5) Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler
D. Structure, function, and antigenicity of the SARS-CoV-2 spike
glycoprotein. Cell. 2020;181:894–904.
6). Tian S., Xiong Y., Liu H., Niu L.,
Guo J., Liao M. Pathological study of the 2019 novel coronavirus disease
(COVID-19) through postmortem core biopsies. Mod. Pathol. 2020 doi:
10.1038/s41379-020-0536-x.
7). Barton L.M., Duval E.J., Stroberg
E., Ghosh S., Mukhopadhyay S. Oklahoma; USA. COVID-19 Autopsies.Am J
Clin Pathol: 2020.
8). Shi S., Qin M., Shen B., Cai Y., Liu
T., Yang F. China; Association of Cardiac Injury With Mortality in
Hospitalized Patients With COVID-19 in Wuhan. JAMA Cardiol: 2020.
9). Guo T., Fan Y., Chen M., Wu X.,
Zhang L., He T. Cardiovascular Implications of Fatal Outcomes of
Patients With Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020
doi: 10.1001/jamacardio.2020.1017.
10). Ruan Q., Yang K., Wang W., Jiang
L., Song J. China; Clinical predictors of mortality due to COVID-19
based on an analysis of data of 150 patients from Wuhan. Intensive Care
Med: 2020.
11) Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the
novel Wuhan coronavirus (COVID-19) infection: a systematic review and
meta-analysis. Int J Infect Dis 2020 Mar 12. doi: 10.1016/j.
ijid.2020.03.017 32173574
12) Shi S, Qin M, Shen B, et al. Association of cardiac injury with
mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA
Cardiol 2020 Mar 25. doi: 10.1001/jamacardio.2020.0950
13). Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal
outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA
Cardiol 2020 Mar 27. doi: 10.1001/jamacardio.2020.1017
14) Francesco Ferrara, Giovanni Granata, Chiara Pelliccia, Raffaele La
Porta PhD, Antonio Vitiello The added value of Pirfenidone to fight
inflammation and fibrotic state induced by SARS-CoV 2 European Journal
of Clinical Pharmacology 27 june 2020https://doi.org/10.1007/s00228-020-02947-4
15) McTiernan CF, Lemster BH, Frye CS, et al. Interleukin 1 inhibits
phospholamban gene expression in cultured cardiomyocytes. Circ Res 1997;
81: 493-503.
16) Gulick T, Chung MK, Pieper SJ, et al. Interleukin 1 and tumor
necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness.
Proc Natl Acad Sci USA 1989; 86: 6753-7
17) Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R.,
Katze M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol.
Rev. 2012;76(1):16–32
18) Channappanavar R., Perlman S. Pathogenic human coronavirus
infections: causes and consequences of cytokine storm and
immunopathology. Semin. Immunopathol. 2017;39(5):529–539.
19) Huang C., et al Clinical features of patients infected with 2019
novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
20.) Channappanavar R., Perlman S.
Pathogenic human coronavirus infections: causes and consequences of
cytokine storm and immunopathology. Semin. Immunopathol.
2017;39(5):529–539.
21). Zhang C., Wu Z., Li J.W., Zhao
H., Wang G.Q. The cytokine release syndrome (CRS) of severe COVID-19 and
Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to
reduce the mortality. Int. J. Antimicrob. Agents. 2020
22). Cameron M.J., Bermejo-Martin
J.F., Danesh A., Muller M.P., Kelvin D.J. Human
immunopathogenesis of severe acute respiratory syndrome (SARS) Virus
Res. 2008;133(1):13–19.
23). Williams A.E., Chambers R.C. The
mercurial nature of neutrophils: still an enigma in ARDS? Am. J.
Physiol. Lung Cell Mol. Physiol. 2014;306(3):L217–30.
