References
Adeyemo, O. S., Hyde, P. T., & Setter, T. L. (2019). Identification ofFT family genes that respond to photoperiod, temperature and
genotype in relation to flowering in cassava (Manihot esculenta ,
Crantz). Plant Reproduction, 32 (2), 181-191.
doi:10.1007/s00497-018-00354-5
Ahn, J. H., Miller, D., Winter, V. J., Banfield, M. J., Lee, J. H., Yoo,
S. Y., . . . Weigel, D. (2006). A divergent external loop confers
antagonistic activity on floral regulators FT and TFL1. The EMBO
journal, 25 (3), 605-614.
Alexandre, C., & Hennig, L. (2007). FLC -independent
vernalization responses. International Journal of Plant
Develpmental Biology, 1 , 202-211.
An, Y., Guo, Y., Liu, C., & An,
H. (2015). BdVIL4 regulates flowering time and branching through
repressing miR156 in ambient temperature dependent way inBrachypodium distachyon . Plant Physiology and
Biochemistry , 89 , 92-99.
Avramova, Z. (2015). Transcriptional ‘memory’of a stress: transient
chromatin and memory (epigenetic) marks at stress‐response genes.The Plant Journal, 83 (1), 149-159.
Bratzel, F., & Turck, F. (2015). Molecular memories in the regulation
of seasonal flowering: from competence to cessation. Genome
Biology, 16 (1), 1.
Bogdziewicz, M., Kelly, D., Thomas, P. A., Lageard, J. G., &
Hacket-Pain, A. (2020). Climate warming disrupts mast seeding and its
fitness benefits in European beech. Nature Plants , 6 (2),
88-94.
Capovilla, G., Schmid, M., & Pose, D. (2015). Control of flowering by
ambient temperature. Journal of Experimental Botany, 66 (1),
59-69. doi:10.1093/jxb/eru416
Cho, L. H., Yoon, J., & An, G. (2017). The control of flowering time by
environmental factors. Plant Journal, 90 (4), 708-719.
doi:10.1111/tpj.13461
Choi, H., & Oh, E. (2016). PIF4 integrates multiple environmental and
hormonal signals for plant growth regulation in Arabidopsis.Molecules and Cells, 39 (8), 587.
Choi, K., Kim, J., Hwang, H.-J., Kim, S., Park, C., Kim, S. Y., & Lee,
I. (2011). The FRIGIDA complex activates transcription of FLC , a
strong flowering repressor in Arabidopsis, by recruiting chromatin
modification factors. The Plant Cell, 23 (1), 289-303.
Distelfeld, A., Li, C., & Dubcovsky, J. (2009). Regulation of flowering
in temperate cereals. Current opinion in plant
biology , 12 (2), 178-184.
Gao, Y. H., Gao, Y. K., Wu, Z. P., Bu, X. L., Fan, M., & Zhang, Q. X.
(2019). Characterization of TERMINAL FLOWER1 homologs CmTFL1cgene from Chrysanthemum morifolium . Plant Molecular
Biology, 99 (6), 587-601. doi:10.1007/s11103-019-00838-6
Griffiths, J. W., & Barron, M. (2016). Spatiotemporal changes in
relative rat (Rattus rattus ) abundance following large-scale pest
control. New Zealand Journal of Botany, 40 (3), 371-380.
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D.,
Bowden, J., . . . Regev, A. (2013). De novo transcript sequence
reconstruction from RNA-seq using the Trinity platform for reference
generation and analysis. Nature Protocols, 8 (8), 1494-1512.
doi:10.1038/nprot.2013.084
He, Y., & Amasino, R. M. (2005). Role of chromatin modification in
flowering-time control. Trends in Plant Science, 10 (1), 30-35.
doi:10.1016/j.tplants.2004.11.003.
He, Y. H. (2012). Chromatin regulation of flowering. Trends in
Plant Science, 17 (9), 556-562. doi:10.1016/j.tplants.2012.05.001
Higgins, J. A., Bailey, P. C., & Laurie, D. A. (2010). Comparative
genomics of flowering time pathways using Brachypodium distachyonas a model for the temperate grasses. PLoS One, 5 (4), e10065.
