References
Anderson, M. & Finlayson, L.H. (1973). Ultrastructural changes during
growth of the flight muscles in the adult tsetse fly, Glossina austeni.J. Insect Physiol. , 19, 1989–1997.
Baldry, D., Boreham, P., Challier, A., Van Etten, J., Everts, J.,
Gravel, J., et al. (1992). Training manual for tsetse
control personnel Volume 1 . Food and Agriculture Organization of the
United Nations.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. J. Stat. Softw. , 67, 1–48.
Baudisch, A. & Vaupel, J.W. (2012). Getting to the root of aging.Science (80-. ). , 338, 618–619.
Boggs, C.L. (2009). Understanding insect life histories and senescence
thorugh a resource allocation lens. Funct. Ecol. , 23, 27–37.
Burnham, K. & Anderson, D. (2002). Model selection and multimodel
inference: a practical information-theoretic approach . 2nd Editio.
Springer-Verlag New York, Inc.
Cayuela, H., Lemaître, J.F., Bonnaire, E., Pichenot, J. & Schmidt, B.R.
(2020). Population position along the fast–slow life-history continuum
predicts intraspecific variation in actuarial senescence. J. Anim.
Ecol. , 0–2.
Chippindale, A.K., Leroi, A.M., Kim, S.B. & Rose, M.R. (1993).
Phenotypic plasticity and selection in Drosophila life‐history
evolution. I. Nutrition and the cost of reproduction. J. Evol.
Biol. , 6, 171–193.
Cmelik, S.H.W., Bursell, E. & Slack, E. (1969). Composition of the gut
contents of third-instar tsetse larvae (Glossina morsitans westwood).Comp. Biochem. Physiol. , 29, 447–453.
Curtis Creighton, J., Heflin, N.D. & Belk, M.C. (2009). Cost of
reproduction, resource quality, and terminal investment in a burying
beetle. Am. Nat. , 174, 673–684.
Davison, R., Boggs, C.L. & Baudisch, A. (2014). Resource allocation as
a driver of senescence: Life history tradeoffs produce age patterns of
mortality. J. Theor. Biol. , 360, 251–262.
Ejezie, G.C. & Davey, K.G. (1977). Some effects of mating in female
tsetse, Glossina austeni newst. J. Exp. Zool. , 200, 303–310.
Ernsting, G. & Isaaks, J.A. (1991). Accelerated Ageing: A Cost of
Reproduction in the Carabid Beetle Notiophilus biguttatus F.Funct. Ecol. , 5, 299.
Gaillard, J.M. & Lemaître, J.F. (2020). An integrative view of
senescence in nature. Funct. Ecol. , 34, 4–16.
Haines, L.R., Vale, G.A., Barreaux, A.M.G., Ellstrand, N.C., Hargrove,
J.W. & English, S. (2020). Big Baby, Little Mother: Tsetse Flies Are
Exceptions to the Juvenile Small Size Principle. BioEssays ,
2000049, 2000049.
Hamilton, W. (1966). The moulding of senescence by natural selection.J. Theor. Biol. , 12, 12–45.
Hargrove, J. (1999). Nutritional levels of female tsetse Glossina
pallidipes from artificial refuges. Med. Vet. Entomol. , 13,
150–164.
Hargrove, J. (2004). Tsetse population dynamics. In: The
Trypanosomiases (eds. Maudlin, I., Holmes, P. & Miles, M.). CABI
Publishing, pp. 113–135.
Hargrove, J., English, S., Torr, S.J., Lord, J., Haines, L.R., Van
Schalkwyk, C., et al. (2019). Wing length and host location in
tsetse (Glossina spp.): Implications for control using stationary baits.Parasites and Vectors , 12, 1–13.
Hargrove, J. & Muzari, M. (2015). Nutritional levels of pregnant and
postpartum tsetse Glossina pallidipes Austen captured in artificial
warthog burrows in the Zambezi Valley of Zimbabwe. Physiol.
Entomol. , 40, 138–148.
Hargrove, J., Muzari, M. & English, S. (2018). How maternal investment
varies with environmental factors and the age and physiological state of
wild tsetse Glossina pallidipes and Glossina morsitans morsitans.R. Soc. Open Sci. , 5.
Hargrove, J., Ouifki, R. & Ameh, J. (2011). A general model for
mortality in adult tsetse (Glossina spp.). Med. Vet. Entomol. ,
25, 385–94.
Hoekstra, L.A., Schwartz, T.S., Sparkman, A.M., Miller, D.A.W. &
Bronikowski, A.M. (2019). The untapped potential of reptile biodiversity
for understanding how and why animals age. Funct. Ecol. , 38–54.
Holand, H., Kvalnes, T., Gamelon, M., Tufto, J., Jensen, H., Pärn, H.,et al. (2016). Spatial variation in senescence rates in a bird
metapopulation. Oecologia , 181, 865–871.
Jiménez-Pérez, A. & Wang, Q. (2009). Effect of Mating Delay on the
Reproductive Performance of Cnephasia jactatana (Lepidoptera:
Tortricidae)_. J. Econ. Entomol. , 96, 592–598.