[PMC free
article]
[PubMed]
24)
Francesca
Coperchini,
Luca
Chiovato,
Laura
Croce,
Flavia
Magri, and
Mario
Rotondi The cytokine storm in COVID-19: An overview of the involvement
of the chemokine/chemokine-receptor system
Cytokine
Growth Factor Rev. 2020 Jun; 53: 25–32. Published online 2020 May 11.
doi: 10.1016/j.cytogfr.2020.05.003
25). Kumar A, Brar R, Wang P, Dee L, Skorupa G, Khadour F, Schulz R,
Parrillo JE (1999) Role of nitric oxide and cGMP in human septic
serum-induced depression of cardiac myocyte contractility. Am J Physiol
276:R265–R276
26) Kumar A, Paladugu B, Mensing J, Parrillo JE (2007) Nitric
oxide-dependent and -independent mechanisms are involved in TNF-alpha
-induced depression of cardiac myocyte contractility. Am J Physiol Regul
Integr Comp Physiol 292:R1900–R1906
27) Elahi M, Asopa S, Matata B (2007) NO-cGMP and TNF-alpha counter
regulatory system in blood: understanding the mechanisms leading to
myocardial dysfunction and failure. Biochim Biophys Acta 1772:5–14
28) Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes
cardiomyocyte apoptosis and cardiac remodeling through activation of
multiple cell death pathways. J Clin Invest 117:2692–2701
29) Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby
PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically
relevant concentrations of tumor necrosis factor-alpha promote
progressive left ventricular dysfunction and remodeling in rats.
Circulation 97:1382–1391 71.
30) Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky
AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic
mice with cardiac-specific overexpression of tumor necrosis factor-alpha.
Circ Res 81:627–635
31) Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes
cardiomyocyte apoptosis and cardiac remodeling through activation of
multiple cell death pathways. J Clin Invest 117:2692–2701
32) Maass DL, White J, Horton JW (2002) IL-1beta and IL-6 act
synergistically with TNF-alpha to alter cardiac contractile function
after burn trauma. Shock 18:360–366
33) Yu X, Kennedy RH, Liu SJ (2003) JAK2/STAT3, not ERK1/2, mediates
interleukin-6-induced activation of inducible nitricoxide synthase and
decrease in contractility of adult ventricular myocytes. J Biol Chem
278:16304–16309
34) Prabhu SD (2004) Cytokine-induced modulation of cardiac function.
Circ Res 95:1140–1153
35) Netea MG, Kullberg BJ, Verschueren I, Van Der Meer JW (2000)
Interleukin-18 induces production of proinflammatory cytokines in mice:
no intermediate role for the cytokines of the tumor necrosis factor
family and interleukin-1beta. Eur J Immunol 30:3057–3060
36) Olee T, Hashimoto S, Quach J, Lotz M (1999) IL-18 is produced by
articular chondrocytes and induces proinflammatory and catabolic
responses. J Immunol 162:1096–1100
37) Del Ry S. C-type natriuretic peptide: A new cardiac mediator.
Peptides. 2013;40:93–8.
38) Leuranguer V, Vanhoutte PM, Verbeuren T, Feletou M. C-type
natriuretic peptide and endothelium-dependent hyperpolarization in the
guinea-pig carotid artery. Br J Pharmacol. 2008;153:57–65.
39) Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, et
al. Expression of C-type natriuretic peptide and its receptor NPR-B in
cardiomyocytes. Peptides. 2011;32:1713–8.
40) Suda M, Tanaka K, Fukushima M, Natsui K, Yasoda A, Komatsu Y, et al.
C-type natriuretic peptide as an autocrine/paracrine regulator of
osteoblast. Evidence for possible presence of bone natriuretic peptide
system. Biochem Biophys Res Commun. 1996;223:1–6.
41) Totsune K, Takahashi K, Murakami O, Itoi K, Sone M, Ohneda M, et al.
Immunoreactive C-type natriuretic peptide in human adrenal glands and
adrenal tumors. Peptides. 1994;15:287–90.
42) Obata H, Yanagawa B, Tanaka K, Ohnishi S, Kataoka M, Miyahara Y, et
al. CNP infusion attenuates cardiac dysfunction and inflammation in
myocarditis. Biochem Biophys Res Commun. 2007;356:60–6
43) Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, et al.
C-type natriuretic peptide, a novel antifibrotic and antihypertrophic
agent, prevents cardiac remodeling after myocardial infarction. J Am
Coll Cardiol. 2005;45:608–16.
