REFERENCES
1. Van Praet KM, van Kampen A, Kofler M, et al. Minimally invasive surgical aortic valve replacement: The RALT approach. J Card Surg . 2020:1-6. doi:10.1111/jocs.14756
2. Karel M. Van Praet, Antonia Van Kampen, Markus Kofler, Axel Unbehaun, Matthias Hommel, Stephan Jacobs, Volkmar Falk JK. Minimally invasive surgical aortic valve replacement through a right anterolateral thoracotomy. Multimed Man Cardiothorac Surg . doi: 10.15.
3. Mikus E, Turci S, Calvi S, Ricci M, Dozza L, Del Giglio M. Aortic valve replacement through right minithoracotomy: Is it really biologically minimally invasive? Ann Thorac Surg . 2015;99(3):826-830. doi:10.1016/j.athoracsur.2014.09.046
4. Mikus E, Calvi S, Campo G, et al. Full Sternotomy, Hemisternotomy, and Minithoracotomy for Aortic Valve Surgery: Is There a Difference?Ann Thorac Surg . 2018;106(6):1782-1788. doi:10.1016/j.athoracsur.2018.07.019
5. Fattouch K, Moscarelli M, Giglio M Del, et al. Non-sutureless minimally invasive aortic valve replacement : mini-sternotomy versus mini-thoracotomy : a series of 1130 patients. 2016;23(May):253-258. doi:10.1093/icvts/ivw104
6. Elisa Mikus, Simone Calvi, Alberto Tripodi, Mauro Lamarra MDG. Upper “J” ministernotomy versus full sternotomy: an easier approach for aortic valve reoperation. J Hear Valve Dis . 2013;22(3):295-300.
7. Kleina P, Klop IDG, Kloppenburg GLT, van Putte BP. Planning for minimally invasive aortic valve replacement: Key steps for patient assessment. Eur J Cardio-thoracic Surg . 2018;53:ii3-ii8. doi:10.1093/ejcts/ezy086
8. F Ciolina, P Sedati, F Zaccagna, N Galea, V Noce, F Miraldi, E Cavarretta, M Francone IC. Aortic valve stenosis: non-invasive preoperative evaluation using 64-slice CT angiography. J Cardiovasc Surg . 2015;56(5):799-808.
9. Loor G, Desai MY, Roselli EE. Pre-operative 3D CT imaging for virtual planning of minimally invasive aortic valve surgery. JACC Cardiovasc Imaging . 2013;6(2):269-271. doi:10.1016/j.jcmg.2012.08.017
10. Leonard JR, Henry M, Rahouma M, et al. Systematic preoperative CT scan is associated with reduced risk of stroke in minimally invasive mitral valve surgery: A meta-analysis. Int J Cardiol . 2019;278(2019):300-306. doi:10.1016/j.ijcard.2018.12.025
11. Plass A, Scheffel H, Alkadhi H, et al. Aortic Valve Replacement Through a Minimally Invasive Approach: Preoperative Planning, Surgical Technique, and Outcome. Ann Thorac Surg . 2009;88(6):1851-1856. doi:10.1016/j.athoracsur.2009.08.015
12. Elattar MA, van Kesteren F, Wiegerinck EM, et al. Automated CTA based measurements for planning support of minimally invasive aortic valve replacement surgery. Med Eng Phys . 2017;39(2017):123-128. doi:10.1016/j.medengphy.2016.11.002
13. Elattar MA, Kaya A, Planken NR, et al. A computed tomography-based planning tool for predicting difficulty of minimally invasive aortic valve replacement. Interact Cardiovasc Thorac Surg . 2018;27(4):505-511. doi:10.1093/icvts/ivy128
14. Moodley S, Schoenhagen P, Gillinov AM, et al. Preoperative multidetector computed tomograpy angiography for planning of minimally invasive robotic mitral valve surgery: Impact on decision making.J Thorac Cardiovasc Surg . 2013;146(2):262-268.e1. doi:10.1016/j.jtcvs.2012.06.052
15. Grossi EA, Loulmet DF, Schwartz CF, et al. Evolution of operative techniques and perfusion strategies for minimally invasive mitral valve repair. J Thorac Cardiovasc Surg . 2012;143(4 SUPPL.):S68-S70. doi:10.1016/j.jtcvs.2012.01.011
16. Murphy DA, Miller JS, Langford DA, Snyder AB. Endoscopic robotic mitral valve surgery. J Thorac Cardiovasc Surg . 2006;132(4):776-781. doi:10.1016/j.jtcvs.2006.04.052
17. Murzi M, Cerillo AG, Gasbarri T, et al. Antegrade and retrograde perfusion in minimally invasive mitral valve surgery with transthoracic aortic clamping: A single-institution experience with 1632 patients over 12 years. Interact Cardiovasc Thorac Surg . 2017;24(3):363-368. doi:10.1093/icvts/ivw370
18. Bedeir K, Reardon M, Ramchandani M, Singh K, Ramlawi B. Elevated Stroke Risk Associated With Femoral Artery Cannulation During Mitral Valve Surgery. Semin Thorac Cardiovasc Surg . 2015;27(2):97-103. doi:10.1053/j.semtcvs.2015.06.008
19. MV Kameneva, A Undar, JF Antaki, MJ Watach, JH Calhoon HB. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass.ASAIO J . 1999;45(4):307-310.
20. RK Mathews JS. In-vitro evaluation of the hemolytic effects of augmented venous drainage. J Extra Corpor Technol . 2001;33(1):15-18.
21. Goksedef D, Omeroglu SN, Balkanay OO, et al. Hemolysis at different vacuum levels during vacuum-assisted venous drainage: A prospective randomized clinical trial. Thorac Cardiovasc Surg . 2012;60(4):262-268. doi:10.1055/s-0031-1280019
22. Bevilacqua S, Matteucci S, Ferrarini M, et al. Biochemical evaluation of vacuum-assisted venous drainage : a randomized , prospective study. 2002:57-61.
23. Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative Protective Mechanical Ventilation for Prevention of Postoperative Pulmonary Complications. Anesthesiology . 2015;123(3):692-713. doi:10.1097/aln.0000000000000754
24. Neto AS, Hemmes SNT, Barbas CSV, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: A meta-analysis of individual patient data. Lancet Respir Med . 2016;4(4):272-280. doi:10.1016/S2213-2600(16)00057-6