References
Alberti, A., Pirino, S., Pintore, F., Addis, M.F., Chessa, B., Cacciotto, C., Cubeddu, T., Anfossi, A., Benenati, G., Coradduzza, E., Lecis, R., Antuofermo, E., Carcangiu, L., Pittau, M. (2010). Ovis aries papillomavirus 3: a prototype of a novel genus in the family Papillomaviridae associated with ovine squamous cell carcinoma. Virology 407, 352-359, doi: 10.1016/j.virol.2010.08.034.
Biron, V.L., Kostiuk, M., Isaac, A., Puttagunta, L., O’Connell, D.A., Harris, J., Côté, D.W., Seikaly, H. (2016). Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction. Cancer 122, 1544-1551, doi: 10.1002/cncr.29976.
Campo, M.S., Jarrett, W.F.H., Barron, R.J., O’Neil, B.W., Smith, K.T. (1992). Association of bovine papillomavirus type 2 and bracken fern with bladder cancer in cattle. Cancer Research 52, 6898–6904.
Carow, K., Read, C., Häfner, N., Runnebaum, I.B., Corner, A., Dürst, M. (2017). A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients. BMC Research Notes 10, 532, doi: 10.1186/s13104-017-2846-8.
Cheung, T.H., Yim, S.F., Yu, M.Y., Worley Jr, M.J., Fiascone, S.J., Chiu, R.W.K., Lo, K.W.K., Siu, N.S.S., Wong, M.C.S., Yeung, A.C.M., Wong, R.R.Y., Chen, Z.G., Elias, K.M., Chung, T.K.H., Berkowitz, R.S., Wong, Y.F., Chan, P.K.S. (2019). Liquid biopsy of HPV DNA in cervical cancer. Journal of Clinical Virology 114, 32-36, doi: 10.1016/j.jcv.2019.03.005.
Cutarelli, A., De Falco, F., Uleri, V., Buonavoglia, C., Roperto, S. (2021). The diagnostic value of the droplet digital PCR for the detection of bovine Deltapapillomavirus in goats by liquid biopsy. Transboundary Emerging Diseases, doi: 10.1111/tbed.13971.
De Falco, F., Corrado, F., Cutarelli, A., Leonardi, L., Roperto, S. (2021). Digital droplet PCR for the detection and quantification of circulating bovine Deltapapillomavirus. Transboundary Emerging Diseases 68, 1345-1352, doi: 10.1111/tbed.13795.
De Villiers, E.T., Fauquet, C., Broker, T.R., Bernard, H.U., zur Hausen, H. (2004). Classification of papillomaviruses. Virology 124, 17-27, doi: 10.1016/j.virol.2004.03.033.
Del Río-Ospina, L., Soto-De León, S.C., Camargo, M., Moreno-Pérez, D.A., Sánchez, R., Pérez-Prados, A., Patarroyo, M.E., Patarroyo, M.A. (2015). BMC Cancer 15, 100, doi: 10.1186/s12885-015-1126-z.
Gallina, L., Savini, F., Casà, G., Bertoletti, I., Bianchi, A., Gibelli, L.R., Lelli, D., Lavazza, A., Scagliarini, A. (2020). Epitheliotropic infections in wildlife ruminants from the Central Alps and Stelvio National Park. Frontiers in Veterinary Science 7, 229, doi: 10.3389/fvets.2020.00229.
Gibbs, E.P., Smale, C.J., Lawman, M.J. (1975). Warts in sheep. Identification of a papillomavirus and transmission of infection to sheep. Journal of Comparative Pathology 85, 327-334, doi: 10.1016/0021-9975(75)90075-4.
