References
1. Skelly AN, Sato Y, Kearney S, Honda K. Mining the microbiota for
microbial and metabolite-based immunotherapies. Nat Rev Immunol
2019; 19 :305-23.
2. Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and
Disease. N Engl J Med 2016; 375 :2369-79.
3. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the
immune system. Nat Rev Immunol 2017; 17 :219-32.
4. Akshintala VS, Talukdar R, Singh VK, Goggins M. The Gut Microbiome in
Pancreatic Disease. Clin Gastroenterol Hepatol 2019;17 :290-5.
5. Adolph TE, Mayr L, Grabherr F, Schwarzler J, Tilg H.
Pancreas-Microbiota Cross Talk in Health and Disease. Annu Rev
Nutr 2019; 39 :249-66.
6. Watanabe T, Minaga K, Kamata K, Kudo M, Strober W. Mechanistic
Insights into Autoimmune Pancreatitis and IgG4-Related Disease.Trends Immunol 2018; 39 :874-89.
7. Kamisawa T, Zen Y, Pillai S, Stone JH. IgG4-related disease.Lancet 2015; 385 :1460-71.
8. Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J
Med 2012; 366 :539-51.
9. Hubers LM, Vos H, Schuurman AR, Erken R, Oude Elferink RP, Burgering
B, van de Graaf SFJ, Beuers U. Annexin A11 is targeted by IgG4 and IgG1
autoantibodies in IgG4-related disease. Gut 2018;67 :728-35.
10. Shiokawa M, Kodama Y, Sekiguchi K, Kuwada T, Tomono T, Kuriyama K,
Yamazaki H, Morita T, Marui S, Sogabe Y, Kakiuchi N, Matsumori T, Mima
A, Nishikawa Y, Ueda T, Tsuda M, Yamauchi Y, Sakuma Y, Maruno T, Uza N,
Tsuruyama T, Mimori T, Seno H, Chiba T. Laminin 511 is a target antigen
in autoimmune pancreatitis. Sci Transl Med 2018; 10 .
11. Perugino CA, AlSalem SB, Mattoo H, Della-Torre E, Mahajan V, Ganesh
G, Allard-Chamard H, Wallace Z, Montesi SB, Kreuzer J, Haas W, Stone JH,
Pillai S. Identification of galectin-3 as an autoantigen in patients
with IgG4-related disease. J Allergy Clin Immunol 2019;143 :736-45 e6.
12. Watanabe T, Yamashita K, Fujikawa S, Sakurai T, Kudo M, Shiokawa M,
Kodama Y, Uchida K, Okazaki K, Chiba T. Activation of Toll-like
Receptors and NOD-like Receptors Is Involved in Enhanced IgG4 Responses
in Autoimmune Pancreatitis. Arthritis & Rheumatism 2012;64 :914-24.
13. Watanabe T, Yamashita K, Sakurai T, Kudo M, Shiokawa M, Uza N,
Kodama Y, Uchida K, Okazaki K, Chiba T. Toll-like receptor activation in
basophils contributes to the development of IgG4-related disease.J Gastroenterol 2013; 48 :247-53.
14. Arai Y, Yamashita K, Kuriyama K, Shiokawa M, Kodama Y, Sakurai T,
Mizugishi K, Uchida K, Kadowaki N, Takaori-Kondo A, Kudo M, Okazaki K,
Strober W, Chiba T, Watanabe T. Plasmacytoid Dendritic Cell Activation
and IFN-alpha Production Are Prominent Features of Murine Autoimmune
Pancreatitis and Human IgG4-Related Autoimmune Pancreatitis. J
Immunol 2015; 195 :3033-44.
15. Fukui Y, Uchida K, Sakaguchi Y, Fukui T, Nishio A, Shikata N,
Sakaida N, Uemura Y, Satoi S, Okazaki K. Possible involvement of
Toll-like receptor 7 in the development of type 1 autoimmune
pancreatitis. J Gastroenterol 2015; 50 :435-44.
