in the Serum Lipidome, Resulting in Dysregulation of Eicosanoid Immune Mediators.J Immunol. 2021;206(2):329-334.
36. Buchheit KM, Hacker JJ, Gakpo DH, Mullur J, Sohail A, Laidlaw TM. Influence of daily aspirin therapy on ACE2 expression and function-implications for SARS-CoV-2 and patients with aspirin-exacerbated respiratory disease. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2021.
37. Terrier O, Dilly S, Pizzorno A, et al. Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus. Molecules (Basel, Switzerland). 2021;26(9).
38. Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action.Paediatric anaesthesia. 2008;18(10):915-921.
39. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings.Inflammopharmacology. 2013;21(3):201-232.
40. Reese JT, Coleman B, Chan L, et al. Cyclooxygenase inhibitor use is associated with increased COVID-19 severity. medRxiv.2021:2021.2004.2013.21255438.
41. Rinott E, Kozer E, Shapira Y, Bar-Haim A, Youngster I. Ibuprofen use and clinical outcomes in COVID-19 patients. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.2020;26(9):1259.e1255-1259.e1257.
42. Abu Esba LC, Alqahtani RA, Thomas A, Shamas N, Alswaidan L, Mardawi G. Ibuprofen and NSAID Use in COVID-19 Infected Patients Is Not Associated with Worse Outcomes: A Prospective Cohort Study.Infectious diseases and therapy. 2021;10(1):253-268.
43. Drake TM, Fairfield CJ, Pius R, et al. Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. The Lancet Rheumatology. 2021.
44. Park J, Lee SH, You SC, Kim J, Yang K. Non-steroidal anti-inflammatory agent use may not be associated with mortality of coronavirus disease 19. Sci Rep. 2021;11(1):5087.
45. Ricke-Hoch M, Stelling E, Lasswitz L, et al. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease.PloS one. 2021;16(8):e0255335.
46. Peters-Golden M, Henderson WR, Jr. Leukotrienes. The New England journal of medicine. 2007;357(18):1841-1854.
47. Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev. 2007;27(4):469-527.
48. Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment of asthma and beyond. Expert Rev Clin Immunol. 2009;5(6):639-658.
49. Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. The Journal of allergy and clinical immunology.2006;118(1):113-119.
50. Tahan F, Jazrawi E, Moodley T, Rovati GE, Adcock IM. Montelukast inhibits tumour necrosis factor-alpha-mediated interleukin-8 expression through inhibition of nuclear factor-kappaB p65-associated histone acetyltransferase activity. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.2008;38(5):805-811.
51. Mamedova L, Capra V, Accomazzo MR, et al. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochemical pharmacology. 2005;71(1-2):115-125.
52. Woszczek G, Chen LY, Alsaaty S, Nagineni S, Shelhamer JH. Concentration-dependent noncysteinyl leukotriene type 1 receptor-mediated inhibitory activity of leukotriene receptor antagonists. J Immunol. 2010;184(4):2219-2225.
53. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S. Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages and T cells. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.2003;33(6):802-807.
54. Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005;73(2):89-96.
55. Ciana P, Fumagalli M, Trincavelli ML, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J. 2006;25(19):4615-4627.
56. Ramires R, Caiaffa MF, Tursi A, Haeggstrom JZ, Macchia L. Novel inhibitory effect on 5-lipoxygenase activity by the anti-asthma drug montelukast. Biochemical and biophysical research communications.2004;324(2):815-821.
57. Rius M, Hummel-Eisenbeiss J, Keppler D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4).The Journal of pharmacology and experimental therapeutics.2008;324(1):86-94.
58. Ravasi S, Capra V, Panigalli T, Rovati GE, Nicosia S. Pharmacological differences among CysLT(1) receptor antagonists with respect to LTC(4) and LTD(4) in human lung parenchyma. Biochemical pharmacology. 2002;63(8):1537-1546.
59. Lynch KR, Gary P. O’neill GP, Qingyun Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor.Nature. 1999;399:789-793.
60. Sarau HM, Ames RS, Chambers J, et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Molecular pharmacology. 1999;56(3):657-663.
61. Reiss TF, Altman LC, Chervinsky P, et al. Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. The Journal of allergy and clinical immunology. 1996;98(3):528-534.