Jordan, A.M., Nash, T.A.M. & Boyle, J.A. (1969). Pupal weight in
relation to female age in Glossina austeni Newst. Bull. Entomol.
Res. , 58, 549–552.
Kabayo, J.P. & Langley, P.A. (1985). The nutritional importance of
dietary blood components for reproduction in the tsetse fly, Glossina
morsitans. J. Insect Physiol. , 31, 619–624.
Kaitala, A. (1991). Phenotypic Plasticity in Reproductive Behaviour of
Waterstriders: Trade-Offs Between Reproduction and Longevity During Food
Stress. Funct. Ecol. , 5, 12.
Kirkwood, T. (1977). Evolution of ageing. Nature , 270, 301–303.
Langley, P. & Clutton-Brock, T. (1998). Does reproductive investment
change with age in tsetse flies, Glossina morsitans morsitans (Diptera:
Glossinidae)? Funct. Ecol. , 12, 866–870.
McIntyre, G.S. & Gooding, R.H. (1998). Effect of Maternal Age on
Offspring Quality in Tsetse (Diptera: Glossinidae). J. Med.
Entomol. , 35, 210–215.
McNamara, J.M., Houston, A.I., Barta, Z., Scheuerlein, A. & Fromhage,
L. (2009). Deterioration, death and the evolution of reproductive
restraint in late life. Proc. R. Soc. B Biol. Sci. , 276,
4061–4066.
Monaghan, P., Maklakov, A.A. & Metcalfe, N.B. (2020). Intergenerational
Transfer of Ageing: Parental Age and Offspring Lifespan. Trends
Ecol. Evol. , 35, 927–937.
Nussey, D., Froy, H., Lemaitre, J., Gaillard, J. & Austad, S. (2013).
Senescence in natural populations of animals: widespread evidence and
its implications for bio-gerontology. Ageing Res. Rev. , 23, 1–7.
Partridge, L. (1987). Is Accelerated Senescence a Cost of Reproduction?Funct. Ecol. , 1, 317.
Pinheiro, J., Bates, D., DebRoy, S. & D, S. (2018). nlme: linear and
nonlinear mixed effects models.
R Core Team. (2014). R: A language and environment for statistical
computing.
Rodríguez-Muñoz, R., Boonekamp, J.J., Fisher, D., Hopwood, P. &
Tregenza, T. (2019). Slower senescence in a wild insect population in
years with a more female-biased sex ratio. Proc. R. Soc. B Biol.
Sci. , 286.
Sharp, S.P. & Clutton-Brock, T.H. (2010). Reproductive senescence in a
cooperatively breeding mammal. J. Anim. Ecol. , 79, 176–183.
De Sousza Santos, P. & Begon, M. (1987). Survival costs of reproduction
in grasshoppers. Funct. Ecol. , 1, 215–221.
Tatar, M. & Carey, J.R. (1995). Nutrition mediates reproductive
trade-offs with age-specific mortality in the beetle Callosobruchus
maculatus. Ecology , 76, 2066–2073.
Unnithan, G.C. & Paye, S.O. (1991). Mating, longevity, fecundity, and
egg fertility of Chilo partellus (Lepidoptera: Pyralidae): Effects of
delayed or successive matings and their relevance to pheromonal control
methods. Environ. Entomol. , 20, 150–155.
Velando, A., Drummond, H. & Torres, R. (2006). Senescent birds redouble
reproductive effort when ill: Confirmation of the terminal investment
hypothesis. Proc. R. Soc. B Biol. Sci. , 273, 1443–1448.
Williams, G. (1957). Pleiotropy, natural selection and the evolution of
senescence. Evolution (N. Y). , 11, 398–411.
Wood, S. (2017). Generalized additive models: an introduction with
R, 2 edition. Chapman and Hall/ CRC.
Zajitschek, F., Zajitschek, S. & Bonduriansky, R. (2019). Senescence in
wild insects: Key questions and challenges. Funct. Ecol. , 26–37.
Figure 1 Overview of experiments. M – mating. Colour-coded
silhouette of pregnant tsetse with larva, timeline shows a silhouette of
a pupa and tubes containing blood, the dark red indicates red blood cell
and beige indicates serum.
Figure 2 Predicted probability of larval abortion as a function
of maternal age, by treatment. Predicted probabilities from generalised
linear mixed effects model fits to the data and 95% prediction
intervals. Plots of raw data are provided in S7 File.
Figure 3 Offspring wet weight as a function of maternal age and
treatment. Showing model fits to the data: thick line – population
level, thinner lines – individual level. Points – average wet weights
for 10-day intervals and 95% confidence intervals. Plots of raw data
are provided in S7 File.
Figure 4 Effect of sex, wet weight and maternal age on
starvation tolerance (the number of days a newly emerged fly can survive
starvation). a) Wet weight as a function of offspring sex by treatment;
b) Predicted survival time based on linear mixed effects model. Days
adults survived starvation is plotted against maternal age. Prediction
for each wet weight quartile shown. Plots of raw data are provided in S7
File.