16. Watanabe T, Yamashita K, Arai Y, Minaga K, Kamata K, Nagai T, Komeda
Y, Takenaka M, Hagiwara S, Ida H, Sakurai T, Nishida N, Strober W, Kudo
M. Chronic Fibro-Inflammatory Responses in Autoimmune Pancreatitis
Depend on IFN-alpha and IL-33 Produced by Plasmacytoid Dendritic
Cells. J Immunol 2017; 198 :3886-96.
17. Ishiguro N, Moriyama M, Furusho K, Furukawa S, Shibata T, Murakami
Y, Chinju A, Haque A, Gion Y, Ohta M, Maehara T, Tanaka A, Yamauchi M,
Sakamoto M, Mochizuki K, Ono Y, Hayashida JN, Sato Y, Kiyoshima T,
Yamamoto H, Miyake K, Nakamura S. Activated M2 Macrophages Contribute to
the Pathogenesis of IgG4-Related Disease via Toll-like Receptor
7/Interleukin-33 Signaling. Arthritis Rheumatol 2020;72 :166-78.
18. Furukawa S, Moriyama M, Miyake K, Nakashima H, Tanaka A, Maehara T,
Iizuka-Koga M, Tsuboi H, Hayashida JN, Ishiguro N, Yamauchi M, Sumida T,
Nakamura S. Interleukin-33 produced by M2 macrophages and other immune
cells contributes to Th2 immune reaction of IgG4-related disease.Sci Rep 2017; 7 :42413.
19. Minaga K, Watanabe T, Arai Y, Shiokawa M, Hara A, Yoshikawa T,
Kamata K, Yamashita K, Kudo M. Activation of interferon regulatory
factor 7 in plasmacytoid dendritic cells promotes experimental
autoimmune pancreatitis. J Gastroenterol 2020;55 :565-76.
20. Kamata K, Watanabe T, Minaga K, Hara A, Yoshikawa T, Okamoto A,
Yamao K, Takenaka M, Park AM, Kudo M. Intestinal dysbiosis mediates
experimental autoimmune pancreatitis via activation of plasmacytoid
dendritic cells. Int Immunol 2019; 31 :795-809.
21. Kawa S, Kamisawa T, Notohara K, Fujinaga Y, Inoue D, Koyama T,
Okazaki K. Japanese Clinical Diagnostic Criteria for Autoimmune
Pancreatitis, 2018: Revision of Japanese Clinical Diagnostic Criteria
for Autoimmune Pancreatitis, 2011. Pancreas 2020;49 :e13-e4.
22. Okamoto K, Watanabe T, Komeda Y, Okamoto A, Minaga K, Kamata K,
Yamao K, Takenaka M, Hagiwara S, Sakurai T, Tanaka T, Sakamoto H,
Fujimoto K, Nishida N, Kudo M. Dysbiosis-Associated Polyposis of the
Colon-Cap Polyposis. Front Immunol 2018; 9 :918.
23. Kamata K, Watanabe T, Minaga K, Strober W, Kudo M. Autoimmune
Pancreatitis Mouse Model. Curr Protoc Immunol 2018;120 :15 31 1-15 31 8.
24. Watanabe T, Minaga K, Kamata K, Sakurai T, Komeda Y, Nagai T, Kitani
A, Tajima M, Fuss IJ, Kudo M, Strober W. RICK/RIP2 is a NOD2-independent
nodal point of gut inflammation. Int Immunol 2019;31 :669-83.
25. Watanabe T, Sadakane Y, Yagama N, Sakurai T, Ezoe H, Kudo M, Chiba
T, Strober W. Nucleotide-binding oligomerization domain 1 acts in
concert with the cholecystokinin receptor agonist, cerulein, to induce
IL-33-dependent chronic pancreatitis. Mucosal Immunol 2016;9 :1234-49.