Hayward, M.L., Baird, P.J., Meischke, H.R. (1993). Filiform viral squamous papillomas on sheep. The Veterinary Record 132, 86-88, doi: 10.1136/vr.132.4.86.
https://eu.idtdna.com/scitools/Applications/RealTimePCR/ [Accessed September: 10, 2021]
Kaliff, M., Bohr Mordhorst, L., Helenius, G., Karlsson, G.M., Lillsunde-Larsson, G. (2021). Optimization of droplet digital PCR assays for the type-specific detection and quantification of five HPV genotypes, including additional data on viral loads of nine different HPV genotypes in cervical carcinomas. Journal of Virological Methods 294, 114193, doi:10.1016/j.jviromet.2021.114193.
Kanagal-Shamanna, R. (2016). Digital PCR: principles and applications. Methods in Molecular Biology 1392, 43-50, doi: 10.1007/978-1-4939-3360-0_5.
Li, H., Bai, R., Zhao, Z., Tao, L., Ma, M., Ji, Z., Jian, M., Ding, Z., Dai, X., Bao, F., Liu, A. (2018). Application of droplet digital PCR to detect the pathogens of infectious diseases. Bioscience Reports 38, BSR20181170, doi: 10.1042/BSR20181170.
Lillsunde Larsson, G., & Helenius, G. (2017). Digital droplet PCR (ddPCR) for the detection and quantification of HPV 16, 18, 33 and 45 – a short report. Cellular Oncology (Dordrecht), 40, 521-527. doi: 10.1007/s13402-017-0331-y.
Munday, J.S., Fairley, R., Lowery, I. (2020). Detection of Ovis aries papillomavirus type 2 DNA sequences in a sarcoid-like mass in the mouth of a pig. Veterinary Microbiology 248, 108801, doi: 10.1016/j.vetmic.2020.108801.
Papillomavirus Episteme (PAVE) - http://pave.niaid.nih.gov/ - [Accessed September: 20, 2021]
Pinheiro, L.B., Coleman, V.A., Hindson, C.M., Herrmann. J., Hindson, B.J., Bhat, S., Emslie, K.R. (2012). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical Chemistry 84, 1003-1011, doi: 10.1021/ac202578x.
Roperto, S., Cutarelli, A., Corrado, F., De Falco, F., Buonavoglia, C. (2021). Detection and quantification of bovine papillomavirus DNA by digital droplet PCR in sheep blood. Scientific Reports 11, 10292, doi: 10.1038/s41598-021-89782-4.
Roperto, S., Russo, V., Leonardi, L., Martano, M., Corrado, F., Riccardi, M.G., Roperto, F. (2016). Bovine papillomavirus type 13 expression in the urothelial bladder tumours of cattle. Transboundary Emerging Diseases 63, 628-634, doi: 10.1111/tbed.12322.
Roperto, S., Russo, V., Ozkul, A., Sepici-Dincel, A., Maiolino, P., Borzacchiello, G., Marcus, I., Esposito, I., Riccardi, M.G., Roperto, F. (2013). Bovine papillomavirus type 2 infects the urinary bladder of water buffalo (Bubalus bubalis) and plays a crucial role in bubaline urothelial carcinogenesis. Journal of General Virology 94, 403-408, doi: 10.1099/vir.0.047662-0.
Savini, F., Dal Molin, E., Gallina, L., Casà, G., Scagliarini, A. (2016). Papillomavirus in healthy skin and mucosa of wild ruminants in the Italian Alps. Journal of Wildlife Diseases 52, 82-87, doi: 10.7589/2015-03-065.
Sykora, S., Jindra, C., Hofer, M., Steinborn, R., Brandt, S. (2017). Equine papillomavirus type 2: An equine equivalent to human papillomavirus 16? The Veterinary Journal 225, 3-8, doi: 10.1016/j.tvjl.2017.04.014.
Tastanova, A., Stoffel, C.I., Dzung, A., Cheng, P.F., Bellini, E., Johansen, P., Duda, A., Nobbe, S., Lienhard, R., Bosshard, P.P., Levesque, M.P. (2021). A comparative study of real-time RT-PCR-based SARS-CoV-2 detection methods and its application to human-derived and surface swabbed material. The Journal of Molecular Diagnostics 23, 796-804, doi: 10.1016/j.jmoldx.2021.04.009.
