References
Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre, E.B., Muller-Landau, H.C., Joseph Wright, S., et al. (2015). CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. , 21, 528–549.
Averill, C. & Hawkes, C. (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. , 19, 937–947.
Bradford, M.A., Keiser, A.D., Davies, C.A., Mersmann, C.A. & Strickland, M.S. (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth Author ’ s personal copy. Biogeochemistry .
Brzostek, E.R., Dragoni, D., Brown, Z.A. & Phillips, R.P. (2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol. , 206, 1274–1282.
Cambardella, C.A. & Elliott, E.T. (1992). Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence.Soil Sci. Soc. Am. J. , 56, 777.
Cheeke, T.E., Phillips, R.P., Brzostek, E.R., Rosling, A., Bever, J.D. & Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol. , 214, 1–11.
Chen, W., Koide, R.T., Adams, T.S., DeForest, J.L., Cheng, L. & Eissenstat, D.M. (2016). Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.Proc. Natl. Acad. Sci. U. S. A. , 113, 8741–8746.
Cheng, L., Chen, W., Adams, T.S., Wei, X., Li, L., McCormack, M.L.,et al. (2016). Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology , 97, 2815–2823.
Cheng, W. & Kuzyakov, Y. (2005). Root effects on soil organic matter decomposition. In: Roots and Soil Management: Interactions between Roots and the Soil . American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI.
Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., et al. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science (80-. ). , 339, 1615–1618.
Cotrufo, M.F., Alberti, G., Inglima, I. & Marjanovi, H. (2011). Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland. Biogeosciences , 2729–2739.
Cotrufo, M.F., Lugato, E., Ranalli, M.G., Haddix, M.L. & Six, J. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter, 12.
Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?Glob. Chang. Biol. , 19, 988–95.
Craig, M.E., Turner, B.L., Liang, C., Clay, K., Johnson, D.J. & Phillips, R.P. (2018). Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil carbon and nitrogen.Glob. Chang. Biol. , 24, 3317–3330.
Fahey, T.J., Bledsoe, C.., Day, F.P., Ruess, R. & Smucker, A.J.. (1999). Fine Root Production and Demography. In: Standard Soil Methods for Long Term Ecological Research (eds. Robertson, G.P., Coleman, D.C., Bledsoe, C.. & Sollins, P.). pp. 437–455.
Fahey, T.J., Siccama, T.G., Driscoll, C.T. & Likens, G.E. (2005). The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry , 75, 109–176.
Gill, A.L. & Finzi, A.C. (2016). Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale.Ecol. Lett. , 1419–1428.
Godbold, D.L., Hoosbeek, M.R., Lukac, M., Cotrufo, M.F., Janssens, I.A., Ceulemans, R., et al. (2006). Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil , 15–24.
Gonzalez-Akre, E.B., Meakem, V., Eng, C.-Y., Tepley, A.J., Bourg, N.A., McShea, W.J., et al. (2016). Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot.Ecosphere , 7.
Grandy, A.S. & Neff, J.C. (2008). Molecular C dynamics downstream : The biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. , 4.
Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.J., Pecot, S.D. & Guo, D. (2006). Assessing the patterns and controls of fine root dynamics : an empirical test and methodological review. J. Ecol. , 94, 40–57.
Hoosbeek, M.R., Lukac, M., Dam, D. Van, Godbold, D.L., Velthorst, E.J., Biondi, F.A., et al. (2004). More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment ( POPFACE ): Cause of increased priming effect ? Global Biogeochem. Cycles , 18, 1–7.
Iversen, C.M., Mccormack, M.L., Powell, A.S., Blackwood, C.B., Freschet, G.T., Kattge, J., et al. (2017). A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol.
Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G. & Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. , 48, annurev-ecolsys-112414-054234.
Jilling, A., Keiluweit, M., Contosta, A.R., Frey, S., Smith, R.G., Tiemann, L., et al. (2018). Minerals in the rhizosphere : overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry , 103–122.