62. Altman LC, Munk Z, Seltzer J, et al. A placebo-controlled, dose-ranging study of montelukast, a cysteinyl leukotriene-receptor antagonist. Montelukast Asthma Study Group. The Journal of allergy and clinical immunology. 1998;102(1):50-56.
63. Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med. 1999;130(6):487-495.
64. Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. The Journal of allergy and clinical immunology.2018;142(4):1080-1089.
65. Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet. 1999;22(2):168-170.
66. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response.Pharmacogenetics and genomics. 2009;19(2):129-138.
67. Scott JP, Peters-Golden M. Antileukotriene agents for the treatment of lung disease. American journal of respiratory and critical care medicine. 2013;188(5):538-544.
68. Kolmert J, Gomez C, Balgoma D, et al. Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American journal of respiratory and critical care medicine. 2021;203(1):37-53.
69. Gaber F, Daham K, Higashi A, et al. Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax.2008;63(12):1076-1082.
70. Rabinovitch N, Graber NJ, Chinchilli VM, et al. Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma. The Journal of allergy and clinical immunology.2010;126(3):545-551 e541-544.
71. Rabinovitch N, Mauger DT, Reisdorph N, et al. Predictors of asthma control and lung function responsiveness to step 3 therapy in children with uncontrolled asthma. The Journal of allergy and clinical immunology. 2014;133(2):350-356.
72. Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group. Ann Intern Med. 2000;132(2):97-104.
73. Price DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy. 2006;61(6):737-742.
74. Dahlen SE, Malmstrom K, Nizankowska E, et al. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. American journal of respiratory and critical care medicine. 2002;165(1):9-14.
75. Bisgaard H, Zielen S, Garcia-Garcia ML, et al. Montelukast reduces asthma exacerbations in 2- to 5-year-old children with intermittent asthma. American journal of respiratory and critical care medicine. 2005;171(4):315-322.
76. Bozek A, Warkocka-Szoltysek B, Filipowska-Gronska A, Jarzab J. Montelukast as an add-on therapy to inhaled corticosteroids in the treatment of severe asthma in elderly patients. The Journal of asthma : official journal of the Association for the Care of Asthma.2012;49(5):530-534.
77. Price D, Musgrave SD, Shepstone L, et al. Leukotriene antagonists as first-line or add-on asthma-controller therapy. The New England journal of medicine. 2011;364(18):1695-1707.
78. Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax. 2002;57(3):226-230.
79. Gaki E, Papatheodorou G, Ischaki E, Grammenou V, Papa I, Loukides S. Leukotriene E(4) in urine in patients with asthma and COPD–the effect of smoking habit. Respiratory medicine. 2007;101(4):826-832.
80. Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. American journal of respiratory and critical care medicine. 2007;175(8):783-790.
81. Price D, Popov TA, Bjermer L, et al. Effect of montelukast for treatment of asthma in cigarette smokers. The Journal of allergy and clinical immunology. 2013;131(3):763-771.
82. Giouleka P, Papatheodorou G, Lyberopoulos P, et al. Body mass index is associated with leukotriene inflammation in asthmatics.European journal of clinical investigation. 2011;41(1):30-38.
83. Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. The European respiratory journal. 2006;27(3):495-503.
84. Kowalski ML, Makowska JS, Blanca M, et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) - classification, diagnosis and management: review of the EAACI/ENDA(#) and GA2LEN/HANNA*. Allergy. 2011;66(7):818-829.
85. Pace S, Sautebin L, Werz O. Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy. Biochemical pharmacology. 2017;145:1-11.
86. Pergola C, Dodt G, Rossi A, et al. ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci U S A.2008;105(50):19881-19886.
87. Pace S, Pergola C, Dehm F, et al. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. The Journal of clinical investigation. 2017;127(8):3167-3176.
88. Pergola C, Schaible AM, Nikels F, Dodt G, Northoff H, Werz O. Progesterone rapidly down-regulates the biosynthesis of 5-lipoxygenase products in human primary monocytes. Pharmacological research.2015;94:42-50.
89. Rossi A, Roviezzo F, Sorrentino R, et al. Leukotriene-mediated sex dimorphism in murine asthma-like features during allergen sensitization.Pharmacological research. 2019;139:182-190.
90. Pace S, Werz O. Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Frontiers in immunology. 2020;11:1356.
91. Esposito R, Spaziano G, Giannattasio D, et al. Montelukast Improves Symptoms and Lung Function in Asthmatic Women Compared With Men.Frontiers in pharmacology. 2019;10:1094.