26. Rogers MB, Aveson V, Firek B, Yeh A, Brooks B, Brower-Sinning R,
Steve J, Banfield JF, Zureikat A, Hogg M, Boone BA, Zeh HJ, Morowitz MJ.
Disturbances of the Perioperative Microbiome Across Multiple Body Sites
in Patients Undergoing Pancreaticoduodenectomy. Pancreas 2017;46 :260-7.
27. Ciocan D, Rebours V, Voican CS, Wrzosek L, Puchois V, Cassard AM,
Perlemuter G. Characterization of intestinal microbiota in alcoholic
patients with and without alcoholic hepatitis or chronic alcoholic
pancreatitis. Sci Rep 2018; 8 :4822.
28. Nakamoto N, Sasaki N, Aoki R, Miyamoto K, Suda W, Teratani T, Suzuki
T, Koda Y, Chu PS, Taniki N, Yamaguchi A, Kanamori M, Kamada N, Hattori
M, Ashida H, Sakamoto M, Atarashi K, Narushima S, Yoshimura A, Honda K,
Sato T, Kanai T. Gut pathobionts underlie intestinal barrier dysfunction
and liver T helper 17 cell immune response in primary sclerosing
cholangitis. Nat Microbiol 2019; 4 :492-503.
29. Hamada S, Masamune A, Nabeshima T, Shimosegawa T. Differences in Gut
Microbiota Profiles between Autoimmune Pancreatitis and Chronic
Pancreatitis. Tohoku J Exp Med 2018; 244 :113-7.
30. Haruta I, Yanagisawa N, Kawamura S, Furukawa T, Shimizu K, Kato H,
Kobayashi M, Shiratori K, Yagi J. A mouse model of autoimmune
pancreatitis with salivary gland involvement triggered by innate
immunity via persistent exposure to avirulent bacteria. Lab
Invest 2010; 90 :1757-69.
31. Yanagisawa N, Haruta I, Shimizu K, Furukawa T, Higuchi T, Shibata N,
Shiratori K, Yagi J. Identification of commensal flora-associated
antigen as a pathogenetic factor of autoimmune pancreatitis.Pancreatology 2014; 14 :100-6.
32. Bhan U, Lukacs NW, Osterholzer JJ, Newstead MW, Zeng X, Moore TA,
McMillan TR, Krieg AM, Akira S, Standiford TJ. TLR9 is required for
protective innate immunity in Gram-negative bacterial pneumonia: role of
dendritic cells. J Immunol 2007; 179 :3937-46.
33. Lippitsch A, Baal N, Chukovetskyi Y, Cunningham S, Michel G, Dietert
K, Gurtner C, Gruber AD, Bein G, Hackstein H. Plasmacytoid dendritic
cell depletion modifies FoxP3+ T cell homeostasis and the clinical
course of bacterial pneumonia in mice. J Leukoc Biol 2019;106 :977-85.
34. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid
dendritic cells. Nat Rev Immunol 2015; 15 :471-85.
35. Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing
nucleic acids in viral infection and autoimmune diseases. Nat Rev
Immunol 2008; 8 :594-606.
36. Ivin M, Dumigan A, de Vasconcelos FN, Ebner F, Borroni M, Kavirayani
A, Przybyszewska KN, Ingram RJ, Lienenklaus S, Kalinke U, Stoiber D,
Bengoechea JA, Kovarik P. Natural killer cell-intrinsic type I IFN
signaling controls Klebsiella pneumoniae growth during lung
infection. PLoS Pathog 2017; 13 :e1006696.
37. Zeng X, Moore TA, Newstead MW, Deng JC, Kunkel SL, Luster AD,
Standiford TJ. Interferon-inducible protein 10, but not monokine induced
by gamma interferon, promotes protective type 1 immunity in murine
Klebsiella pneumoniae pneumonia. Infect Immun 2005;73 :8226-36.