References
Anderson, M. & Finlayson, L.H. (1973). Ultrastructural changes during growth of the flight muscles in the adult tsetse fly, Glossina austeni.J. Insect Physiol. , 19, 1989–1997.
Baldry, D., Boreham, P., Challier, A., Van Etten, J., Everts, J., Gravel, J., et al. (1992). Training manual for tsetse control personnel Volume 1 . Food and Agriculture Organization of the United Nations.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. , 67, 1–48.
Baudisch, A. & Vaupel, J.W. (2012). Getting to the root of aging.Science (80-. ). , 338, 618–619.
Boggs, C.L. (2009). Understanding insect life histories and senescence thorugh a resource allocation lens. Funct. Ecol. , 23, 27–37.
Burnham, K. & Anderson, D. (2002). Model selection and multimodel inference: a practical information-theoretic approach . 2nd Editio. Springer-Verlag New York, Inc.
Cayuela, H., Lemaître, J.F., Bonnaire, E., Pichenot, J. & Schmidt, B.R. (2020). Population position along the fast–slow life-history continuum predicts intraspecific variation in actuarial senescence. J. Anim. Ecol. , 0–2.
Chippindale, A.K., Leroi, A.M., Kim, S.B. & Rose, M.R. (1993). Phenotypic plasticity and selection in Drosophila life‐history evolution. I. Nutrition and the cost of reproduction. J. Evol. Biol. , 6, 171–193.
Cmelik, S.H.W., Bursell, E. & Slack, E. (1969). Composition of the gut contents of third-instar tsetse larvae (Glossina morsitans westwood).Comp. Biochem. Physiol. , 29, 447–453.
Curtis Creighton, J., Heflin, N.D. & Belk, M.C. (2009). Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. , 174, 673–684.
Davison, R., Boggs, C.L. & Baudisch, A. (2014). Resource allocation as a driver of senescence: Life history tradeoffs produce age patterns of mortality. J. Theor. Biol. , 360, 251–262.
Ejezie, G.C. & Davey, K.G. (1977). Some effects of mating in female tsetse, Glossina austeni newst. J. Exp. Zool. , 200, 303–310.
Ernsting, G. & Isaaks, J.A. (1991). Accelerated Ageing: A Cost of Reproduction in the Carabid Beetle Notiophilus biguttatus F.Funct. Ecol. , 5, 299.
Gaillard, J.M. & Lemaître, J.F. (2020). An integrative view of senescence in nature. Funct. Ecol. , 34, 4–16.
Haines, L.R., Vale, G.A., Barreaux, A.M.G., Ellstrand, N.C., Hargrove, J.W. & English, S. (2020). Big Baby, Little Mother: Tsetse Flies Are Exceptions to the Juvenile Small Size Principle. BioEssays , 2000049, 2000049.
Hamilton, W. (1966). The moulding of senescence by natural selection.J. Theor. Biol. , 12, 12–45.
Hargrove, J. (1999). Nutritional levels of female tsetse Glossina pallidipes from artificial refuges. Med. Vet. Entomol. , 13, 150–164.
Hargrove, J. (2004). Tsetse population dynamics. In: The Trypanosomiases (eds. Maudlin, I., Holmes, P. & Miles, M.). CABI Publishing, pp. 113–135.
Hargrove, J., English, S., Torr, S.J., Lord, J., Haines, L.R., Van Schalkwyk, C., et al. (2019). Wing length and host location in tsetse (Glossina spp.): Implications for control using stationary baits.Parasites and Vectors , 12, 1–13.
Hargrove, J. & Muzari, M. (2015). Nutritional levels of pregnant and postpartum tsetse Glossina pallidipes Austen captured in artificial warthog burrows in the Zambezi Valley of Zimbabwe. Physiol. Entomol. , 40, 138–148.
Hargrove, J., Muzari, M. & English, S. (2018). How maternal investment varies with environmental factors and the age and physiological state of wild tsetse Glossina pallidipes and Glossina morsitans morsitans.R. Soc. Open Sci. , 5.
Hargrove, J., Ouifki, R. & Ameh, J. (2011). A general model for mortality in adult tsetse (Glossina spp.). Med. Vet. Entomol. , 25, 385–94.
Hoekstra, L.A., Schwartz, T.S., Sparkman, A.M., Miller, D.A.W. & Bronikowski, A.M. (2019). The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. , 38–54.
Holand, H., Kvalnes, T., Gamelon, M., Tufto, J., Jensen, H., Pärn, H.,et al. (2016). Spatial variation in senescence rates in a bird metapopulation. Oecologia , 181, 865–871.
Jiménez-Pérez, A. & Wang, Q. (2009). Effect of Mating Delay on the Reproductive Performance of Cnephasia jactatana (Lepidoptera: Tortricidae)_. J. Econ. Entomol. , 96, 592–598.