44) Bukulmez H, Khan F, Bartels CF, Murakami S, Ortiz-Lopez A, Sattar A,
et al. Protective effects of C-type natriuretic peptide on linear growth
and articular cartilage integrity in a mouse model of inflammatory
arthritis. Arthritis Rheumatol. 2014;66:78–89.
45) Peake NJ, Pavlov AM, D’Souza A, Pingguan-Murphy B, Sukhorukov GB,
Hobbs AJ, et al. Controlled release of C-type natriuretic peptide by
microencapsulation dampens proinflammatory effects induced by IL-1beta
in cartilage explants. Biomacromolecules. 2015;16:524–31.
46) Kimura T, Nojiri T, Hosoda H, Ishikane S, Shintani Y, Inoue M, et
al. C-type natriuretic peptide attenuates lipopolysaccharide-induced
acute lung injury in mice. J Surg Res. 2015;194:631–7.
47) Horio T, Tokudome T, Maki T,
Yoshihara F, Suga S, Nishikimi T, et al. Gene expression, secretion, and
autocrine action of C-type natriuretic peptide in cultured adult rat
cardiac fibroblasts. Endocrinology. 2003;144:2279–84.
48) Li ZQ, Liu YL, Li G, Li B, Liu Y,
Li XF, et al. Inhibitory effects of C-type natriuretic peptide on the
differentiation of cardiac fibroblasts, and secretion of monocyte
chemoattractant protein-1 and plasminogen activator inhibitor-1. Mol Med
Rep. 2015;11:159–65.
49) Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, et
al. Periostin, a matricellular protein, plays a role in the induction of
chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol.
2012;46:677–86.
50)Toru
Kimura,
Takashi
Nojiri,
Jun
Hino,
Hiroshi
Hosoda,
Koichi
Miura,
Yasushi
Shintani,
Masayoshi
Inoue,
Masahiro
Zenitani,
Hiroyuki
Takabatake,
Mikiya
Miyazato,
Meinoshin
Okumura &
Kenji
Kangawa C-type natriuretic peptide ameliorates pulmonary fibrosis by
acting on lung fibroblasts in mice
Respiratory
Research volume 17, Article number: 19 (2016)
51) L. Mezzasoma, C. Antognelli,and V. Talesa Novel Role for Brain
Natriuretic Peptide: Inhibition of IL-1𝛽 Secretion via Downregulation of
NF-kB/Erk 1/2 and NALP3/ASC/Caspase-1 Activation in Human THP-1 Monocyte
Mediators of Inflammation Volume 2017, Article ID 5858315, 13 pages
52) de Lemos J A, McGuire D K, Drazner M H. B‐type natriuretic peptide
in cardiovascular disease. Lancet 2003362316–322.
53) Shi S, et al. Association of Cardiac Injury with mortality in
hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020.
https://doi. org/10.1001/jamacardio.2020.0950.
54) Guo T, et al. Cardiovascular implications of fatal outcomes of
patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020.
https://doi.org/10. 1001/jamacardio.2020.1017.
55) Restrepo MI, Reyes LF. Pneumonia as a cardiovascular disease.
Respirology. 2018;23:250–9. https://doi.org/10.1111/resp.13233
56) Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of cytokine
storm mechanism induced by Corona virus disease 2019 and the
corresponding immunotherapies.
Chinese Journal of
Burns Jun 2020, 36(6):471-475
https://doi.org/10.3760/cma.j.cn501120-20200224-00088
57)Tetro JA. Is COVID-19 receiving ADE from other coronaviruses?
Microbes Infect. 2020;S1286-4579(1220):30034.
https://doi.org/10.1016/j.micinf.2020. 02.006. 21.
58)Wei ZY, Qian HY. Myocardial injury in patients with COVID-19
pneumonia. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E006.
https://doi.org/10.3760/ cma.j.issn.cn112148-20200220-00106
59)
Michael
Weber and
Christian
Hamm Role of B‐type natriuretic peptide (BNP) and NT‐proBNP in clinical
routine
Heart.
