References
Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., & Pérez-Alegría,
L. (2007). Enzyme activities as affected by soil properties and land use
in a tropical watershed. Applied Soil Ecology, 35 (1), 35-45.
doi:10.1016/j.apsoil.2006.05.012
Araújo, A. S. F., Cesarz, S., Leite, L. F. C., Borges, C. D., Tsai, S.
M., & Eisenhauer, N. (2013). Soil microbial properties and temporal
stability in degraded and restored lands of Northeast Brazil. Soil
Biology and Biochemistry, 66 , 175-181.
doi:10.1016/j.soilbio.2013.07.013
Bartkowiak, A., & Lemanowicz, J. (2017). Effect of forest fire on
changes in the content of total and available forms of selected heavy
metals and catalase activity in soil. Soil Science Annual, 68 (3),
140-148. doi:10.1515/ssa-2017-0017
Bergstrom, D. W, Monreal, C.M, Tomlin, A. D, Miller, J.J. (1999).
Interpretation of soil enzyme activities in a comparison of tillage
practices along a topographic and textural gradient. Canadian
Journal of Soil Science , 80, 71-79.
Brzezińska, M.; Włodarczyk, T.; Stępniewski, W.; Przywara, G.(2005).
Soil aeration status and catalase activity. Acta Agrophysica ,5, 555-565.
Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger,
M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. (2013). Soil
enzymes in a changing environment: Current knowledge and future
directions. Soil Biology and Biochemistry , 58, 216-234,
doi:10.1016/j.soilbio.2012.11.009.
Caravaca, F., Alguacil, M. M., Torres, P., & Roldán, A. (2005). Plant
type mediates rhizospheric microbial activities and soil aggregation in
a semiarid Mediterranean salt marsh. Geoderma, 124 (3-4), 375-382.
doi:10.1016/j.geoderma.2004.05.010
Chen, H.-L., Zhou, J.-M., & Xiao, B.-H. (2010). Characterization of
dissolved organic matter derived from rice straw at different stages of
decay. Journal of Soils and Sediments, 10 (5), 915-922.
doi:10.1007/s11368-010-0210-x
Chen, H., Shang, Z., Cai, H., & Zhu, Y. (2019). Irrigation Combined
with Aeration Promoted Soil Respiration through Increasing Soil
Microbes, Enzymes, and Crop Growth in Tomato Fields. Catalysts,
9 (11), 945. doi:10.3390/catal9110945
Chen, X., Chen, H. Y. H., Chen, X., Wang, J., Chen, B., Wang, D., &
Guan, Q. (2016). Soil labile organic carbon and carbon-cycle enzyme
activities under different thinning intensities in Chinese fir
plantations. Applied Soil Ecology, 107 , 162-169.
doi:10.1016/j.apsoil.2016.05.016
Ciarkowska, K., Solek-Podwika, K., & Wieczorek, J. (2014). Enzyme
activity as an indicator of soil-rehabilitation processes at a zinc and
lead ore mining and processing area. J Environ Manage, 132 ,
250-256. doi:10.1016/j.jenvman.2013.10.022
Cui, Y., Fang, L., Guo, X., Han, F., Ju, W., Ye, L., . . . Zhang, X.
(2019). Natural grassland as the optimal pattern of vegetation
restoration in arid and semi-arid regions: Evidence from nutrient
limitation of soil microbes. Sci Total Environ, 648 , 388-397.
doi:10.1016/j.scitotenv.2018.08.173
da Silva, D. K. A., de Oliveira Freitas, N., de Souza, R. G., da Silva,
F. S. B., de Araujo, A. S. F., & Maia, L. C. (2012). Soil microbial
biomass and activity under natural and regenerated forests and
conventional sugarcane plantations in Brazil. Geoderma, 189-190 ,
257-261. doi:10.1016/j.geoderma.2012.06.014
Deng, L.; Wang, K.; Zhu, G.; Liu, Y.; Chen, L.; Shangguan, Z.(2018).
Changes of soil carbon in five land use stages following 10 years of
vegetation succession on the Loess Plateau, China. Catena ,171 , 185-192, doi:10.1016/j.catena.2018.07.014.
Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical
land-use change on soil organic carbon stocks - a meta-analysis.Global Change Biology, 17 (4), 1658-1670.
doi:10.1111/j.1365-2486.2010.02336.x
DuPont, S. T., Culman, S. W., Ferris, H., Buckley, D. H., & Glover, J.
