References
Armstrong, S.M., Sugiyama, M.G., Fung, K.Y., Gao, Y., Wang, C., Levy, A.S., … Lee, W.L. (2015). A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res 108(2):268-77.
Bist, A., Fielding, P.E., Fielding, C.J. (1997). Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci U S A 94(20): 10693-8.
Blair, A., Shaul, P.W., Yuhanna, I.S., Conrad, P.A., Smart, E.J. (1999). Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274(45): 32512-9.
Boyd, N.L., Park, H., Yi, H., Boo, Y.C., Sorescu, G.P., Sykes, M., Jo, H. (2003). Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285(3):H1113-22.
Brunner, F., Maier, R., Andrew, P., Wölkart, G., Zechner, R., Mayer, B. (2003). Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57(1):55-62.
Bucci, M., Gratton, J.P., Rudic, R.D., Acevedo, L., Roviezzo, F., Cirino, G., Sessa, W.C. (2000). In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6(12):1362-7.
Carmena, R., Ascaso, J.F., Camejo, G., Varela, G., Hurt-Camejo, E., Ordovas, J.M., …Wallin, B. (1996). Effect of olive and sunflower oils on low density lipoprotein level, composition, size, oxidation and interaction with arterial proteoglycans. Atherosclerosis 125(2): 243-55.
Chen, F., Barman, S., Yu, Y., Haigh, S., Wang, Y., Black, S.M., … Fulton, D.J. (2014). Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 73:201-13.
Chen, Z., Bakhshi, F.R., Shajahan, A.N., Sharma, T., Mao, M., Trane, A., …Minshall, R.D. (2012). Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell 23(7), 1388-98.
Chen, Z., D.S. Oliveira, S., Zimnicka, A.M., Jiang, Y., Sharma, T., Chen, S., … Minshall, R.D. (2018). Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29(10): 1190-1202.
Chidlow, J.H. Jr, Sessa, W.C. (2010). Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86(2):219-25.
Dehouck, B., Fenart, L., Dehouck, M.P., Pierce, A., Torpier, G., Cecchelli, R. (1997). A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 138(4):877-89.
Fielding, C.J., Bist, A., Fielding, P.E. (1997). Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci U S A 94(8): 3753-8.
Förstermann, U., Münzel, T. (2006). Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13): 1708-14.
Frank, P.G., Lisanti, M.P. (2006). Role of caveolin-1 in the regulation of the vascular shear stress response. J Clin Invest 116(5): 1222–1225
Frank, P.G., Cheung, M.W., Pavlides, S., Llaverias, G., Park, D.S., Lisanti, M.P. (2006). Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol 291(2): H677-86.
Fulton, D., Fontana, J., Sowa, G., Gratton, J.P., Lin, M., Li, K.X., … Sessa, W.C. (2002). Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J Biol Chem 277(6): 4277-84.
Fung, K.Y.Y., Fairn, G.D., Lee, W.L. (2018). Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 19(1): 5-18.
Gerbod-Giannone, M.C., Dallet, L., Naudin, G., Sahin, A., Decossas, M., Poussard, S., Lambert, O. (2019). Involvement of caveolin-1 and CD36 in native LDL endocytosis by endothelial cells. Biochim Biophys Acta 1863(5):830-838.
Gliozzi, M., Scicchitano, M., Bosco, F., Musolino, V., Carresi, C., Scarano, F., … Mollace, V. (2019). Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int J Mol Sci 20(13). doi: 10.3390/ijms20133294.
Huang, L., Chambliss, K.L., Gao, X., Yuhanna, I.S., Behling-Kelly, E., Bergaya, S., … Shaul, P.W. (2019). SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569(7757):565-569.
Iuliano, L. (2011). Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids 164(6): 457-68.
Iuliano, L., Micheletta, F., Violi, F. (2001). Low-density lipoprotein oxidation. Ital Heart J 2(12):867-72.
Jiang, R., Cai, J., Zhu, Z., Chen, D., Wang, J., Wang, Q., Chen, A.F. (2014). Hypoxic trophoblast HMGB1 induces endothelial cell hyperpermeability via the TRL-4/caveolin-1 pathway. J Immunol 193(10): 5000-12.
Jiao, H., Zhang, Y., Yan, Z., Wang, Z-G., Liu, G., Minshall, R.D., … Hu, G. (2013). Caveolin-1 Tyr14 Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation. J Immunol 191:6191-6199
Kattoor, A.J., Goel, A., Mehta, J.L. (2019). LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants (Basel) 8(7). doi: 10.3390/antiox8070218.
