REFERENCES
Ahmed, S.H., Husain, N.M., Khawaja, S.N., Massey, C. V., and Pettyjohn,
F.S. (2007). Is primary hyperaldosteronism a risk factor for aortic
dissection? Cardiology.
Biros, E., Moran, C.S., Walker, P.J., Cardinal, J., and Golledge, J.
(2014). A deletion in chromosome 6q is associated with human abdominal
aortic aneurysm. Clin. Sci.
Branchetti, E., Poggio, P., Sainger, R., Shang, E., Grau, J.B., Jackson,
B.M., et al. (2013). Oxidative stress modulates vascular smooth muscle
cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovasc. Res.
Chaqour, B. (2013). Molecular control of vascular development by the
matricellular proteins CCN1 (Cyr61) and CCN2 (CTGF). Trends Dev. Biol.
Chaqour, B. (2020). Caught between a “Rho” and a hard place: are
CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J.
Cell Commun. Signal.
Chen, X., Rateri, D.L., Howatt, D.A., Balakrishnan, A., Moorleghen,
J.J., Cassis, L.A., et al. (2016). TGF-β neutralization enhances
angii-induced aortic rupture and aneurysm in both thoracic and abdominal
regions. PLoS One.
Daugherty, A., Manning, M.W., and Cassis, L.A. (2000). Angiotensin II
promotes atherosclerotic lesions and aneurysms in apolipoprotein
E-deficient mice. J. Clin. Invest.
Esteban, V., Méndez-Barbero, N., Jiménez-Borreguero, L.J., Roqué, M.,
Novensá, L., García-Redondo, A.B., et al. (2011). Regulator of
calcineurin 1 mediates pathological vascular wall remodeling. J. Exp.
Med.
Fontes, M.S.C., Kessler, E.L., Stuijvenberg, L. van, Brans, M.A., Falke,
L.L., Kok, B., et al. (2015). CTGF knockout does not affect cardiac
hypertrophy and fibrosis formation upon chronic pressure overload. J.
Mol. Cell. Cardiol.
Forrester, S.J., Booz, G.W., Sigmund, C.D., Coffman, T.M., Kawai, T.,
Rizzo, V., et al. (2018). Angiotensin II signal transduction: An update
on mechanisms of physiology and pathophysiology. Physiol. Rev.
Gravning, J., Ahmed, M.S., Lueder, T.G. Von, Edvardsen, T., and
Attramadal, H. (2013). CCN2/CTGF attenuates myocardial hypertrophy and
cardiac dysfunction upon chronic pressure-overload. Int. J. Cardiol.
Habashi, J.P., Judge, D.P., Holm, T.M., Cohn, R.D., Loeys, B.L., Cooper,
T.K., et al. (2006). Losartan, an AT1 antagonist, prevents aortic
aneurysm in a mouse model of Marfan syndrome. Science (80-. ).
Hall-Glenn, F., Young, R.A. de, Huang, B.L., Handel, B. van, Hofmann,
J.J., Chen, T.T., et al. (2012). CCN2/Connective tissue growth factor is
essential for pericyte adhesion and endothelial basement membrane
formation during angiogenesis. PLoS One.
Han, K.H., Kang, Y.S., Han, S.Y., Jee, Y.H., Lee, M.H., Han, J.Y., et
al. (2006). Spironolactone ameliorates renal injury and connective
tissue growth factor expression in type II diabetic rats. Kidney Int.
Hao, C., Xie, Y., Peng, M., Ma, L., Zhou, Y., Zhang, Y., et al. (2014).
Inhibition of connective tissue growth factor suppresses hepatic
stellate cell activation in vitro and prevents liver fibrosis in vivo.
Clin. Exp. Med.
Hoshijima, M., Hattori, T., Aoyama, E., Nishida, T., Yamashiro, T., and
Takigawa, M. (2012). Roles of heterotypic CCN2/CTGF-CCN3/NOV and
homotypic CCN2-CCN2 interactions in expression of the differentiated
phenotype of chondrocytes. FEBS J.
Huang, M., Yang, H., Zhu, L., Li, H., Zhou, J., and Zhou, Z. (2016).
Inhibition of connective tissue growth factor attenuates
paraquat-induced lung fibrosis in a human MRC-5 cell line. Environ.
Toxicol.
