References:
Bice, J. S., & Baxter, G. F. (2015). Postconditioning signalling in the heart: mechanisms and translatability. Br J Pharmacol, 172 (8), 1933-1946. doi:10.1111/bph.12976
Boudina, S., & Abel, E. D. (2006). Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda), 21 , 250-258. doi:10.1152/physiol.00008.2006
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., . . . Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol, 175 (7), 987-993. doi:10.1111/bph.14153
Fillmore, N., Mori, J., & Lopaschuk, G. D. (2014). Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol, 171 (8), 2080-2090. doi:10.1111/bph.12475
Gohil, V. M., Sheth, S. A., Nilsson, R., Wojtovich, A. P., Lee, J. H., Perocchi, F., . . . Mootha, V. K. (2010). Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol, 28 (3), 249-255. doi:10.1038/nbt.1606
Hanieh, H., Hairul Islam, V. I., Saravanan, S., Chellappandian, M., Ragul, K., Durga, A., . . . Thirugnanasambantham, K. (2017). Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro. Eur J Pharmacol, 814 , 178-186. doi:10.1016/j.ejphar.2017.08.012
He, X., Zeng, H., Chen, S. T., Roman, R. J., Aschner, J. L., Didion, S., & Chen, J. X. (2017). Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol, 112 , 104-113. doi:10.1016/j.yjmcc.2017.09.007
Heusch, G. (2015). Treatment of Myocardial Ischemia/Reperfusion Injury by Ischemic and Pharmacological Postconditioning. Compr Physiol, 5 (3), 1123-1145. doi:10.1002/cphy.c140075
Hou, Z., Qin, X., Hu, Y., Zhang, X., Li, G., Wu, J., . . . Gao, F. (2019). Longterm Exercise-Derived Exosomal miR-342-5p: A Novel Exerkine for Cardioprotection. Circ Res, 124 (9), 1386-1400. doi:10.1161/CIRCRESAHA.118.314635
Hunter, A. J., Hendrikse, A. S., & Renan, M. J. (2007). Can radiation-induced apoptosis be modulated by inhibitors of energy metabolism? Int J Radiat Biol, 83 (2), 105-114. doi:10.1080/09553000601121157
Irvine, J. C., Cao, N., Gossain, S., Alexander, A. E., Love, J. E., Qin, C., . . . Ritchie, R. H. (2013). HNO/cGMP-dependent antihypertrophic actions of isopropylamine-NONOate in neonatal rat cardiomyocytes: potential therapeutic advantages of HNO over NO. Am J Physiol Heart Circ Physiol, 305 (3), H365-377. doi:10.1152/ajpheart.00495.2012
Irvine, J. C., Ganthavee, V., Love, J. E., Alexander, A. E., Horowitz, J. D., Stasch, J. P., . . . Ritchie, R. H. (2012). The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy. PLoS One, 7 (11), e44481. doi:10.1371/journal.pone.0044481
Jaswal, J. S., Keung, W., Wang, W., Ussher, J. R., & Lopaschuk, G. D. (2011). Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart.Biochim Biophys Acta, 1813 (7), 1333-1350. doi:10.1016/j.bbamcr.2011.01.015
Jeong, D. W., Kim, T. S., Cho, I. T., & Kim, I. Y. (2004). Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem Biophys Res Commun, 313 (4), 984-991. doi:10.1016/j.bbrc.2003.12.033
Kantor, P. F., Lucien, A., Kozak, R., & Lopaschuk, G. D. (2000). The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res, 86 (5), 580-588. doi:10.1161/01.res.86.5.580
Kishi, S., Campanholle, G., Gohil, V. M., Perocchi, F., Brooks, C. R., Morizane, R., . . . Bonventre, J. V. (2015). Meclizine Preconditioning Protects the Kidney Against Ischemia-Reperfusion Injury.EBioMedicine, 2 (9), 1090-1101. doi:10.1016/j.ebiom.2015.07.035
Li, Z., Zhang, B., Yao, W., Zhang, C., Wan, L., & Zhang, Y. (2019). APC-Cdh1 Regulates Neuronal Apoptosis Through Modulating Glycolysis and Pentose-Phosphate Pathway After Oxygen-Glucose Deprivation and Reperfusion. Cell Mol Neurobiol, 39 (1), 123-135. doi:10.1007/s10571-018-0638-x
Lionetti, V., Stanley, W. C., & Recchia, F. A. (2011). Modulating fatty acid oxidation in heart failure. Cardiovasc Res, 90 (2), 202-209. doi:10.1093/cvr/cvr038