92. Rabinovitch N, Strand M, Stuhlman K, Gelfand EW. Exposure to tobacco smoke increases leukotriene E4-related albuterol usage and response to montelukast. The Journal of allergy and clinical immunology.2008;121(6):1365-1371.
93. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy.2020;75(7):1564-1581.
94. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy.2021;76(2):428-455.
95. Sisakht M, Solhjoo A, Mahmoodzadeh A, Fathalipour M, Kabiri M, Sakhteman A. Potential inhibitors of the main protease of SARS-CoV-2 and modulators of arachidonic acid pathway: Non-steroidal anti-inflammatory drugs against COVID-19. Computers in biology and medicine.2021;136:104686.
96. Fidan C, Aydogdu A. As a potential treatment of COVID-19: Montelukast. Med Hypotheses. 2020;142:109828.
97. Aigner L, Pietrantonio F, Bessa de Sousa DM, et al. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic.Front Mol Biosci. 2020;7:610132.
98. Barré J, Sabatier JM, Annweiler C. Montelukast Drug May Improve COVID-19 Prognosis: A Review of Evidence. Frontiers in pharmacology. 2020;11:1344.
99. Crimi N, Mastruzzo C, Pagano C, Lisitano N, Palermo F, Vancheri C. Montelukast protects against bradykinin-induced bronchospasm. The Journal of allergy and clinical immunology. 2005;115(4):870-872.
100. England JT, Abdulla A, Biggs CM, et al. Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes. Blood Rev.2021;45:100707.
101. Fajgenbaum DC, June CH. Cytokine Storm. The New England journal of medicine. 2020;383(23):2255-2273.
102. Sala A, Murphy RC, Voelkel NF. Direct airway injury results in elevated levels of sulfidopeptide leukotrienes, detectable in airway secretions. Prostaglandins. 1991;42(1):1-7.
103. Sanghai N, Tranmer GK. Taming the cytokine storm: repurposing montelukast for the attenuation and prophylaxis of severe COVID-19 symptoms. Drug Discov Today. 2020;25(12):2076-2079.
104. Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S. Effect of montelukast on nuclear factor kappaB activation and proinflammatory molecules. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2005;94(6):670-674.
105. Ueda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene receptor antagonist pranlukast suppresses eosinophil infiltration and cytokine production in human nasal mucosa of perennial allergic rhinitis. Ann Otol Rhinol Laryngol. 2003;112(11):955-961.
106. Almerie MQ, Kerrigan DD. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Med Hypotheses. 2020;143:109883.
107. Khan AR, Misdary C, Yegya-Raman N, et al. Montelukast in hospitalized patients diagnosed with COVID-19. The Journal of asthma : official journal of the Association for the Care of Asthma.2021:1-7.
108. Bozek A, Winterstein J. Montelukast’s ability to fight COVID-19 infection. The Journal of asthma : official journal of the Association for the Care of Asthma. 2021;58(10):1348-1349.
109. Hoxha M, Tedesco CC, Quaglin S, et al. Montelukast Use Decreases Cardiovascular Events in Asthmatics. Frontiers in pharmacology.2020;11:611561.
110. Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov. 2005;4(8):664-672.
111. Funk CD, Ardakani A. A Novel Strategy to Mitigate the Hyperinflammatory Response to COVID-19 by Targeting Leukotrienes.Frontiers in pharmacology. 2020;11:1214.
112. Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases.Nat Rev Drug Discov. 2007;6(4):313-325.
113. Claar D, Hartert TV, Peebles RS, Jr. The role of prostaglandins in allergic lung inflammation and asthma. Expert review of respiratory medicine. 2015;9(1):55-72.
114. Boonpiyathad T, Capova G, Duchna HW, et al. Impact of high-altitude therapy on type-2 immune responses in asthma patients. Allergy.2020;75(1):84-94.
115. Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of CRTh2 expression on allergen-specific T cells following peptide immunotherapy. Allergy. 2019;74(11):2157-2166.
116. Diamant Z, Aalders W, Parulekar A, Bjermer L, Hanania NA. Targeting lipid mediators in asthma: time for reappraisal. Current opinion in pulmonary medicine. 2019;25(1):121-127.
117. Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D(2) receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020;75(4):761-768.
118. Singh D, Cadden P, Hunter M, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. The European respiratory journal. 2013;41(1):46-52.
119. Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.2014;44(8):1044-1052.