Jo, I., Fei, S., Oswalt, C.M., Domke, G.M. & Phillips, R.P. (2019). Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. , 5, 1–8.
Kallenbach, C.M., Grandy, A. & Frey, S.D. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. , 1–10.
Keller, A.B. & Phillips, R.P. (2019a). Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests.New Phytol. , 222, 556–564.
Keller, A.B. & Phillips, R.P. (2019b). Relationship Between Belowground Carbon Allocation and Nitrogen Uptake in Saplings Varies by Plant Mycorrhizal Type. Front. For. Glob. Chang. , 2, 1–10.
Martinez, C., Alberti, G., Cotrufo, M.F., Magnani, F., Zanotelli, D., Camin, F., et al. (2016). Belowground carbon allocation patterns as determined by the in-growth soil core 13 C technique across different ecosystem types. Geoderma , 263, 140–150.
McCormack, M.L., Crisfield, E., Raczka, B., Schnekenburger, F., Eissenstat, D.M. & Smithwick, E.A.H. (2015). Sensitivity of four ecological models to adjustments in fine root turnover rate. Ecol. Modell. , 297, 107–117.
Panzacchi, P., Gioacchini, P., Sauer, T.J. & Tonon, G. (2016). New dual in-growth core isotopic technique to assess the root litter carbon input to the soil. Geoderma , 278, 32–39.
Pausch, J., Tian, J. & Riederer, M. (2013). Estimation of rhizodeposition at field scale : upscaling of a 14 C labeling study.Plant Soil , 364, 273–285.
Phillips, R.P., Brzostek, E. & Midgley, M.G. (2013). The mycorrhizal-associated nutrient economy : a new framework for predicting carbon – nutrient couplings in temperate forests. New Phytol. , 199, 41–51.
Phillips, R.P., Erlitz, Y., Bier, R. & Bernhardt, E.S. (2008). New approach for capturing soluable root exudates in forest soils.Funct. Ecol. , 22, 990–999.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (n.d.). .
Rasse, D.P., Rumpel, C. & Dignac, M.F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil , 269, 341–356.
Rillig, M.C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. , 84, 355–363.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. a., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature , 478, 49–56.
See, C.R., Mccormack, M.L. & Hobbie, S.E. (2019). Global patterns in fine root decomposition : climate , chemistry , mycorrhizal association and woodiness. Ecol. Lett. , 22, 946–953.
Shah, F., Nicolas, C., Bentzer, J., Ellstr, M., Floudas, D., Carleer, R., et al. (2016). Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.New Phytol. , 209, 1705–1719.
Sokol, N.W. & Bradford, M.A. (2019). Microbial formation of stable carbon is more efficient from belowground than aboveground input.Nat. Geosci. , 12.
Staddon, P.L., Ramsey, C.B., Ostle, N., Ineson, P. & Fitter, A.H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science , 300, 1138–1140.
Sulman, B.N., Brzostek, E.R., Medici, C., Shevliakova, E., Menge, D.N.L. & Phillips, R.P. (2017). Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association.Ecol. Lett. , 20, 1043–1053.
Tedersoo, L. & Bahram, M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. , 1868, 1857–1880.
Valverde-Barrantes, O.J., Smemo, K. a., Feinstein, L.M., Kershner, M.W. & Blackwood, C.B. (2013). The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. J. Ecol. , 101, 933–942.
Wurzburger, N. & Brookshire, E.N.J. (2017). Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon. Ecology , 98, 1491–1497.
Yin, H., Wheeler, E. & Phillips, R.P. (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol. Biochem. , 78, 1–9.
Zhu, K., Mccormack, M.L., Lankau, R.A., Egan, J.F. & Wurzburger, N. (2018). Association of ectomycorrhizal trees with high carbon-to-nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocks. J. Ecol. , 524–535.