Hill, C. B., & Li, C. (2016). Genetic architecture of flowering
phenology in cereals and opportunities for crop
improvement. Frontiers in plant science , 7 , 1906.
Ho, W. W. H., & Weigel, D. (2014). Structural Features Determining
Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T. Plant
Cell, 26 (2), 552-564. doi:10.1105/tpc.113.115220
Hyun, Y., Vincent, C., Tilmes, V., Bergonzi, S., Kiefer, C., Richter,
R., . . . Coupland, G. (2019). A regulatory circuit conferring varied
flowering response to cold in annual and perennial plants.Science, 363 (6425), 409. doi:10.1126/science.aau8197
Ito, S., Song, Y. H., Josephson-Day, A. R., Miller, R. J., Breton, G.,
Olmstead, R. G., & Imaizumi, T. (2012). FLOWERING BHLH transcriptional
activators control expression of the photoperiodic flowering regulatorCONSTANS in Arabidopsis. Proceedings of the National
Academy of Sciences, 109 (9), 3582-3587.
Iwata, H., Gaston, A., Remay, A., Thouroude, T., Jeauffre, J., Kawamura,
K., . . . Foucher, F. (2012). The TFL1 homologue KSN is a regulator of
continuous flowering in rose and strawberry. Plant Journal,
69 (1), 116-125. doi:10.1111/j.1365-313X.2011.04776.x
Kaneko-Suzuki, M., Kurihara-Ishikawa, R., Okushita-Terakawa, C., Kojima,
C., Nagano-Fujiwara, M., Ohki, I., . . . Taoka, K.-I. (2018). TFL1-like
proteins in rice antagonize rice FT-like protein in inflorescence
development by competition for complex formation with 14-3-3 and FD.Plant and Cell Physiology, 59 (3), 458-468.
Karlgren, A., Gyllenstrand, N., Källman, T., Sundström, J. F., Moore,
D., Lascoux, M., & Lagercrantz, U. (2011). Evolution of the PEBP gene
family in plants: functional diversification in seed plant evolution.Plant Physiology, 156 (4), 1967-1977.
Kawamoto, N., Sasabe, M., Endo, M., Machida, Y., & Araki, T. (2015).
Calcium-dependent protein kinases responsible for the phosphorylation of
a bZIP transcription factor FD crucial for the florigen complex
formation. Scientific Reports, 5 . doi:UNSP 834110.1038/srep08341
Kelly, D. (1994). The evolutionary ecology of mast seeding. Trends
in Ecology & Evolution, 9 (12), 465-470.
Kelly, D., Geldenhuis, A., James, A., Penelope Holland, E., Plank, M.
J., Brockie, R. E., . . . Maitland, M. J. (2013). Of mast and mean:
differential‐temperature cue makes mast seeding insensitive to climate
change. Ecology Letters, 16 (1), 90-98.
Kelly, D., Harrison, A. L., Lee, W. G., Payton, I. J., Wilson, P. R., &
Schauber, E. M. (2000). Predator satiation and extreme mast seeding in
11 species of Chionochloa (Poaceae). Oikos, 90 (3),
477-488. doi:DOI 10.1034/j.1600-0706.2000.900306.x
Kelly, D., & Sork, V. L. (2002). Mast seeding in perennial plants: why,
how, where? Annual Review of Ecology and Systematics , 427-447.
Kelly, D., Turnbull, M. H., Pharis, R. P., & Sarfati, M. S. (2008).
Mast seeding, predator satiation, and temperature cues inChionochloa (Poaceae). Population ecology, 50 (4), 343-355.
doi:10.1007/s10144-008-0109-1
Khan, M. R., Ai, X. Y., & Zhang, J. Z. (2014). Genetic regulation of
flowering time in annual and perennial plants. Wiley
Interdisciplinary Review RNA, 5 (3), 347-359. doi:10.1002/wrna.1215
Kobayashi, M. J., Takeuchi, Y., Kenta, T., Kume, T., Diway, B., &
Shimizu, K. K. (2013). Mass flowering of the tropical tree Shorea
beccariana was preceded by expression changes in flowering and
drought-responsive genes. Molecular Ecology, 22 (18), 4767-4782.
doi:10.1111/mec.12344
Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alós, E., Alvey, E., Harberd,
N. P., & Wigge, P. A. (2012). Transcription factor PIF4 controls the
thermosensory activation of flowering. Nature, 484 (7393),
242-245.