2006 Jun; 92(6): 843–849.
doi: 10.1136/hrt.2005.071233
60)Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS.
Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor:
molecular mechanisms and potential therapeutic target. Intensive Care
Med. 2020. https://doi.org/10. 1007/s00134-020-05985-9
61) Santos RAS, et al. The ACE2/angiotensin-(1-7)/MAS Axis of the
reninangiotensin system: focus on angiotensin-(1-7). Physiol Rev.
2018;98:505–53. https://doi.org/10.1152/physrev.00023.2016.
62) Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the
ACE2/Angiotensin 1–7 Axis of the Renin-Angiotensin System in Heart
Failure. Circ Res. 2016;118: 1313–26.
https://doi.org/10.1161/CIRCRESAHA.116.307708.
63) Lei Gao1, Dan Jiang, Xue-song Wen, Xiao-cheng Cheng, Min Sun, Bin
He, Lin-na You, Peng Lei, Xiao-wei Tan, Shu Qin, Guo-qiang Cai and
Dong-ying Zhang Prognostic value of NT-proBNP in patients with severe
COVID-19 Respiratory Research (2020) 21:83
https://doi.org/10.1186/s12931-020-01352-w
64) Scott A. Hubers, MD and Nancy J. Brown Combined Angiotensin Receptor
Antagonism and Neprilysin Inhibition Circulation.
2016March15;133(11):1115–1124.doi:10.1161/CIRCULATIONAHA.115.018622.
65) Recinos A, 3rd, LeJeune WS, Sun H, Lee CY, Tieu BC, Lu M, Hou T,
Boldogh I, Tilton RG, Brasier AR. Angiotensin II induces IL-6 expression
and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient
mice. Atherosclerosis. 2007;194:125-133.
66) Yamamoto S, Yancey PG, Zuo Y, Ma LJ, Kaseda R, Fogo AB, Ichikawa I,
Linton MF, Fazio S, Kon V. Macrophage polarization by angiotensin
II-type 1 receptor aggravates renal injury-acceleration of
atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2856-2864.
67) Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine
receptors in human microglia. J Neurosci Res. 2002;69:94-103.
68) Chen Q, Yang Y, Huang Y, Pan C, Liu L, Qiu H. Angiotensin-(1-7)
attenuates lung fibrosis by way of Mas receptor in acute lung injury. J
Surg Res. 2013;185:740-747.
69) Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X.
Angiotensin converting enzyme 2/angiotensin-(1-7)/Mas axis protects
against lung fibrosis by inhibiting the MAPK/NF-kappaB pathway. Am J
Respir Cell Mol Biol. 2014;50:723 736.
70) Wang X, Ye Y, Gong H, Wu J, Yuan J, Wang S, Yin P, Ding Z, Kang L,
Jiang Q, Zhang W, Li Y, Ge J, Zou Y. The effects of different
angiotensin II type 1 receptor blockers on the regulation of the ACE–
AngII–AT1 and ACE2-Ang(1-7)–Mas axes in pressure overload-induced
cardiac remodeling in male mice. J Mol Cell Cardiol 2016;97:180–190.
71) Flesch M, Hoper A, Dell’Italia L, Evans K, Bond R, Peshock R, Diwan
A, Brinsa TA, Wei CC, Sivasubramanian N, Spinale FG, Mann DL (2003)
Activation and functional significance of therenin-angiotensin system in
mice with cardiac restricted overexpression of tumor necrosis factor.
Circulation 108:598–604
72) D.Acanfora et al Sacubitril/valsartan in COVID-19 patients: the need
for trials European Heart Journal Cardiovascular Pharmacotherapy,05 May
2020
//doi.org/10.1093/ehjcvp/pvaa044
73) Soto M, Bang SI, McCombs J, Rodgers KE. Renin angiotensin
system-modifying therapies are associated with improved pulmonary
health. Clin Diabetes Endocrinol 2017;3:6.
74) Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga AC, White HD.
Impact of angiotensin-converting enzyme inhibitors and statins on viral
pneumonia. Proc (Bayl Univ Med Cent) 2018;31:419–423.