D. (2010). No-tillage conversion of harvested perennial grassland to
annual cropland reduces root biomass, decreases active carbon stocks,
and impacts soil biota. Agriculture, Ecosystems & Environment,
137 (1-2), 25-32. doi:10.1016/j.agee.2009.12.021
Ebhin Masto, R., Chhonkar, P. K., Singh, D., & Patra, A. K. (2006).
Changes in soil biological and biochemical characteristics in a
long-term field trial on a sub-tropical inceptisol. Soil Biology
and Biochemistry, 38 (7), 1577-1582. doi:10.1016/j.soilbio.2005.11.012
Eclesia, R. P., Jobbagy, E. G., Jackson, R. B., Rizzotto, M., &
Piñeiro, G. (2016). Stabilization of new carbon inputs rather than old
carbon decomposition determines soil organic carbon shifts following
woody or herbaceous vegetation transitions. Plant and Soil,
409 (1-2), 99-116. doi:10.1007/s11104-016-2951-9
García, C.; Hernández,T.; Costa, F. (1994). Microbial activity in soils
under mediterranean environmental conditions. Soil Biology and
Biochemistry , 26, 0-1191.
Guan, S.Y.; Zhang, D.S.; Zhang, Z.M.
(1986). Soil enzyme and its research methods ; Agriculture ;
Beijing, China,274-297.
Guo, J.; Wang, B.; Wang, G.; Wu, Y.; Cao, F. (2018). Vertical and
seasonal variations of soil carbon pools in ginkgo agroforestry systems
in eastern China. Catena , 171 , 450-459,
doi:10.1016/j.catena.2018.07.032.
Hu, W.; Jiao, Z.; Wu, F.; Liu, Y.; Dong, M.; Ma, X.; Fan, T.; An, L.;
Feng, H.(2014) Long-term effects of fertilizer on soil enzymatic
activity of wheat field soil in Loess Plateau, China.Ecotoxicology , 23 , 2069-2080,
doi:10.1007/s10646-014-1329-0.
Intergovernmental Panel on Climate Change (IPCC).(2014). Fifth
assessment report, climate change .Synthesis report. Cambridge Univ.
Press,Cambridge, UK.
Iovieno, P., Morra, L., Leone, A., Pagano, L., & Alfani, A. (2009).
Effect of organic and mineral fertilizers on soil respiration and enzyme
activities of two Mediterranean horticultural soils. Biology and
Fertility of Soils, 45 (5), 555-561. doi:10.1007/s00374-009-0365-z
Janzen, H. H.; Campbell, C. A.; Brandt, S. A.; Lafond,G. P.;
Townley-Smith, L.(1992). Light-Fraction Organic Matter in Soils from
Long-Term Crop Rotations. Soil Science Society of America Journal, 56, 1799.
Jha, P., De, A., Lakaria, B. L., Biswas, A. K., Singh, M., Reddy, K. S.,
& Rao, A. S. (2012). Soil Carbon Pools, Mineralization and Fluxes
Associated with Land Use Change in Vertisols of Central India.National Academy Science Letters, 35 (6), 475-483.
doi:10.1007/s40009-012-0082-2
Jiménez, C., Tejedor, M., & Rodríguez, M. (2007). Influence of land use
changes on the soil temperature regime of Andosols on Tenerife, Canary
Islands, Spain. European Journal of Soil Science, 58 (2), 445-449.
doi:10.1111/j.1365-2389.2007.00897.x
Kang, Y.-H., Liu, S.-H., Wan, S.-Q., & Wang, R.-S. (2011). Assessment
of soil enzyme activities of saline–sodic soil under drip irrigation in
the Songnen plain. Paddy and Water Environment, 11 (1-4), 87-95.
doi:10.1007/s10333-011-0295-x
Kimura, M., Murase, J., & Lu, Y. (2004). Carbon cycling in rice field
ecosystems in the context of input, decomposition and translocation of
organic materials and the fates of their end products (CO2 and CH4).Soil Biology and Biochemistry, 36 (9), 1399-1416.
doi:10.1016/j.soilbio.2004.03.006
Letchamo, W.; Ozturk, M.; Altay, V.; Musayev, M.; Mamedov, N.; Hakeem,
K.(2018). An alternative potential natural genetic resource: sea
buckthorn [Elaeagnus rhamnoides (syn: Hippophae rhamnoides)]
//Global Perspectives on Underutilized Crops. Springer, Cham, 25-82.