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with
Bowtie 2. Nature Methods, 9 (4), 357-U354. doi:10.1038/Nmeth.1923
Lazakis, C. M., Coneva, V., & Colasanti, J. (2011). ZCN8 encodes a
potential orthologue of Arabidopsis FT florigen that integrates both
endogenous and photoperiod flowering signals in maize. Journal of
Experimental Botany, 62 (14), 4833-4842. doi:10.1093/jxb/err129
Li, C. Q., Fu, Q. T., Niu, L. J., Luo, L., Chen, J. H., & Xu, Z. F.
(2017). Three TFL1 homologues regulate floral initiation in the biofuel
plant Jatropha curcas. Scientific Reports, 7 . doi:ARTN
4309010.1038/srep43090
Linder, H. P., & Barker, N. P. (2014). Does polyploidy facilitate
long-distance dispersal?. Annals of Botany , 113 (7),
1175-1183.
Liu, Y. Y., Yang, K. Z., Wei, X. X., & Wang, X. Q. (2016). Revisiting
the phosphatidylethanolamine‐binding protein (PEBP) gene family reveals
cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds
new light on functional evolution. New Phytologist, 212 (3),
730-744.
Lu, F., Cui, X., Zhang, S., Jenuwein, T., & Cao, X. (2011). Arabidopsis
REF6 is a histone H3 lysine 27 demethylase. Nature Genetics,
43 (7), 715.
Mark, A. (1965). Ecotypic differentiation in Otago populations of
narrowleaved snow tussock, Chionochloa rigida. New Zealand Journal
of Botany, 3 (4), 277-299.
Martin, M., Jameson, P. E., Mark, A. F., Yeung, E. C., & Pharis, R. P.
(1993). Early panicle development in Chionochloa macra plants induced to
flower by 2, 2 dimethyl gibberellin A4 or long days. New Zealand
Journal of Botany, 31 (2), 193-201.
Martinezzapater, J. M., & Somerville, C. R. (1990). Effect of Light
Quality and Vernalization on Late-Flowering Mutants of
Arabidopsis-Thaliana. Plant Physiology, 92 (3), 770-776. doi:DOI
10.1104/pp.92.3.770
Martinez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, J. L., &
Herrera-Estrella, L. (2004). Improving transformation efficiency of
Arabidopsis thaliana by modifying the floral dip method. Plant
Molecular Biology Reporter , 22 (1), 63-70.
Mateos, J. L., Madrigal, P., Tsuda, K., Rawat, V., Richter, R.,
Romera-Branchat, M., . . . Coupland, G. (2015). Combinatorial activities
of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of
flowering regulation in Arabidopsis. Genome Biology, 16 . doi:ARTN
3110.1186/s13059-015-0597-1
McKone, M. J., Kelly, D., & Lee, W. G. (1998). Effect of climate change
on mast‐seeding species: frequency of mass flowering and escape from
specialist insect seed predators. Global Change Biology, 4 (6),
591-596.
Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., &
Thomas, P. D. (2016). PANTHER version 11: expanded annotation data from
Gene Ontology and Reactome pathways, and data analysis tool
enhancements. Nucleic Acids Research, 45 (D1), D183-D189.
Miyazaki, Y., Maruyama, Y., Chiba, Y., Kobayashi, M. J., Joseph, B.,
Shimizu, K. K., … & Satake, A. (2014). Nitrogen as a key regulator of
flowering in Fagus crenata : understanding the physiological
mechanism of masting by gene expression analysis. Ecology
Letters , 17 (10), 1299-1309.
Monks, A., Monks, J. M., & Tanentzap, A. J. (2016). Resource limitation
underlying multiple masting models makes mast seeding sensitive to
future climate change. New Phytologist, 210 (2): 419-430.
Murray, B. G., De Lange, P. J., & Ferguson, A. R. (2005). Nuclear DNA
variation, chromosome numbers and polyploidy in the endemic and
indigenous grass flora of New Zealand. Annals of
Botany , 96 (7), 1293-1305.