Tilbrook, P.A., Sterrett, G., Kulski, J.K. (1992). Detection of papillomaviral-like DNA sequences in premalignant and malignant perineal lesions of sheep. Veterinary Microbiology 31, 327-341, doi: 10.1016/0378-1135(92)90125-d.
Tore, G., Cacciotto, C., Anfossi, A.G., Dore, G.M., Antuofermo, E., Scagliarini, A., Burrai, G.P., Pau, S., Zedda, M.D., Masala, G., Pittau, M., Alberti, A. (2017). Host cell tropism, genome characterization, and evolutionary features of OaPV4, a novel Deltapapillomavirus identified in sheep fibropapilloma. Veterinary Microbiology 204, 151-158, doi: 10.1016/j.vetmic.2017.04.024.
Tore, G., Dore, G.M., Cacciotto, C., Accardi, R., Anfossi, A.G., Bogliolo, L., Pittau, M., Pirino, S., Cubeddu, T., Tommasino, M., Alberti, A. (2019). Transforming properties of ovine papillomaviruses E6 and E7 oncogenes. Veterinary Microbiology. 230, 14-22, doi: 10.1016/j.vetmic.2019.01.010.
Trenfield, K., Spradbrow, P.B., Vanselow, B.A. (1990). Detection of papillomavirus DNA in precancerous lesions of the ears of sheep. Veterinary Microbiology 25, 103-116, doi: 10.1016/0378-1135(90)90070-c.
Uzal, F.A., Latorraca, A., Ghoddusi, M., Horn, M., Adamson, M., Kelly, W.R., Schenkel, R. (2000). An apparent outbreak of cutaneous papillomatosis in merino sheep in Patagonia, Argentina. Veterinary Research Communications 24, 197-202, doi:10.1023a:1006460432270.
Van der Weele, P., van Logchem, E., Wolffs, P., van der Broek, I., Feltkamp, M., de Melker, E., Meijer, C.J.L.M., Boot, H., King, A.J. (2016). Correlation between viral load, multiplicity of infection, and persistence of HPV16 and HPV18 infection in a Dutch cohort of young women. Journal of Clinical Virology 83, 6-11, doi: 10.1016/j.jcv.2016.07.020.
Van Doorslaer, K., Rector, A., Vos P, Van Ranst, M. (2006). Genetic characterization of the Capra hircus papillomavirus: a novel close-to-root artiodactyl papillomavirus. Virus Research 118, 164–169, doi: 10.1016/j.virusres.2005.12.007.
Vanselow, B.A., Spradbrow, P.B., Jackson, A.R.B. (1982). Papillomaviruses, papillomas and squamous cell carcinomas in sheep. The Veterinary Record 110, 561-562, doi: 10.1136/vr.110.24.561.
Vitiello, V., Burrai, G.P., Agus, M., Anfossi, A.G., Alberti, A., Antuofermo, E., Rocca, S., Cubeddu, T., Pirino, S. (2017). Ovis aries papillomavirus 3 in ovine cutaneous squamous cell carcinoma. Veterinary Pathology 54, 775-782, doi: 10.1177/0300985817705171.
Willemsen, A., van der Boom, A., Dietz, J., Dagalp, S.B., Dogan, F., Bravo, I.C., Ehrhardt, A., Ehrke-Schulz, E. (2020). Genomic and phylogenetic characterization of ChPV2, a novel goat closely related to the Xi-PV1 species infecting bovines. Virology Journal 17, 167, doi: 10.1186/s12985-020-01440-9.
Figure legends
Figure 1. Percentages of positive samples containing OaPV DNA detected via ddPCR and qPCR methods.
Figure 2 . qPCR curves (A) and the relative rain plots of the ddPCR (B) for the four OaPVs. For all OaPVs one positive sample, the positive control, and one negative sample are shown.
Figure 3 . Graphical representation of single and multiple OaPV infections, as detected by ddPCR and qPCR.
Figure 4. Detection rates of single OaPV DNA found in 70 samples positive for a single infection.