Li, Q.; Liang, J. H.; He, Y. Y.; Hu, Q. J; Yu, S.(2014). Effect of land
use on soil enzyme activities at karst area in Nanchuan, Chongqing,
Southwest China. Plant, Soil and Environment, 60(1), 15-20.
Lino, I. A. N., Santos, V. M., Escobar, I. E. C., Silva, D. K. A.,
Araújo, A. S. F., & Maia, L. C. (2015). Soil Enzymatic Activity in
Eucalyptus Grandis Plantations of Different Ages. Land Degradation
& Development, 27 (1), 77-82. doi:10.1002/ldr.2454
McLatchey, G. P.; Reddy, K. R. (1998).Regulation of organic matter
decomposition and nutrient release in a wetland soil. Journal of
Environmental Quality , 27(5), 1268-1274.
Méndez, M. S., Martinez, M. L., Araujo, P. I., & Austin, A. T. (2019).
Solar radiation exposure accelerates decomposition and biotic activity
in surface litter but not soil in a semiarid woodland ecosystem in
Patagonia, Argentina. Plant and Soil, 445 (1-2), 483-496.
doi:10.1007/s11104-019-04325-1
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B.,
Masciandaro, G., . . . Marinari, S. (2012). Soil enzymology: classical
and molecular approaches. Biology and Fertility of Soils, 48 (7),
743-762. doi:10.1007/s00374-012-0723-0
Nelson,D. W. (1982). Total carbon, organic carbon and organic matter.Methods of Soil Analysis , 9, 961-1010.
Nottingham, A.T.; Turner, B.L.; Chamberlain, P.M.; Stott, A.W.; Tanner,
E.V.(2012). Priming and microbial nutrient limitation in lowland
tropical forest soils of contrasting fertility. Biogeochemistry, 111(1-3), 219-237.
Özkan, U.; Gökbulak, F.(2017). Effect of vegetation change from forest
to herbaceous vegetation cover on soil moisture and temperature regimes
and soil water chemistry. Catena , 149, 158-166.
Piotrowska, A.(2014). Enzymes and Soil Fertility ; OMICS eBook
Group: Foster, USA, 44-79.
Prescott, C. E. (2010). Litter decomposition: what controls it and how
can we alter it to sequester more carbon in forest soils?Biogeochemistry, 101 (1-3), 133-149. doi:10.1007/s10533-010-9439-0
Qi, R., Li, J., Lin, Z., Li, Z., Li, Y., Yang, X., . . . Zhao, B.
(2016). Temperature effects on soil organic carbon, soil labile organic
carbon fractions, and soil enzyme activities under long-term
fertilization regimes. Applied Soil Ecology, 102 , 36-45.
doi:10.1016/j.apsoil.2016.02.004
Qiao, Y.; Miao, S.; Silva, LCR.; Horwath, WR.(2014). Understory species
regulate litter decomposition and accumulation of C and N in forest
soils: A long-term dual-isotope experiment. Forest ecology and
management , 329, 318-327.
Ran, L., Lu, X., & Xu, J. (2013). Effects of Vegetation Restoration on
Soil Conservation and Sediment Loads in China: A Critical Review.Critical Reviews in Environmental Science and Technology, 43 (13),
1384-1415. doi:10.1080/10643389.2011.644225
Roldán, A., Salinas-García, J. R., Alguacil, M. M., & Caravaca, F.
(2005). Changes in soil enzyme activity, fertility, aggregation and C
sequestration mediated by conservation tillage practices and water
regime in a maize field. Applied Soil Ecology, 30 (1), 11-20.
doi:10.1016/j.apsoil.2005.01.004
Ruan, C.; Li, D.(2002). Function and benefit of Hippophae rhamnoides L.
improving eco-environment of Loess Plateau of China. In 12th ISCO
Conference , Beijing, China.
Sahoo, U. K., Singh, S. L., Gogoi, A., Kenye, A., & Sahoo, S. S.
(2019). Active and passive soil organic carbon pools as affected by
different land use types in Mizoram, Northeast India. PLoS One,
14 (7), e0219969. doi:10.1371/journal.pone.0219969
Simard D. G.; Fyles J. W.; D. Paré.; Nguyen, T. (2001). Impacts of
clearcut harvesting and wildfire on soil nutrient status in the Quebec
boreal forest. Canadian Journal of Soil Science ,81, 229-237.