Nagano, A. J., Kawagoe, T., Sugisaka, J., Honjo, M. N., Iwayama, K., &
Kudoh, H. (2019). Annual transcriptome dynamics in natural environments
reveals plant seasonal adaptation. Nature Plants, 5 (1), 74-83.
doi:10.1038/s41477-018-0338-z
Oliver, S. N., & Finnegan, E. J. (2011). Epigenetic memory in plants:
Polycomb-group regulation of responses to low temperature.Epigenetics: A Reference Manual , 83.
Pearse, I. S., LaMontagne, J. M., & Koenig, W. D. (2017). Inter-annual
variation in seed production has increased over time
(1900–2014). Proceedings of the Royal Society B: Biological
Sciences , 284 (1868), 20171666.
Preston, J. C., & Kellogg, E. A. J. P. P. (2008). Discrete
developmental roles for temperate cereal grassVERNALIZATION1/FRUITFULL-like genes in flowering competency and
the transition to flowering. 146 (1), 265-276.
Ream, T. S., Woods, D. P., Schwartz, C. J., Sanabria, C. P., Mahoy, J.
A., Walters, E. M., . . . Amasino, R. M. (2014). Interaction of
photoperiod and vernalization determines flowering time ofBrachypodium distachyon . Plant Physiology, 164 (2),
694-709. doi:10.1104/pp.113.232678
Rees, M., Kelly, D., & Bjornstad, O. N. (2002). Snow tussocks, chaos,
and the evolution of mast seeding. American Naturalist, 160 (1),
44-59. doi:Doi 10.1086/340603
Richards, C. L., Alonso, C., Becker, C., Bossdorf, O., Bucher, E.,
Colomé‐Tatché, M., … & Verhoeven, K. J. (2017). Ecological plant
epigenetics: Evidence from model and non‐model species, and the way
forward. Ecology letters , 20 (12), 1576-1590.
Samarth, Kelly, D., Turnbull, M. H., & Jameson, P. E. (2020). Molecular
control of masting: an introduction to an epigenetic summer memory.Annals of Botany, 125 (6), 851-858. doi:10.1093/aob/mcaa004
Samarth, Lee, R., Kelly, D., Turnbull, M. H., Macknight, R. C., Poole,
A. M., & Jameson, P. E. (2021). Molecular control of the floral
transition in the mast seeding plant Celmisia lyallii
(Asteraceae). Molecular Ecology , 30 (8), 1846-1863.
Samarth, Lee, R., Song, J., Macknight, R. C., & Jameson, P. E. (2019).
Identification of flowering-time genes in mast flowering plants usingde novo transcriptomic analysis. PLoS One, 14 (8),
e0216267. doi:10.1371/journal.pone.0216267
Satake, A., Kawatsu, K., Teshima, K., Kabeya, D., & Han, Q. M. (2019).
Field transcriptome revealed a novel relationship between nitrate
transport and flowering in Japanese beech. Scientific Reports, 9 .
doi:ARTN 432510.1038/s41598-019-39608-1
Schauber, E. M., Kelly, D., Turchin, P., Simon, C., Lee, W. G., Allen,
R. B., . . . Brockie, R. (2002). Masting by eighteen New Zealand plant
species: the role of temperature as a synchronizing cue. Ecology,
83 (5), 1214-1225.
Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Zuloaga,
F. O., Judziewicz, E. J., … & Morrone, O. (2015). A worldwide
phylogenetic classification of the Poaceae (Gramineae). Journal of
Systematics and Evolution , 53 (2), 117-137.
Shibata, M., Masaki, T., Yagihashi, T., Shimada, T., & Saitoh, T.
(2020). Decadal changes in masting behaviour of oak trees with rising
temperature. Journal of Ecology , 108 (3), 1088-1100.
Shimada, S., Ogawa, T., Kitagawa, S., Suzuki, T., Ikari, C., Shitsukawa,
N., . . . Murai, K. (2009). A genetic network of flowering-time genes in
wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is
upstream of FLOWERING LOCUS T. Plant Journal, 58 (4), 668-681.
doi:10.1111/j.1365-313X.2009.03806.x
Shrestha, R., Gomez-Ariza, J., Brambilla, V., & Fornara, F. (2014).