Kraehling, J.R., Chidlow, J.H., Rajagopal, C., Sugiyama, M.G., Fowler, J.W., Lee, M.Y., … Sessa, W.C. (2016). Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 7: 13516.
Lange, Y., Ye, J., Rigney, M., Steck, T.L. (1999). Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res 40(12): 2264-70.
Lee, A-W., Huang, C-Y., Shih, C-M., Lin, Y-W., Tsao, N-W., Y-H., Chen, … Lin, F-Y. (2012). Ursolic Acid Attenuates HMGB1-induced LOX-1 Expression in Vascular Endothelial Cells in vitro and Inhibits Atherogenesis in Hypercholesterolemic Mice in vivo. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry 12(4): 317–329.
Levitan, I., Shentu, T.P. (2011). Impact of oxLDL on Cholesterol-Rich Membrane Rafts. J Lipids 2011:730209. doi: 10.1155/2011/730209.
Li, D., Mehta, J.L. (2000). Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 20(4):1116-22.
Liao, J.K. (2013). Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 123(2):540-1.
Lin, F., Pei, L., Zhang, Q., Han, W., Jiang, S., Lin, Y., … Li, M. (2018). Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J Cell Physiol 233(10):6683-6692.
Lin, Y.C., Ma, C., Hsu, W.C., Lo, H.F., Yang, V.C. (2007). Molecular interaction between caveolin-1 and ABCA1 on high-density lipoprotein-mediated cholesterol efflux in aortic endothelial cells. Cardiovasc Res 75(3): 575-83.
Lordan, S., Mackrill, J.J., O’Brien, N.M. (2009). Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem 20(5):321-36.
Lubrano, V., Balzan, S. (2014). LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free Radic Res 48(8): 841-8.
Luchetti, F., Canonico, B., Cesarini, E., Betti, M., Galluzzi, L., Galli, L., … Iuliano L. (2015). 7-Ketocholesterol and 5,6-secosterol induce human endothelial cell dysfunction by differential mechanisms. Steroids 99(Pt B): 204-11.
Luchetti, F., Crinelli, R., Nasoni, M.G., Cesarini, E., Canonico, B., Guidi, L., … Iuliano, L. (2019). Secosterol-B affects endoplasmic reticulum structure in endothelial cells. J Steroid Biochem Mol Biol 190:234-241.
Maiolino, G., Rossitto, G., Caielli, P., Bisogni, V., Rossi, G.P., Calò, L.A. (2013). The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm 2013:714653. doi: 10.1155/2013/714653.
Mollace, V., Gliozzi, M., Musolino, V., Carresi, C., Muscoli, S., Mollace, R., … Romeo, F. (2015). Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. Int J Cardiol 184:152-8.
Öörni, K., Pentikäinen, M.O., Annila, A., Kovanen, P.T. (1997). Oxidation of low density lipoprotein particles decreases their ability to bind to human aortic proteoglycans. Dependence on oxidative modification of the lysine residues. Journal of Biological Chemistry 272(34), 21303-21311.
Patel, H.H., Insel, P.A. (2009). Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11(6): 1357-72.
Poli, G., Biasi, F., Leonarduzzi, G. Oxysterols in the pathogenesis of major chronic diseases. (2013). Redox Biol Jan 1: 125-30.
Potje, S.R., Grando, M.D., Chignalia, A.Z., Antoniali, C., Bendhack, L.M. (2019). Reduced caveolae density in arteries of SHR contributes to endothelial dysfunction and ROS production. Sci Rep 9(1): 6696.
Ramírez, C.M., Zhang, X., Bandyopadhyay, C., Rotllan, N., Sugiyama, M.G., Aryal, B., … Fernández-Hernando C. (2019). Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation 140(3): 225-239.
Salvemini, D., Kim, S.F., Mollace, V. (2013). Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol 304(7): R473-87.
Santibanez, J.F., Blanco, F.J., Garrido-Martin, E.M., Sanz-Rodriguez, F., del Pozo, M.A., Bernabeu, C. (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res 77(4): 791-9.
Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., …Masaki, T. (1997). A novel endothelial receptor for oxidised low density lipoprotein. Nature 386:73–77.