Ivkovic, S., Yoon, B.S., Popoff, S.N., Safadi, F.F., Libuda, D.E.,
Stephenson, R.C., et al. (2003). Connective tissue growth factor
coordinates chondrogenesis and angiogenesis during skeletal development.
Development.
Ju, X., Ijaz, T., Sun, H., Lejeune, W., Vargas, G., Shilagard, T., et
al. (2014). IL-6 regulates extracellular matrix remodeling associated
with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of
severe Marfan syndrome. J. Am. Heart Assoc.
Juknevicius, I., Segal, Y., Kren, S., Lee, R., and Hostetter, T.H.
(2004). Effect of aldosterone on renal transforming growth factor-β. Am.
J. Physiol. - Ren. Physiol.
Koitabashi, N., Arai, M., Niwano, K., Watanabe, A., Endoh, M., Suguta,
M., et al. (2008). Plasma connective tissue growth factor is a novel
potential biomarker of cardiac dysfunction in patients with chronic
heart failure. Eur. J. Heart Fail.
Kurobe, H., Hirata, Y., Matsuoka, Y., Sugasawa, N., Higashida, M.,
Nakayama, T., et al. (2013). Protective effects of selective
mineralocorticoid receptor antagonist against aortic aneurysm
progression in a novel murine model. J. Surg. Res.
Lacro, R. V., Dietz, H.C., Sleeper, L.A., Yetman, A.T., Bradley, T.J.,
Colan, S.D., et al. (2014). Atenolol versus losartan in children and
young adults with Marfan’s syndrome. N. Engl. J. Med.
Lareyre, F., Clment, M., Raffort, J., Pohlod, S., Patel, M., Esposito,
B., et al. (2017). TGFβ (transforming growth factor-β) blockade induces
a human-like disease in a nondissecting mouse model of abdominal aortic
aneurysm. Arterioscler. Thromb. Vasc. Biol.
Lavoz, C., Rodrigues-Diez, R.R., Plaza, A., Carpio, D., Egido, J.,
Ruiz-Ortega, M., et al. (2020). VEGFR2 Blockade Improves Renal Damage in
an Experimental Model of Type 2 Diabetic Nephropathy. J. Clin. Med.
Leask, A., and Abraham, D.J. (2006). All in the CCN family: Essential
matricellular signaling modulators emerge from the bunker. J. Cell Sci.
Lemaire, S.A., and Russell, L. (2011). Epidemiology of thoracic aortic
dissection. Nat. Rev. Cardiol.
Li, W., Li, Q., Jiao, Y., Qin, L., Ali, R., Zhou, J., et al. (2014).
Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall
homeostasis. J. Clin. Invest.
Lindblad, W.J. (2001). Methods in Molecular Biology, Volume 151, Matrix
Metalloproteinase Protocols. Edited by Ian M. Clark. Anal. Biochem.
Liu, S., Xie, Z., Daugherty, A., Cassis, L.A., Pearson, K.J., Gong,
M.C., et al. (2013). Mineralocorticoid receptor agonists induce mouse
aortic aneurysm formation and rupture in the presence of high salt.
Arterioscler. Thromb. Vasc. Biol.
Loeys, B.L., Chen, J., Neptune, E.R., Judge, D.P., Podowski, M., Holm,
T., et al. (2005). A syndrome of altered cardiovascular, craniofacial,
neurocognitive and skeletal development caused by mutations in TGFBR1 or
TGFBR2. Nat. Genet.
Luo, G.H., Lu, Y.P., Song, J., Yang, L., Shi, Y.J., and Li, Y.P. (2008).
Inhibition of Connective Tissue Growth Factor by Small Interfering RNA
Prevents Renal Fibrosis in Rats Undergoing Chronic Allograft
Nephropathy. Transplant. Proc.
Mallat, Z., Ait-Oufella, H., and Tedgui, A. (2017). The Pathogenic
Transforming Growth Factor-β Overdrive Hypothesis in Aortic Aneurysms
and Dissections: A Mirage? Circ. Res.
Matsuki, K., Hathaway, C.K., Chang, A.S., Smithies, O., and Kakoki, M.
(2015). Transforming growth factor beta1 and aldosterone. Curr. Opin.
Nephrol. Hypertens.
Matthew Longo, G., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N., and
Timothy Baxter, B. (2002). Matrix metalloproteinases 2 and 9 work in
concert to produce aortic aneurysms. J. Clin. Invest.