Molecular control of seasonal flowering in rice, arabidopsis and
temperate cereals. Annals of Botany, 114 (7), 1445-1458.
doi:10.1093/aob/mcu032
Song, Y.H., Ito, S., & Imaizumi, T. (2013). Flowering time regulation:
photoperiod-and temperature-sensing in leaves. Trends in Plant
Science 18 (10): 575-583.
Tilmes, V., Mateos, J. L., Madrid, E., Vincent, C., Severing, E.,
Carrera, E., … & Coupland, G. (2019). Gibberellins act downstream of
Arabis PERPETUAL FLOWERING1 to accelerate floral induction during
vernalization. Plant physiology , 180 (3), 1549-1563.
Todd, E. V., Black, M. A., & Gemmell, N. J. (2016). The power and
promise of RNA-seq in ecology and evolution. Molecular Ecology,
25 (6), 1224-1241. doi:10.1111/mec.13526
Touzot, L., Schermer, É., Venner, S., Delzon, S., Rousset, C., Baubet,
É., … & Gamelon, M. (2020). How does increasing mast seeding
frequency affect population dynamics of seed consumers? Wild boar as a
case study. Ecological Applications , 30 (6), e02134.
Trevaskis, B., Hemming, M. N., Dennis, E. S., & Peacock, W. J. (2007).
The molecular basis of vernalization-induced flowering in
cereals. Trends in plant science , 12 (8), 352-357.
Trevaskis, B. (2010). The central role of the VERNALIZATION1 gene in the
vernalization response of cereals. Functional Plant Biology,
37 (6), 479-487.
Turnbull, M. H., Pharis, R. P., Kurepin, L. V., Sarfati, M., Mander, L.
N., & Kelly, D. (2012). Flowering in snow tussock (Chionochloaspp.) is influenced by temperature and hormonal cues. Functional
Plant Biology, 39 (1), 38-50.
Wang, R. H., Albani, M. C., Vincent, C., Bergonzi, S., Luan, M., Bai,
Y., . . . Coupland, G. (2011). Aa TFL1 confers an age-dependent response
to vernalization in perennial Arabis alpina . Plant Cell,
23 (4), 1307-1321. doi:10.1105/tpc.111.083451
Webb, C.J. & Kelly, D. (1993). The reproductive biology of the New
Zealand flora. Trends in Ecology & Evolution, 8 (12): 442-447.
Woods, D.P., Ream, T., & Amasino, R. (2014). Memory of the vernalized
state in plants including the model grass Brachypodium
distachyon . Frontiers in plant science, 5 , 99.
Woods, D. P., McKeown, M. A., Dong, Y. X., Preston, J. C., & Amasino,
R. M. (2016). Evolution of VRN2/Ghd7- Like genes in
vernalization-mediated repression of grass flowering. Plant
Physiology, 170 (4), 2124-2135. doi:10.1104/pp.15.01279
Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W.,
SanMiguel, P., . . . Dubcovsky, J. (2004). The wheat VRN2 gene is
a flowering repressor down-regulated by vernalization. Science,
303 (5664), 1640-1644.
Yang, L., Xu, M. L., Koo, Y., He, J., & Poethig, R. S. (2013). Sugar
promotes vegetative phase change in Arabidopsis thaliana by
repressing the expression of MIR156A and MIR156C .Elife, 2 . doi:ARTN e0026010.7554/eLife.00260
Yu, C.-W., Chang, K.-Y., & Wu, K. (2016). Genome-wide analysis of gene
regulatory networks of the FVE-HDA6-FLD complex in Arabidopsis.Frontiers in plant science, 7 , 555.
Yu, S., Galvao, V. C., Zhang, Y. C., Horrer, D., Zhang, T. Q., Hao, Y.
H., . . . Wang, J. W. (2012). Gibberellin regulates the Arabidopsis
floral transition through miR156-targeted SQUAMOSA promoter binding-like
transcription factors. Plant Cell, 24 (8), 3320-3332.
doi:10.1105/tpc.112.101014