120. Xia J, Abdu S, Maguire TJA, Hopkins C, Till SJ, Woszczek G. Prostaglandin D(2) receptors in human mast cells. Allergy.2020;75(6):1477-1480.
121. Beasley R, Varley J, Robinson C, Holgate ST. Cholinergic-mediated bronchoconstriction induced by prostaglandin D2, its initial metabolite 9 alpha,11 beta-PGF2, and PGF2 alpha in asthma. Am Rev Respir Dis. 1987;136(5):1140-1144.
122. Diamant Z, Timmers MC, van der Veen H, et al. The effect of MK-0591, a novel 5-lipoxygenase activating protein inhibitor, on leukotriene biosynthesis and allergen-induced airway responses in asthmatic subjects in vivo. The Journal of allergy and clinical immunology. 1995;95(1 Pt 1):42-51.
123. Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459.Allergy. 2014;69(9):1223-1232.
124. Ratner P, Andrews CP, Hampel FC, et al. Efficacy and safety of setipiprant in seasonal allergic rhinitis: results from Phase 2 and Phase 3 randomized, double-blind, placebo- and active-referenced studies. Allergy Asthma Clin Immunol. 2017;13:18.
125. Saunders R, Kaul H, Berair R, et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Science translational medicine.2019;11(479).
126. Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. The Journal of allergy and clinical immunology.2013;131(6):1504-1512.
127. Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020;75(4):761-768.
128. Shiraishi Y, Asano K, Niimi K, et al. Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded RNA-induced enhancement of allergic airway inflammation. J Immunol. 2008;180(1):541-549.
129. Werder RB, Lynch JP, Simpson JC, et al. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN-lambda production. Science translational medicine. 2018;10(440).
130. Gupta A, Chander Chiang K. Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID-19 disease. Med Hypotheses. 2020;143:110122.
131. Safholm J, Manson ML, Bood J, et al. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. The Journal of allergy and clinical immunology. 2015;136(5):1232-1239.e1231.
132. Lu HC, Mackie K. An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016;79(7):516-525.
133. Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17(9):623-639.
134. Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer. 2012;12(6):436-444.
135. Angelina A, Perez-Diego M, Lopez-Abente J, Palomares O. The Role of Cannabinoids in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2020. International archives of allergy and immunology. 2020;181(8):565-584.
136. Sugawara K, Zakany N, Hundt T, et al. Cannabinoid receptor 1 controls human mucosal-type mast cell degranulation and maturation in situ. The Journal of allergy and clinical immunology.2013;132(1):182-193.
137. Sugawara K, Biro T, Tsuruta D, et al. Endocannabinoids limit excessive mast cell maturation and activation in human skin. The Journal of allergy and clinical immunology. 2012;129(3):726-738 e728.
138. Braun A, Engel T, Aguilar-Pimentel JA, et al. Beneficial effects of cannabinoids (CB) in a murine model of allergen-induced airway inflammation: role of CB1/CB2 receptors. Immunobiology.2011;216(4):466-476.
139. Vuolo F, Abreu SC, Michels M, et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma.European journal of pharmacology. 2019;843:251-259.
140. Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice. Toxicology and applied pharmacology. 2003;188(1):24-35.
141. Giannini L, Nistri S, Mastroianni R, et al. Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs. J Cell Mol Med. 2008;12(6A):2381-2394.
142. Gaffal E, Glodde N, Jakobs M, Bald T, Tuting T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate-induced mouse atopic-like dermatitis. Exp Dermatol. 2014;23(6):401-406.
143. Kim HJ, Kim B, Park BM, et al. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Int J Dermatol.2015;54(10):e401-408.
144. Nam G, Jeong SK, Park BM, et al. Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model. Ann Dermatol. 2016;28(1):22-29.
145. Petrosino S, Verde R, Vaia M, Allara M, Iuvone T, Di Marzo V. Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis. The Journal of pharmacology and experimental therapeutics.2018;365(3):652-663.
146. Vaia M, Petrosino S, De Filippis D, et al. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. European journal of pharmacology. 2016;791:669-674.
147. Petrosino S, Cristino L, Karsak M, et al. Protective role of palmitoylethanolamide in contact allergic dermatitis. Allergy.2010;65(6):698-711.
148. Bozkurt TE, Kaya Y, Durlu-Kandilci NT, Onder S, Sahin-Erdemli I. The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice. Respir Physiol Neurobiol. 2016;231:7-13.
