REFERENCES
Ahmed, S.H., Husain, N.M., Khawaja, S.N., Massey, C. V., and Pettyjohn, F.S. (2007). Is primary hyperaldosteronism a risk factor for aortic dissection? Cardiology.
Biros, E., Moran, C.S., Walker, P.J., Cardinal, J., and Golledge, J. (2014). A deletion in chromosome 6q is associated with human abdominal aortic aneurysm. Clin. Sci.
Branchetti, E., Poggio, P., Sainger, R., Shang, E., Grau, J.B., Jackson, B.M., et al. (2013). Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovasc. Res.
Chaqour, B. (2013). Molecular control of vascular development by the matricellular proteins CCN1 (Cyr61) and CCN2 (CTGF). Trends Dev. Biol.
Chaqour, B. (2020). Caught between a “Rho” and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J. Cell Commun. Signal.
Chen, X., Rateri, D.L., Howatt, D.A., Balakrishnan, A., Moorleghen, J.J., Cassis, L.A., et al. (2016). TGF-β neutralization enhances angii-induced aortic rupture and aneurysm in both thoracic and abdominal regions. PLoS One.
Daugherty, A., Manning, M.W., and Cassis, L.A. (2000). Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest.
Esteban, V., Méndez-Barbero, N., Jiménez-Borreguero, L.J., Roqué, M., Novensá, L., García-Redondo, A.B., et al. (2011). Regulator of calcineurin 1 mediates pathological vascular wall remodeling. J. Exp. Med.
Fontes, M.S.C., Kessler, E.L., Stuijvenberg, L. van, Brans, M.A., Falke, L.L., Kok, B., et al. (2015). CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload. J. Mol. Cell. Cardiol.
Forrester, S.J., Booz, G.W., Sigmund, C.D., Coffman, T.M., Kawai, T., Rizzo, V., et al. (2018). Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev.
Gravning, J., Ahmed, M.S., Lueder, T.G. Von, Edvardsen, T., and Attramadal, H. (2013). CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. Int. J. Cardiol.
Habashi, J.P., Judge, D.P., Holm, T.M., Cohn, R.D., Loeys, B.L., Cooper, T.K., et al. (2006). Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science (80-. ).
Hall-Glenn, F., Young, R.A. de, Huang, B.L., Handel, B. van, Hofmann, J.J., Chen, T.T., et al. (2012). CCN2/Connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One.
Han, K.H., Kang, Y.S., Han, S.Y., Jee, Y.H., Lee, M.H., Han, J.Y., et al. (2006). Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats. Kidney Int.
Hao, C., Xie, Y., Peng, M., Ma, L., Zhou, Y., Zhang, Y., et al. (2014). Inhibition of connective tissue growth factor suppresses hepatic stellate cell activation in vitro and prevents liver fibrosis in vivo. Clin. Exp. Med.
Hoshijima, M., Hattori, T., Aoyama, E., Nishida, T., Yamashiro, T., and Takigawa, M. (2012). Roles of heterotypic CCN2/CTGF-CCN3/NOV and homotypic CCN2-CCN2 interactions in expression of the differentiated phenotype of chondrocytes. FEBS J.
Huang, M., Yang, H., Zhu, L., Li, H., Zhou, J., and Zhou, Z. (2016). Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line. Environ. Toxicol.
Ivkovic, S., Yoon, B.S., Popoff, S.N., Safadi, F.F., Libuda, D.E., Stephenson, R.C., et al. (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development.
Ju, X., Ijaz, T., Sun, H., Lejeune, W., Vargas, G., Shilagard, T., et al. (2014). IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome. J. Am. Heart Assoc.
Juknevicius, I., Segal, Y., Kren, S., Lee, R., and Hostetter, T.H. (2004). Effect of aldosterone on renal transforming growth factor-β. Am. J. Physiol. - Ren. Physiol.
Koitabashi, N., Arai, M., Niwano, K., Watanabe, A., Endoh, M., Suguta, M., et al. (2008). Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur. J. Heart Fail.
Kurobe, H., Hirata, Y., Matsuoka, Y., Sugasawa, N., Higashida, M., Nakayama, T., et al. (2013). Protective effects of selective mineralocorticoid receptor antagonist against aortic aneurysm progression in a novel murine model. J. Surg. Res.
Lacro, R. V., Dietz, H.C., Sleeper, L.A., Yetman, A.T., Bradley, T.J., Colan, S.D., et al. (2014). Atenolol versus losartan in children and young adults with Marfan’s syndrome. N. Engl. J. Med.