Singh, D. K., & Kumar, S. (2008). Nitrate reductase, arginine
deaminase, urease and dehydrogenase activities in natural soil (ridges
with forest) and in cotton soil after acetamiprid treatments.Chemosphere, 71 (3), 412-418.
doi:10.1016/j.chemosphere.2007.11.005
Sistla, S.A., Asao, S. and Schimel, J.P. (2012). Detecting microbial
N-limitation in tussock tundra soil: implications for Arctic soil
organic carbon cycling. Soil Biology and Biochemistry , 55,
78-84.
Solomon, D., Lehmann, J., Kinyangi, J., Amelung, W., Lobe, I., Pell, A.,
. . . SchÄFer, T. (2007). Long-term impacts of anthropogenic
perturbations on dynamics and speciation of organic carbon in tropical
forest and subtropical grassland ecosystems. Global Change
Biology, 13 (2), 511-530. doi:10.1111/j.1365-2486.2006.01304.x
Sun, L., Hu, T., Kim, J. H., Guo, F., Song, H., Lv, X., & Hu, H.
(2014). The effect of fire disturbance on short-term soil respiration in
typical forest of Greater Xing’an Range, China. Journal of
Forestry Research, 25 (3), 613-620. doi:10.1007/s11676-014-0499-1
Thorburn, P. J., Meier, E. A., Collins, K., & Robertson, F. A. (2012).
Changes in soil carbon sequestration, fractionation and soil fertility
in response to sugarcane residue retention are site-specific. Soil
and Tillage Research, 120 , 99-111. doi:10.1016/j.still.2011.11.009
Vance, E. D.; Brookes, P. C.; Jenkinson, D. S. (1987).An extraction
method for measuring soil microbial biomass C. Soil Biology &
Biochemistry , 19, 703-707.
Weintraub, M. N., Scott-Denton, L. E., Schmidt, S. K., & Monson, R. K.
(2007). The effects of tree rhizodeposition on soil exoenzyme activity,
dissolved organic carbon, and nutrient availability in a subalpine
forest ecosystem. Oecologia, 154 (2), 327-338.
doi:10.1007/s00442-007-0804-1
Xiao, Y., Huang, Z., & Lu, X. (2015). Changes of soil labile organic
carbon fractions and their relation to soil microbial characteristics in
four typical wetlands of Sanjiang Plain, Northeast China.Ecological Engineering, 82 , 381-389.
doi:10.1016/j.ecoleng.2015.05.015
Xu, X., Shi, Z., Li, D., Rey, A., Ruan, H., Craine, J. M., . . . Luo, Y.
(2016). Soil properties control decomposition of soil organic carbon:
Results from data-assimilation analysis. Geoderma, 262 , 235-242.
doi:10.1016/j.geoderma.2015.08.038
Yang, Y., Guo, J., Chen, G., Yin, Y., Gao, R., & Lin, C. (2009).
Effects of forest conversion on soil labile organic carbon fractions and
aggregate stability in subtropical China. Plant and Soil,
323 (1-2), 153-162. doi:10.1007/s11104-009-9921-4
Yin, R.; Deng, H.; Wang, H. L.; Zhang, B.(2014).Vegetation type affects
soil enzyme activities and microbial functional diversity following
re-vegetation of a severely eroded red soil in sub-tropical China.
Catena, 115, 96-103.
Zhang, X., Song, Z., Hao, Q., Wang, Y., Ding, F., & Song, A. (2019).
Phytolith-Occluded Carbon Storages in Forest Litter Layers in Southern
China: Implications for Evaluation of Long-Term Forest Carbon Budget.Front Plant Sci, 10 , 581. doi:10.3389/fpls.2019.00581
Zhao, D., Li, F., & Wang, R. (2012). The effects of different urban
land use patterns on soil microbial biomass nitrogen and enzyme
activities in urban area of Beijing, China. Acta Ecologica Sinica,
32 (3), 144-149. doi:10.1016/j.chnaes.2012.04.005
Zhao, S., Li, K., Zhou, W., Qiu, S., Huang, S., & He, P. (2016).
Changes in soil microbial community, enzyme activities and organic
matter fractions under long-term straw return in north-central China.Agriculture, Ecosystems & Environment, 216 , 82-88.
doi:10.1016/j.agee.2015.09.028
Table 1. The basic information of different vegetation types