Liu, Y., Liang, X., Zhang, G., Kong, L., Peng, W., & Zhang, H. (2018). Galangin and Pinocembrin from Propolis Ameliorate Insulin Resistance in HepG2 Cells via Regulating Akt/mTOR Signaling. Evid Based Complement Alternat Med, 2018 , 7971842. doi:10.1155/2018/7971842
Lopaschuk, G. D. (2017). Metabolic Modulators in Heart Disease: Past, Present, and Future. Can J Cardiol, 33 (7), 838-849. doi:10.1016/j.cjca.2016.12.013
Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiol Rev, 90 (1), 207-258. doi:10.1152/physrev.00015.2009
Lungkaphin, A., Pongchaidecha, A., Palee, S., Arjinajarn, P., Pompimon, W., & Chattipakorn, N. (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl Physiol Nutr Metab, 40 (10), 1031-1037. doi:10.1139/apnm-2015-0108
Malmberg, K., Norhammar, A., Wedel, H., & Ryden, L. (1999). Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study.Circulation, 99 (20), 2626-2632. doi:10.1161/01.cir.99.20.2626
Matsushima, S., Kuroda, J., Ago, T., Zhai, P., Park, J. Y., Xie, L. H., . . . Sadoshima, J. (2013). Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy.Circ Res, 112 (4), 651-663. doi:10.1161/CIRCRESAHA.112.279760
McGrath, J. C., & Lilley, E. (2015). Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol, 172 (13), 3189-3193. doi:10.1111/bph.12955
Morel, O., Perret, T., Delarche, N., Labeque, J. N., Jouve, B., Elbaz, M., . . . Ovize, M. (2012). Pharmacological approaches to reperfusion therapy. Cardiovasc Res, 94 (2), 246-252. doi:10.1093/cvr/cvs114
Nadtochiy, S. M., Wang, Y. T., Nehrke, K., Munger, J., & Brookes, P. S. (2018). Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J Mol Cell Cardiol, 121 , 155-162. doi:10.1016/j.yjmcc.2018.06.007
Qin, C. X., May, L. T., Li, R., Cao, N., Rosli, S., Deo, M., . . . Ritchie, R. H. (2017). Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat Commun, 8 , 14232. doi:10.1038/ncomms14232
Saad, M. A., Abdel Salam, R. M., Kenawy, S. A., & Attia, A. S. (2015). Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion.Pharmacol Rep, 67 (1), 115-122. doi:10.1016/j.pharep.2014.08.014
Shi, L. L., Chen, B. N., Gao, M., Zhang, H. A., Li, Y. J., Wang, L., & Du, G. H. (2011). The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats.Life Sci, 88 (11-12), 521-528. doi:10.1016/j.lfs.2011.01.011
Somanathan, S., Jacobs, F., Wang, Q., Hanlon, A. L., Wilson, J. M., & Rader, D. J. (2014). AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res, 115 (6), 591-599. doi:10.1161/CIRCRESAHA.115.304008
Taniguchi, M., Wilson, C., Hunter, C. A., Pehowich, D. J., Clanachan, A. S., & Lopaschuk, G. D. (2001). Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak. Am J Physiol Heart Circ Physiol, 280 (4), H1762-1769. doi:10.1152/ajpheart.2001.280.4.H1762
Tao, J., Shen, C., Sun, Y., Chen, W., & Yan, G. (2018). Neuroprotective effects of pinocembrin on ischemia/reperfusion-induced brain injury by inhibiting autophagy. Biomed Pharmacother, 106 , 1003-1010. doi:10.1016/j.biopha.2018.07.026
Vaughn, A. E., & Deshmukh, M. (2008). Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol, 10 (12), 1477-1483. doi:10.1038/ncb1807
Wu, C. X., Liu, R., Gao, M., Zhao, G., Wu, S., Wu, C. F., & Du, G. H. (2013). Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis.Neurosci Lett, 546 , 57-62. doi:10.1016/j.neulet.2013.04.060
Xie, C., Zhang, Y. P., Song, L., Luo, J., Qi, W., Hu, J., . . . Yan, Y. (2016). Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res, 26 (10), 1099-1111. doi:10.1038/cr.2016.101
Zhang, P., Xu, J., Hu, W., Yu, D., & Bai, X. (2018). Effects of Pinocembrin Pretreatment on Connexin 43 (Cx43) Protein Expression After Rat Myocardial Ischemia-Reperfusion and Cardiac Arrhythmia. Med Sci Monit, 24 , 5008-5014. doi:10.12659/MSM.909162
Zheng, Y., Gu, S., Li, X., Tan, J., Liu, S., Jiang, Y., . . . Yang, H. T. (2017). Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis, 8 (2), e2577. doi:10.1038/cddis.2017.7