Lareyre, F., Clment, M., Raffort, J., Pohlod, S., Patel, M., Esposito, B., et al. (2017). TGFβ (transforming growth factor-β) blockade induces a human-like disease in a nondissecting mouse model of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol.
Lavoz, C., Rodrigues-Diez, R.R., Plaza, A., Carpio, D., Egido, J., Ruiz-Ortega, M., et al. (2020). VEGFR2 Blockade Improves Renal Damage in an Experimental Model of Type 2 Diabetic Nephropathy. J. Clin. Med.
Leask, A., and Abraham, D.J. (2006). All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. J. Cell Sci.
Lemaire, S.A., and Russell, L. (2011). Epidemiology of thoracic aortic dissection. Nat. Rev. Cardiol.
Li, W., Li, Q., Jiao, Y., Qin, L., Ali, R., Zhou, J., et al. (2014). Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J. Clin. Invest.
Lindblad, W.J. (2001). Methods in Molecular Biology, Volume 151, Matrix Metalloproteinase Protocols. Edited by Ian M. Clark. Anal. Biochem.
Liu, S., Xie, Z., Daugherty, A., Cassis, L.A., Pearson, K.J., Gong, M.C., et al. (2013). Mineralocorticoid receptor agonists induce mouse aortic aneurysm formation and rupture in the presence of high salt. Arterioscler. Thromb. Vasc. Biol.
Loeys, B.L., Chen, J., Neptune, E.R., Judge, D.P., Podowski, M., Holm, T., et al. (2005). A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet.
Luo, G.H., Lu, Y.P., Song, J., Yang, L., Shi, Y.J., and Li, Y.P. (2008). Inhibition of Connective Tissue Growth Factor by Small Interfering RNA Prevents Renal Fibrosis in Rats Undergoing Chronic Allograft Nephropathy. Transplant. Proc.
Mallat, Z., Ait-Oufella, H., and Tedgui, A. (2017). The Pathogenic Transforming Growth Factor-β Overdrive Hypothesis in Aortic Aneurysms and Dissections: A Mirage? Circ. Res.
Matsuki, K., Hathaway, C.K., Chang, A.S., Smithies, O., and Kakoki, M. (2015). Transforming growth factor beta1 and aldosterone. Curr. Opin. Nephrol. Hypertens.
Matthew Longo, G., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N., and Timothy Baxter, B. (2002). Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest.
Meng, Y., Tian, C., Liu, L., Wang, L., and Chang, Q. (2014). Elevated expression of connective tissue growth factor, osteopontin and increased collagen content in human ascending thoracic aortic aneurysms. Vascular.
Messaoudi, S., Gravez, B., Tarjus, A., Pelloux, V., Ouvrard-Pascaud, A., Delcayre, C., et al. (2013). Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension.
Milleron, O., Arnoult, F., Ropers, J., Aegerter, P., Detaint, D., Delorme, G., et al. (2015). Marfan Sartan: A randomized, double-blind, placebo-controlled trial. Eur. Heart J.
Moe, I.T., Ahmed, M.S., Stang, E., Hagelin, E.M.V., and Attramadal, H. (2016). CTGF/CCN2 postconditioning increases tolerance of murine hearts towards ischemia-reperfusion injury 1ole jørgen kaasbøll. PLoS One.
Mullen, M., Jin, X.Y., Child, A., Stuart, A.G., Dodd, M., Aragon-Martin, J.A., et al. (2019). Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet.
Oller, J., Méndez-Barbero, N., Ruiz, E.J., Villahoz, S., Renard, M., Canelas, L.I., et al. (2017). Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat. Med.
Orejudo, M., García-Redondo, A.B., Rodrigues-Diez, R.R., Rodrigues-Díez, R., Santos-Sanchez, L., Tejera-Muñoz, A., et al. (2020). Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin. Sci. 134 :.
Panek, A.N., Posch, M.G., Alenina, N., Ghadge, S.K., Erdmann, B., Popova, E., et al. (2009). Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS One.
Perbal, B. (2004). CCN proteins: Multifunctional signalling regulators. Lancet.
Perbal, B., Tweedie, S., and Bruford, E. (2018). The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1–6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1–3 respectively. J. Cell Commun. Signal.
Phanish, M.K., Winn, S.K., and Dockrell, M.E.C. (2010). Connective tissue growth factor-(CTGF, CCN2) - A marker, mediator and therapeutic target for renal fibrosis. Nephron - Exp. Nephrol.
Ponticos, M. (2013). Connective tissue growth factor (CCN2) in blood vessels. Vascul. Pharmacol.
Ponticos, M., Holmes, A.M., Shi-wen, X., Leoni, P., Khan, K., Rajkumar, V.S., et al. (2009). Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum.