149. Angelina A, Martin-Fontecha M, Ruckert B, et al. The cannabinoid WIN55212-2 restores rhinovirus-induced epithelial barrier disruption.Allergy. 2020.
150. Angelina A, Pérez-Diego M, López-Abente J, et al. Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal immunology. 2021.
151. Esposito G, Pesce M, Seguella L, et al. The potential of cannabidiol in the COVID-19 pandemic. Br J Pharmacol.2020;177(21):4967-4970.
152. Tahamtan A, Tavakoli-Yaraki M, Salimi V. Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients. Expert review of respiratory medicine. 2020;14(10):965-967.
153. Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection?Int J Mol Sci. 2020;21(11).
154. Frei RB, Luschnig P, Parzmair GP, et al. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice. Allergy. 2016;71(7):944-956.
155. Mimura T, Ueda Y, Watanabe Y, Sugiura T. The cannabinoid receptor-2 is involved in allergic inflammation. Life Sci.2012;90(21-22):862-866.
156. Ferrini ME, Hong S, Stierle A, et al. CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. Allergy. 2017;72(6):937-947.
157. Martin-Fontecha M, Eiwegger T, Jartti T, et al. The expression of cannabinoid receptor 1 is significantly increased in atopic patients.The Journal of allergy and clinical immunology.2014;133(3):926-929 e922.
158. Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet (London, England).2019;394(10209):1638-1650.
159. Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. The Journal of allergy and clinical immunology. 2020;146(3):595-605.
160. Dunican EM, Fahy JV. The Role of Type 2 Inflammation in the Pathogenesis of Asthma Exacerbations. Ann Am Thorac Soc. 2015;12 Suppl 2:S144-149.
161. Bachert C, Zhang N, Cavaliere C, Weiping W, Gevaert E, Krysko O. Biologics for chronic rhinosinusitis with nasal polyps. The Journal of allergy and clinical immunology. 2020;145(3):725-739.
162. Bourdin A, Bjermer L, Brightling C, et al. ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. The European respiratory journal. 2019;54(3).
163. Del Giacco SR, Bakirtas A, Bel E, et al. Allergy in severe asthma.Allergy. 2017;72(2):207-220.
164. Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2009;39(2):193-202.
165. Calhoun WJ, Dick EC, Schwartz LB, Busse WW. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. The Journal of clinical investigation. 1994;94(6):2200-2208.
166. Peters-Golden M. Expanding roles for leukotrienes in airway inflammation. Current allergy and asthma reports.2008;8(4):367-373.
167. Diamant Z, Hiltermann JT, van Rensen EL, et al. The effect of inhaled leukotriene D4 and methacholine on sputum cell differentials in asthma. American journal of respiratory and critical care medicine. 1997;155(4):1247-1253.
168. Serrano-Candelas E, Martinez-Aranguren R, Valero A, et al. Comparable actions of omalizumab on mast cells and basophils.Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2016;46(1):92-102.
169. Zhang HP, Jia CE, Lv Y, Gibson PG, Wang G. Montelukast for prevention and treatment of asthma exacerbations in adults: Systematic review and meta-analysis. Allergy and asthma proceedings.2014;35(4):278-287.
170. Yang J, Luo J, Yang L, et al. Efficacy and safety of antagonists for chemoattractant receptor-homologous molecule expressed on Th2 cells in adult patients with asthma: a meta-analysis and systematic review.Respiratory research. 2018;19(1):217.
171. Fitzgerald DA, Mellis CM. Leukotriene receptor antagonists in virus-induced wheezing : evidence to date. Treatments in respiratory medicine. 2006;5(6):407-417.
172. Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic Rhinosinusitis with Nasal Polyps and Asthma. J Allergy Clin Immunol Pract. 2021;9(3):1133-1141.
173. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper.Allergy. 2019;74(1):28-39.
174. Celejewska-Wójcik N, Wójcik K, Ignacak-Popiel M, et al. Subphenotypes of nonsteroidal antiinflammatory disease-exacerbated respiratory disease identified by latent class analysis. Allergy.2020;75(4):831-840.
175. Christie PE, Tagari P, Ford-Hutchinson AW, et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis.1991;143(5 Pt 1):1025-1029.
176. Arm JP, O’Hickey SP, Spur BW, Lee TH. Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin-induced asthma.Am Rev Respir Dis. 1989;140(1):148-153.
177. Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. The Journal of clinical investigation.1998;101(4):834-846.
178. Corrigan CJ, Napoli RL, Meng Q, et al. Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. The Journal of allergy and clinical immunology. 2012;129(6):1636-1646.
179. Szczeklik A, Mastalerz L, Nizankowska E, Cmiel A. Protective and bronchodilator effects of prostaglandin E and salbutamol in aspirin-induced asthma. American journal of respiratory and critical care medicine. 1996;153(2):567-571.
180. Yamaguchi H, Higashi N, Mita H, et al. Urinary concentrations of 15-epimer of lipoxin A(4) are lower in patients with aspirin-intolerant compared with aspirin-tolerant asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2011;41(12):1711-1718.
181. Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D₂: a dominant mediator of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2015;135(1):245-252.
182. Kowalski ML, Asero R, Bavbek S, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy.2013;68(10):1219-1232.
183. Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov. 2003;2(3):179-191.
184. Doña I, Barrionuevo E, Salas M, et al. NSAIDs-hypersensitivity often induces a blended reaction pattern involving multiple organs.Sci Rep. 2018;8(1):16710.
185. FitzGerald GA. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov.2003;2(11):879-890.
186. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A.1999;96(13):7563-7568.
187. Dona I, Perez-Sanchez N, Eguiluz-Gracia I, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy. 2020;75(3):561-575.
188. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma.Allergy. 2018;73(12):2290-2305.
189. Szczeklik A, Gryglewski RJ, Czerniawska-Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin-sensitive patients. British medical journal.1975;1(5949):67-69.
190. Zembowicz A, Mastalerz L, Setkowicz M, Radziszewski W, Szczeklik A. Safety of cyclooxygenase 2 inhibitors and increased leukotriene synthesis in chronic idiopathic urticaria with sensitivity to nonsteroidal anti-inflammatory drugs. Arch Dermatol.2003;139(12):1577-1582.
191. Setkowicz M, Mastalerz L, Podolec-Rubis M, Sanak M, Szczeklik A. Clinical course and urinary eicosanoids in patients with aspirin-induced urticaria followed up for 4 years. The Journal of allergy and clinical immunology. 2009;123(1):174-178.
192. Di Lorenzo G, Pacor ML, Candore G, et al. Polymorphisms of cyclo-oxygenases and 5-lipo-oxygenase-activating protein are associated with chronic spontaneous urticaria and urinary leukotriene E4.European journal of dermatology : EJD. 2011;21(1):47-52.
193. Doña I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. Allergy. 2019;74(6):1135-1144.
194. Di Lorenzo G, Pacor ML, Vignola AM, et al. Urinary metabolites of histamine and leukotrienes before and after placebo-controlled challenge with ASA and food additives in chronic urticaria patients.Allergy. 2002;57(12):1180-1186.
195. Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma.The Journal of allergy and clinical immunology.2004;113(4):771-775.
196. Bohm I, Speck U, Schild H. A possible role for cysteinyl-leukotrienes in non-ionic contrast media induced adverse reactions. Eur J Radiol. 2005;55(3):431-436.
197. Stellato C, de Crescenzo G, Patella V, Mastronardi P, Mazzarella B, Marone G. Human basophil/mast cell releasability. XI. Heterogeneity of the effects of contrast media on mediator release. The Journal of allergy and clinical immunology. 1996;97(3):838-850.
198. Cryer B, Feldman M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs.Am J Med. 1998;104(5):413-421.
199. Waterbury LD, Silliman D, Jolas T. Comparison of cyclooxygenase inhibitory activity and ocular anti-inflammatory effects of ketorolac tromethamine and bromfenac sodium. Curr Med Res Opin.2006;22(6):1133-1140.
200. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A. 1993;90(24):11693-11697.
201. Campos C, de Gregorio R, García-Nieto R, Gago F, Ortiz P, Alemany S. Regulation of cyclooxygenase activity by metamizol. Eur J Pharmacol. 1999;378(3):339-347.
202. Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. Zileuton Clinical Trial Group. JAMA.1996;275(12):931-936.
203. Castro M, Kerwin E, Miller D, et al. Efficacy and safety of fevipiprant in patients with uncontrolled asthma: Two replicate, phase 3, randomised, double-blind, placebo-controlled trials (ZEAL-1 and ZEAL-2). EClinicalMedicine. 2021;35:100847.
204. Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203-212.