Meng, Y., Tian, C., Liu, L., Wang, L., and Chang, Q. (2014). Elevated
expression of connective tissue growth factor, osteopontin and increased
collagen content in human ascending thoracic aortic aneurysms. Vascular.
Messaoudi, S., Gravez, B., Tarjus, A., Pelloux, V., Ouvrard-Pascaud, A.,
Delcayre, C., et al. (2013). Aldosterone-specific activation of
cardiomyocyte mineralocorticoid receptor in vivo. Hypertension.
Milleron, O., Arnoult, F., Ropers, J., Aegerter, P., Detaint, D.,
Delorme, G., et al. (2015). Marfan Sartan: A randomized, double-blind,
placebo-controlled trial. Eur. Heart J.
Moe, I.T., Ahmed, M.S., Stang, E., Hagelin, E.M.V., and Attramadal, H.
(2016). CTGF/CCN2 postconditioning increases tolerance of murine hearts
towards ischemia-reperfusion injury 1ole jørgen kaasbøll. PLoS One.
Mullen, M., Jin, X.Y., Child, A., Stuart, A.G., Dodd, M., Aragon-Martin,
J.A., et al. (2019). Irbesartan in Marfan syndrome (AIMS): a
double-blind, placebo-controlled randomised trial. Lancet.
Oller, J., Méndez-Barbero, N., Ruiz, E.J., Villahoz, S., Renard, M.,
Canelas, L.I., et al. (2017). Nitric oxide mediates aortic disease in
mice deficient in the metalloprotease Adamts1 and in a mouse model of
Marfan syndrome. Nat. Med.
Orejudo, M., García-Redondo, A.B., Rodrigues-Diez, R.R., Rodrigues-Díez,
R., Santos-Sanchez, L., Tejera-Muñoz, A., et al. (2020). Interleukin-17A
induces vascular remodeling of small arteries and blood pressure
elevation. Clin. Sci. 134 :.
Panek, A.N., Posch, M.G., Alenina, N., Ghadge, S.K., Erdmann, B.,
Popova, E., et al. (2009). Connective tissue growth factor
overexpression in cardiomyocytes promotes cardiac hypertrophy and
protection against pressure overload. PLoS One.
Perbal, B. (2004). CCN proteins: Multifunctional signalling regulators.
Lancet.
Perbal, B., Tweedie, S., and Bruford, E. (2018). The official unified
nomenclature adopted by the HGNC calls for the use of the acronyms,
CCN1–6, and discontinuation in the use of CYR61, CTGF, NOV and WISP
1–3 respectively. J. Cell Commun. Signal.
Phanish, M.K., Winn, S.K., and Dockrell, M.E.C. (2010). Connective
tissue growth factor-(CTGF, CCN2) - A marker, mediator and therapeutic
target for renal fibrosis. Nephron - Exp. Nephrol.
Ponticos, M. (2013). Connective tissue growth factor (CCN2) in blood
vessels. Vascul. Pharmacol.
Ponticos, M., Holmes, A.M., Shi-wen, X., Leoni, P., Khan, K., Rajkumar,
V.S., et al. (2009). Pivotal role of connective tissue growth factor in
lung fibrosis: MAPK-dependent transcriptional activation of type I
collagen. Arthritis Rheum.
Rajkumar, A.P., Qvist, P., Lazarus, R., Lescai, F., Ju, J., Nyegaard,
M., et al. (2015). Experimental validation of methods for differential
gene expression analysis and sample pooling in RNA-seq. BMC Genomics.
Rayego-Mateos, S., Morgado-Pascual, J.L., Rodrigues-Diez, R.R.,
Rodrigues-Diez, R., Falke, L.L., Mezzano, S., et al. (2018). Connective
tissue growth factor induces renal fibrosis via epidermal growth factor
receptor activation. J. Pathol. 244 :.
Riser, B.L., Najmabadi, F., Perbal, B., Peterson, D.R., Rambow, J.A.,
Riser, M.L., et al. (2009). CCN3 (NOV) is a negative regulator of CCN2
(CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in
vitro model of renal disease. Am. J. Pathol.
Rodrigues-Díez, R., Rodrigues-Díez, R.R., Rayego-Mateos, S.,
Suarez-Alvarez, B., Lavoz, C., Stark Aroeira, L., et al. (2013). The
C-terminal module IV of connective tissue growth factor is a novel
immune modulator of the Th17 response. Lab. Investig. 93 :.