Rajkumar, A.P., Qvist, P., Lazarus, R., Lescai, F., Ju, J., Nyegaard, M., et al. (2015). Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics.
Rayego-Mateos, S., Morgado-Pascual, J.L., Rodrigues-Diez, R.R., Rodrigues-Diez, R., Falke, L.L., Mezzano, S., et al. (2018). Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J. Pathol. 244 :.
Riser, B.L., Najmabadi, F., Perbal, B., Peterson, D.R., Rambow, J.A., Riser, M.L., et al. (2009). CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am. J. Pathol.
Rodrigues-Díez, R., Rodrigues-Díez, R.R., Rayego-Mateos, S., Suarez-Alvarez, B., Lavoz, C., Stark Aroeira, L., et al. (2013). The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Lab. Investig. 93 :.
Rodrigues-Diez, R.R., Garcia-Redondo, A.B., Orejudo, M., Rodrigues-Diez, R., Briones, A.M., Bosch-Panadero, E., et al. (2015). The C-terminal module IV of connective tissue growth factor, through EGFR/Nox1 signaling, activates the NF-κB pathway and proinflammatory factors in vascular smooth muscle cells. Antioxidants Redox Signal.
Rodriguez-Vita, J., Sanchez-Lopez, E., Esteban, V., Ruperez, M., Egido, J., and Ruiz-Ortega, M. (2005). Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 111 : 2509–2517.
Ruiz-Ortega, M., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G., and Egido, J. (2007a). TGF-beta signaling in vascular fibrosis. Cardiovasc. Res. 74 : 196–206.
Ruiz-Ortega, M., Rodríguez-Vita, J., Sanchez-Lopez, E., Carvajal, G., and Egido, J. (2007b). TGF-β signaling in vascular fibrosis. Cardiovasc. Res.
Rupérez, M., Lorenzo, Ó., Blanco-Colio, L.M., Esteban, V., Egido, J., and Ruiz-Ortega, M. (2003). Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation.
Shakil Ahmed, M., Gravning, J., Martinov, V.N., Lueder, T.G. von, Edvardsen, T., Czibik, G., et al. (2011). Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. Am. J. Physiol. - Hear. Circ. Physiol.
Szabó, Z., Magga, J., Alakoski, T., Ulvila, J., Piuhola, J., Vainio, L., et al. (2014). Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Hypertension.
Thirunavukkarasu, S., Khan, N.S., Song, C.Y., Ghafoor, H.U., Brand, D.D., Gonzalez, F.J., et al. (2016). Cytochrome P450 1B1 Contributes to the Development of Angiotensin II–Induced Aortic Aneurysm in Male Apoe−/− Mice. Am. J. Pathol.
Thompson, A., Cooper, J.A., Fabricius, M., Humphries, S.E., Ashton, H.A., and Hafez, H. (2010). An analysis of drug modulation of abdominal aortic aneurysm growth through 25 years of surveillance. J. Vasc. Surg.
Trachet, B., Fraga-Silva, R.A., Piersigilli, A., Tedgui, A., Sordet-Dessimoz, J., Astolfo, A., et al. (2015). Dissecting abdominal aortic aneurysm in Ang II-infused mice: Suprarenal branch ruptures and apparent luminal dilatation. Cardiovasc. Res.
Wang, R., Xu, Y.J., Liu, X.S., Zeng, D.X., and Xiang, M. (2011). Knockdown of connective tissue growth factor by plasmid-based short hairpin RNA prevented pulmonary vascular remodeling in cigarette smoke-exposed rats. Arch. Biochem. Biophys.
Wang, Y., Ait-Oufella, H., Herbin, O., Bonnin, P., Ramkhelawon, B., Taleb, S., et al. (2010). TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J. Clin. Invest.
Williams, H., Wadey, K.S., Frankow, A., Blythe, H.C., Forbes, T., Johnson, J.L., et al. (2021). Aneurysm severity is suppressed by deletion of CCN4. J. Cell Commun. Signal.
Yanagisawa, H., and Wagenseil, J. (2020). Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol.
Zhang, C., Voort, D. Van Der, Shi, H., Zhang, R., Qing, Y., Hiraoka, S., et al. (2016). Matricellular protein CCN3 mitigates abdominal aortic aneurysm. J. Clin. Invest.
Zoppi, N., Chiarelli, N., Ritelli, M., and Colombi, M. (2018). Multifaced roles of the αvβ3 integrin in ehlers–danlos and arterial tortuosity syndromes’ dermal fibroblasts. Int. J. Mol. Sci.