Jordan, A.M., Nash, T.A.M. & Boyle, J.A. (1969). Pupal weight in relation to female age in Glossina austeni Newst. Bull. Entomol. Res. , 58, 549–552.
Kabayo, J.P. & Langley, P.A. (1985). The nutritional importance of dietary blood components for reproduction in the tsetse fly, Glossina morsitans. J. Insect Physiol. , 31, 619–624.
Kaitala, A. (1991). Phenotypic Plasticity in Reproductive Behaviour of Waterstriders: Trade-Offs Between Reproduction and Longevity During Food Stress. Funct. Ecol. , 5, 12.
Kirkwood, T. (1977). Evolution of ageing. Nature , 270, 301–303.
Langley, P. & Clutton-Brock, T. (1998). Does reproductive investment change with age in tsetse flies, Glossina morsitans morsitans (Diptera: Glossinidae)? Funct. Ecol. , 12, 866–870.
McIntyre, G.S. & Gooding, R.H. (1998). Effect of Maternal Age on Offspring Quality in Tsetse (Diptera: Glossinidae). J. Med. Entomol. , 35, 210–215.
McNamara, J.M., Houston, A.I., Barta, Z., Scheuerlein, A. & Fromhage, L. (2009). Deterioration, death and the evolution of reproductive restraint in late life. Proc. R. Soc. B Biol. Sci. , 276, 4061–4066.
Monaghan, P., Maklakov, A.A. & Metcalfe, N.B. (2020). Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol. Evol. , 35, 927–937.
Nussey, D., Froy, H., Lemaitre, J., Gaillard, J. & Austad, S. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. , 23, 1–7.
Partridge, L. (1987). Is Accelerated Senescence a Cost of Reproduction?Funct. Ecol. , 1, 317.
Pinheiro, J., Bates, D., DebRoy, S. & D, S. (2018). nlme: linear and nonlinear mixed effects models.
R Core Team. (2014). R: A language and environment for statistical computing.
Rodríguez-Muñoz, R., Boonekamp, J.J., Fisher, D., Hopwood, P. & Tregenza, T. (2019). Slower senescence in a wild insect population in years with a more female-biased sex ratio. Proc. R. Soc. B Biol. Sci. , 286.
Sharp, S.P. & Clutton-Brock, T.H. (2010). Reproductive senescence in a cooperatively breeding mammal. J. Anim. Ecol. , 79, 176–183.
De Sousza Santos, P. & Begon, M. (1987). Survival costs of reproduction in grasshoppers. Funct. Ecol. , 1, 215–221.
Tatar, M. & Carey, J.R. (1995). Nutrition mediates reproductive trade-offs with age-specific mortality in the beetle Callosobruchus maculatus. Ecology , 76, 2066–2073.
Unnithan, G.C. & Paye, S.O. (1991). Mating, longevity, fecundity, and egg fertility of Chilo partellus (Lepidoptera: Pyralidae): Effects of delayed or successive matings and their relevance to pheromonal control methods. Environ. Entomol. , 20, 150–155.
Velando, A., Drummond, H. & Torres, R. (2006). Senescent birds redouble reproductive effort when ill: Confirmation of the terminal investment hypothesis. Proc. R. Soc. B Biol. Sci. , 273, 1443–1448.
Williams, G. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution (N. Y). , 11, 398–411.
Wood, S. (2017). Generalized additive models: an introduction with R, 2 edition. Chapman and Hall/ CRC.
Zajitschek, F., Zajitschek, S. & Bonduriansky, R. (2019). Senescence in wild insects: Key questions and challenges. Funct. Ecol. , 26–37.
Figure 1 Overview of experiments. M – mating. Colour-coded silhouette of pregnant tsetse with larva, timeline shows a silhouette of a pupa and tubes containing blood, the dark red indicates red blood cell and beige indicates serum.
Figure 2 Predicted probability of larval abortion as a function of maternal age, by treatment. Predicted probabilities from generalised linear mixed effects model fits to the data and 95% prediction intervals. Plots of raw data are provided in S7 File.
Figure 3 Offspring wet weight as a function of maternal age and treatment. Showing model fits to the data: thick line – population level, thinner lines – individual level. Points – average wet weights for 10-day intervals and 95% confidence intervals. Plots of raw data are provided in S7 File.
Figure 4 Effect of sex, wet weight and maternal age on starvation tolerance (the number of days a newly emerged fly can survive starvation). a) Wet weight as a function of offspring sex by treatment; b) Predicted survival time based on linear mixed effects model. Days adults survived starvation is plotted against maternal age. Prediction for each wet weight quartile shown. Plots of raw data are provided in S7 File.