Rodrigues-Diez, R.R., Garcia-Redondo, A.B., Orejudo, M., Rodrigues-Diez,
R., Briones, A.M., Bosch-Panadero, E., et al. (2015). The C-terminal
module IV of connective tissue growth factor, through EGFR/Nox1
signaling, activates the NF-κB pathway and proinflammatory factors in
vascular smooth muscle cells. Antioxidants Redox Signal.
Rodriguez-Vita, J., Sanchez-Lopez, E., Esteban, V., Ruperez, M., Egido,
J., and Ruiz-Ortega, M. (2005). Angiotensin II activates the Smad
pathway in vascular smooth muscle cells by a transforming growth
factor-beta-independent mechanism. Circulation 111 : 2509–2517.
Ruiz-Ortega, M., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G.,
and Egido, J. (2007a). TGF-beta signaling in vascular fibrosis.
Cardiovasc. Res. 74 : 196–206.
Ruiz-Ortega, M., Rodríguez-Vita, J., Sanchez-Lopez, E., Carvajal, G.,
and Egido, J. (2007b). TGF-β signaling in vascular fibrosis. Cardiovasc.
Res.
Rupérez, M., Lorenzo, Ó., Blanco-Colio, L.M., Esteban, V., Egido, J.,
and Ruiz-Ortega, M. (2003). Connective tissue growth factor is a
mediator of angiotensin II-induced fibrosis. Circulation.
Shakil Ahmed, M., Gravning, J., Martinov, V.N., Lueder, T.G. von,
Edvardsen, T., Czibik, G., et al. (2011). Mechanisms of novel
cardioprotective functions of CCN2/CTGF in myocardial
ischemia-reperfusion injury. Am. J. Physiol. - Hear. Circ. Physiol.
Szabó, Z., Magga, J., Alakoski, T., Ulvila, J., Piuhola, J., Vainio, L.,
et al. (2014). Connective tissue growth factor inhibition attenuates
left ventricular remodeling and dysfunction in pressure overload-induced
heart failure. Hypertension.
Thirunavukkarasu, S., Khan, N.S., Song, C.Y., Ghafoor, H.U., Brand,
D.D., Gonzalez, F.J., et al. (2016). Cytochrome P450 1B1 Contributes to
the Development of Angiotensin II–Induced Aortic Aneurysm in Male
Apoe−/− Mice. Am. J. Pathol.
Thompson, A., Cooper, J.A., Fabricius, M., Humphries, S.E., Ashton,
H.A., and Hafez, H. (2010). An analysis of drug modulation of abdominal
aortic aneurysm growth through 25 years of surveillance. J. Vasc. Surg.
Trachet, B., Fraga-Silva, R.A., Piersigilli, A., Tedgui, A.,
Sordet-Dessimoz, J., Astolfo, A., et al. (2015). Dissecting abdominal
aortic aneurysm in Ang II-infused mice: Suprarenal branch ruptures and
apparent luminal dilatation. Cardiovasc. Res.
Wang, R., Xu, Y.J., Liu, X.S., Zeng, D.X., and Xiang, M. (2011).
Knockdown of connective tissue growth factor by plasmid-based short
hairpin RNA prevented pulmonary vascular remodeling in cigarette
smoke-exposed rats. Arch. Biochem. Biophys.
Wang, Y., Ait-Oufella, H., Herbin, O., Bonnin, P., Ramkhelawon, B.,
Taleb, S., et al. (2010). TGF-β activity protects against inflammatory
aortic aneurysm progression and complications in angiotensin II-infused
mice. J. Clin. Invest.
Williams, H., Wadey, K.S., Frankow, A., Blythe, H.C., Forbes, T.,
Johnson, J.L., et al. (2021). Aneurysm severity is suppressed by
deletion of CCN4. J. Cell Commun. Signal.
Yanagisawa, H., and Wagenseil, J. (2020). Elastic fibers and
biomechanics of the aorta: Insights from mouse studies. Matrix Biol.
Zhang, C., Voort, D. Van Der, Shi, H., Zhang, R., Qing, Y., Hiraoka, S.,
et al. (2016). Matricellular protein CCN3 mitigates abdominal aortic
aneurysm. J. Clin. Invest.
Zoppi, N., Chiarelli, N., Ritelli, M., and Colombi, M. (2018).
Multifaced roles of the αvβ3 integrin in ehlers–danlos and arterial
tortuosity syndromes’ dermal fibroblasts. Int. J. Mol. Sci.