Literature cited
1. Zhang L, Babi DK, Gani R. New vistas in chemical product and process
design. Annual Review of Chemical and Biomolecular Engineering .
2016;7(1):557-582.
2. Gani R, Ng KM. Product design – Molecules, devices, functional
products, and formulated products. Computers & Chemical
Engineering . 2015;81:70-79.
3. Conte E, Gani R, Ng KM. Design of formulated products: A systematic
methodology. AIChE Journal . 2011;57(9):2431-2449.
4. Global Cosmetics Products Market . 360 research reports. 2018.
https://www.360researchreports.com/global-cosmetics-products-market-13100793
(accessed March 2020)
5. Kontogeorgis GM, Mattei M, Ng KM, Gani R. An integrated approach for
the design of emulsified products. AIChE Journal .
2019;65(1):75-86.
6. Pensé‐Lhéritier A-M. Recent developments in the sensorial assessment
of cosmetic products: a review. International Journal of Cosmetic
Science . 2015;37(5):465-473.
7. Benson HAE, Roberts MS, Leite-Silva VR, Walters KA. Cosmetic
Formulation Principles and Practice . 1st ed. Florida, USA: CRC Press;
2019.
8. Taifouris M, Martín M, Martínez A, Esquejo N. Challenges in the
design of formulated products: multiscale process and product design.Current Opinion in Chemical Engineering . 2020;27:1-9.
9. Karunanithi AT, Achenie LEK, Gani R. A new decomposition-based
computer-aided molecular/mixture design methodology for the design of
optimal solvents and solvent mixtures. Ind Eng Chem Res .
2005;44(13):4785-4797.
10. Austin ND, Sahinidis NV, Konstantinov IA, Trahan DW. COSMO-based
computer-aided molecular/mixture design: A focus on reaction solvents.AIChE Journal . 2018;64(1):104-122.
11. Jonuzaj S, Adjiman CS. Designing optimal mixtures using generalized
disjunctive programming: Hull relaxations. Chemical Engineering
Science . 2017;159:106-130.
12. Jonuzaj S, Akula PT, Kleniati P-M, Adjiman CS. The formulation of
optimal mixtures with generalized disjunctive programming: A solvent
design case study. AIChE Journal . 2016;62(5):1616-1633.
13. Zhang L, Kalakul S, Liu L, Elbashir NO, Du J, Gani R. A
computer-aided methodology for mixture-blend design. applications to
tailor-made design of surrogate fuels. Ind Eng Chem Res .
2018;57(20):7008-7020.
14. Kalakul S, Zhang L, Fang Z, et al. Computer aided chemical product
design – ProCAPD and tailor-made blended products. Computers &
Chemical Engineering . 2018;116:37-55.
15. Yunus NA, Gernaey KV, Woodley JM, Gani R. A systematic methodology
for design of tailor-made blended products. Computers & Chemical
Engineering . 2014;66:201-213.
16. Marvin WA, Rangarajan S, Daoutidis P. Automated generation and
optimal selection of biofuel-gasoline blends and their synthesis routes.Energy Fuels . 2013;27(6):3585-3594.
17. Liu Q, Zhang L, Liu L, et al. OptCAMD: An optimization-based
framework and tool for molecular and mixture product design.Computers & Chemical Engineering . 2019;124:285-301.
18. Jones O, Ben Selinger A. The chemistry of cosmetics.
https://www.science.org.au/curious/people-medicine/chemistry-cosmetics
(access March 2020).
19. Omidbakhsh N, Duever TA, Elkamel A, Reilly PM. A systematic
computer-aided product design and development procedure: Case of
disinfectant formulations. Ind Eng Chem Res .
2012;51(45):14925-14934.
20. Smith BV, Ierapepritou M. Framework for consumer-integrated optimal
product design. Ind Eng Chem Res . 2009;48(18):8566-8574.
21. Bagajewicz M, Hill S, Robben A, et al. Product design in
price-competitive markets: A case study of a skin moisturizing lotion.AIChE Journal . 2011;57(1):160-177.
22. Conte E, Gani R, Cheng YS, Ng KM. Design of formulated products:
Experimental component. AIChE Journal . 2012;58(1):173-189.
23. Zhang L, Fung KY, Zhang X, Fung HK, Ng KM. An integrated framework
for designing formulated products. Computers & Chemical
Engineering . 2017;107:61-76.
24. Arrieta-Escobar JA, Bernardo FP, Orjuela A, Camargo M, Morel L.
Incorporation of heuristic knowledge in the optimal design of formulated
products: Application to a cosmetic emulsion. Computers &
Chemical Engineering . 2019;122:265-274.
25. Zhang X, Zhou T, Zhang L, Fung KY, Ng KM. Food product design: A
hybrid machine learning and mechanistic modeling approach. Ind Eng
Chem Res . 2019;58(36):16743-16752.
26. Zhang L, Mao H, Liu L, Du J, Gani R. A machine learning based
computer-aided molecular design/screening methodology for fragrance
molecules. Computers & Chemical Engineering . 2018;115:295-308.
27. Goyal S, Goyal EK. Cascade and feedforward backpropagation
artificial neural networks models for prediction of sensory quality of
instant coffee flavoured sterilized drink. Canadian Journal on
Artificial Intelligence, Machine Learning and Pattern Recognition .
2011;2(6):7882.