Sharma, A., Yu, C., Bernatchez, P.N. (2010). New insights into caveolae, caveolins and endothelial function. Can J Cardiol 26 Suppl A:5A-8A.
Shaul, P.W. (2003). Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol 547(Pt 1): 21-33.
Shentu, T.P., Singh, D.K., Oh, M.J., Sun, S., Sadaat, L., Makino, A., … Levitan, I. (2012). The role of oxysterols in control of endothelial stiffness. J Lipid Res 53(7): 1348-58.
Shentu, T.P., Titushkin, I., Singh, D.K., Gooch, K.J., Subbaiah, P.V., Cho, M., Levitan, I. (2010). oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 299(2): C218-29.
Shvets, E., Ludwig, A., Nichols, B.J. (2014). News from the caves: update on the structure and function of caveolae. Curr Opin Cell Biol 29: 99-106.
Skålén, K., Gustafsson, M., Rydberg, E.K., Hultén, L.M., Wiklund, O., Innerarity, T.L., Borén, J. (2002). Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890): 750-4.
Sleer, L.S., Brown, A.J., Stanley, K.K. (2001). Interaction of caveolin with 7-ketocholesterol. Atherosclerosis 159(1): 49-55.
Smart, E.J., Ying, Y., Conrad, P.A., Anderson, R.G. (1994). Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 127(5): 1185-97.
Staprans, I., Pan, X.M., Rapp, J.H., Feingold, K.R. (2003). Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J Lipid Res 44(4):705-15.
Stender, S. (1982). The in vivo transfer of free and esterified cholesterol from plasma into the arterial wall of hypercholesterolemic rabbits. Scand J Clin Lab Invest Suppl 161:43-52.
Sun, S.W., Zu, X.Y., Tuo, Q.H., Chen, L.X., Lei, X.Y., Li, K., … Liao, D.F. (2010). Caveolae and caveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells. Acta Pharmacol Sin 31(10):1336-42.
Vasile, E., Simionescu, M., Simionescu, N. (1983). Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol 96(6):1677-89.
Vine, D.F., Mamo, C.L., Beilin, L.J., Mori, T.A., Croft, K.D. (1998). Dietary oxysterols are incorporated in plasma triglyceride-rich lipoproteins, increase their susceptibility to oxidation and increase aortic cholesterol concentration of rabbits. J Lipid Res 39(10):1995-2004.
Voisin, M., de Medina, P., Mallinger, A., Dalenc, F., Huc-Claustre, E., Leignadier, J., … Silvente-Poirot, S. (2017). Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 114(44): E9346-E9355.
Williams, T.M., Lisanti, M.P. (2004). The Caveolin genes: from cell biology to medicine. Ann Med 36(8): 584-95.
Yang, W.S., Han, N.J., Kim, J.J., Lee, M.J., Park, S.K. (2016). TNF-α Activates High-Mobility Group Box 1 - Toll-Like Receptor 4 Signaling Pathway in Human Aortic Endothelial Cells. Cell Physiol Biochem 38(6):2139-51.
Yoshida, H., Kisugi, R. (2010). Mechanisms of LDL oxidation. Clin Chim Acta 411(23-24):1875-82.
Yu, X., Xing, C., Pan, Y., Ma, H., Zhang, J., Li, W. (2012). IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs. Acta Biochim Biophys Sin (Shanghai) 44(9): 746-51.
Zhang, X., Sessa, W.C., Fernández-Hernando, C. (2018). Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Front Cardiovasc Med 5: 130.
Zhang, H., Jing, X., Shi, Y., Xu, H., Du, J., Guan, T., …Pritchard, K.A. Jr. (2013). N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J Lipid Res 54(11): 3016-29.
Zhou, Q., Zhu, Z., Hu, X., Shu, C. (2016). HMGB1: A critical mediator for oxidized-low density lipoproteins induced atherosclerosis. Int J Cardiol 202:956-7.
Zhu, Y., Liao, H., Xie, X., Yuan, Y., Lee, T.S., Wang, N., … Stemerman, M.B. (2005). Oxidized LDL downregulates ATP-binding cassette transporter-1 in human vascular endothelial cells via inhibiting liver X receptor (LXR). Cardiovasc Res 68(3):425-32.
Zouaoui Boudjeltia, K., Moguilevsky, N., Legssyer, I., Babar, S., Guillaume, M., Delree, P., … Remacle, C. (2004). Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation. Biochem Biophys Res Commun 325(2): 434-8.