28. Baki G, Alexander KS. Introduction to Cosmetic Formulation and
Technology . John Wiley & Sons; 2015.
29. Personal Care Products Council. Cosmetic ingredient dictionary.
https://cosmeticsinfo.org/Ingredient-dictionary (accessed March 2020).
30. European Commission. CosIng database.
https://ec.europa.eu/growth/sectors/cosmetics/cosing_en (accessed March
2020).
31. Gani R, Hytoft G, Jaksland C, Jensen AK. An integrated computer
aided system for integrated design of chemical processes.Computers & Chemical Engineering . 1997;21(10):1135-1146.
32. Cardona Jaramillo JEC, Achenie LE, Álvarez OA, Carrillo Bautista MP,
González Barrios AF. The multiscale approach to the design of bio-based
emulsions. Current Opinion in Chemical Engineering .
2020;27:65-71.
33. Bernardo FP, Saraiva PM. A conceptual model for chemical product
design. AIChE Journal . 2015;61(3):802-815.
34. Wibowo C, Ng KM. Product-oriented process synthesis and development:
Creams and pastes. AIChE Journal . 2001;47(12):2746-2767.
35. Wibowo C, Ng KM. Product-centered processing: Manufacture of
chemical-based consumer products. AIChE Journal .
2002;48(6):1212-1230.
36. Kim SH, Boukouvala F. Machine learning-based surrogate modeling for
data-driven optimization: a comparison of subset selection for
regression techniques. Optim Lett . May 2019.
37. Bhosekar A, Ierapetritou M. Advances in surrogate based modeling,
feasibility analysis, and optimization: A review. Computers &
Chemical Engineering . 2018;108:250-267.
38. Teixeira MA, Rodríguez O, Mata VG, Rodrigues AE. The diffusion of
perfume mixtures and the odor performance. Chemical Engineering
Science . 2009;64(11):2570-2589.
39. Bronaugh RL, Maibach HI. Percutaneous Absorption:
Drugs–Cosmetics–Mechanisms–Methodology . 3rd ed. New York, USA:
Marcel Dekker, Inc.; 1999.
40. Hada S, Herring RH, Eden MR. Mixture formulation through
multivariate statistical analysis of process data in property cluster
space. Computers & Chemical Engineering . 2017;107:26-36.
41. Hill M. Product and process design for structured products.AIChE Journal . 2004;50(8):1656-1661.
42. Schweidtmann AM, Mitsos A. Deterministic global optimization with
artificial neural networks embedded. J Optim Theory Appl .
2019;180(3):925-948.
43. Schweidtmann AM, Huster WR, Lüthje JT, Mitsos A. Deterministic
global process optimization: Accurate (single-species) properties via
artificial neural networks. Computers & Chemical Engineering .
2019;121:67-74.
44. Grossmann IE, Trespalacios F. Systematic modeling of
discrete-continuous optimization models through generalized disjunctive
programming. AIChE Journal . 2013;59(9):3276-3295.
45. Beykal B, Boukouvala F, Floudas CA, Pistikopoulos EN. Optimal design
of energy systems using constrained grey-box multi-objective
optimization. Computers & Chemical Engineering .
2018;116:488-502.
46. Boukouvala F, Floudas CA. ARGONAUT: AlgoRithms for Global
Optimization of coNstrAined grey-box compUTational problems. Optim
Lett . 2017;11(5):895-913.
47. Eason JP, Biegler LT. A trust region filter method for glass
box/black box optimization. AIChE Journal . 2016;62(9):3124-3136.
48. Craig S. How to review fragrance?
https://bespokeunit.com/fragrance/formula/ (assessed March 2020).
49. Mata VG, Gomes PB, Rodrigues AE. Engineering perfumes. AIChE
Journal . 2005;51(10):2834-2852.
50. Shcherbakov D, Massebeuf S, Normand V. Flash-point prediction of
fragrances or flavours accounting for non-ideality of the liquid phase.Flavour and Fragrance Journal . 2019;34(1):63-69.
51. Poucher WA. Perfumes, Cosmetics and Soaps: Vol. II, the
Production, Manufacture and Application of Perfumes . 9th ed. Dordrecht:
Springer Science; 1993.
52. Teixeira MA, Rodríguez O, Rodrigues AE. The perception of fragrance
mixtures: A comparison of odor intensity models. AIChE Journal .
2010;56(4):1090-1106.
53. Liaw H-J, Gerbaud V, Li Y-H. Prediction of miscible mixtures
flash-point from UNIFAC group contribution methods. Fluid Phase
Equilibria . 2011;300(1):70-82.
54. Jouyban A. Review of the cosolvency models for predicting drug
solubility in solvent mixtures: An update. Journal of Pharmacy &
Pharmaceutical Sciences . 2019;22:466-485.
55. Teixeira MA, Rodríguez O, Mota FL, Macedo EA, Rodrigues AE.
Evaluation of group-contribution methods to predict VLE and odor
intensity of fragrances. Ind Eng Chem Res . 2011;50(15):9390-9402.
56. Ng KM, Gani R. Chemical product design: Advances in and proposed
directions for research and teaching. Computers & Chemical
Engineering . 2019;126:147-156.
57. Fung KY, Ng KM, Zhang L, Gani R. A grand model for chemical product
design. Computers & Chemical Engineering . 2016;91:15-27.
Figure 1. The General Methodology
of Optimization-based Cosmetic Formulation