Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Ajami, H., Troch, P. A., Maddock, T., Meixner, T., & Eastoe, C. (2011). Quantifying mountain block recharge by means of catchment‐scale storage‐discharge relationships. Water Resources Research47 (4), W04504. https://doi.org/10.1029/2010WR009598.
Anderson, M. G., & Burt, T. P. (1980). Interpretation of recession flow. J. Journal of Hydrology46 (1-2), 89-101. https://doi.org/10.1016/0022-1694(80)90037-2.
Arumí, J. L., Maureira, H., Souvignet, M., Pérez, C., Rivera, D., & Oyarzún, R. (2016). Where does the water go? Understanding geohydrological behaviour of Andean catchments in south-central Chile. Hydrological Sciences Journal61 (5), 844-855. https://doi.org/10.1080/02626667.2014.934250.
Bart, R., & Hope, A. (2014). Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds. Journal of Hydrology519 , 205-213. https://doi.org/10.1016/j.jhydrol.2014.07.020.
Barnes, B. S., 1939. Barnes, B. S. (1939). The structure of discharge‐recession curves. Eos, Transactions American Geophysical Union20 (4), 721-725. https://doi.org/10.1029/TR020i004p00721.
Beck, H. E., van Dijk, A. I., Miralles, D. G., de Jeu, R. A., Bruijnzeel, L. S., McVicar, T. R., & Schellekens, J. (2013). Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resources Research49 (12), 7843-7863. https://doi.org/10.1002/2013WR013918.
Berghuijs, W. R., Hartmann, A., & Woods, R. A. (2016). Streamflow sensitivity to water storage changes across Europe. Geophysical Research Letters43 , 1980-1987. https://doi.org/10.1002/2016GL067927.
Biswal, B., & Marani, M. (2010). Geomorphological origin of recession curves. Geophysical Research Letters37 (24), L24403. https://doi.org/10.1029/2010GL045415
Biswal, B., & Marani, M. (2014). ‘Universal’recession curves and their geomorphological interpretation. Advances in water resources65 , 34-42. https://doi.org/10.1016/j.advwatres.2014.01.004.
Biswal, B., & Nagesh Kumar, D. (2013). A general geomorphological recession flow model for river basins. Water Resources Research49 (8), 4900-4906. https://doi.org/10.1002/wrcr.20379.
Bogaart, P. W., Van Der Velde, Y., Lyon, S. W., & Dekker, S. C. (2016). Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution. Hydrology and Earth System Sciences20 (4), 1413-1432. https://doi.org/10.5194/hess-20-1413-2016.
Brooks, P. D., Chorover, J., Fan, Y., Godsey, S. E., Maxwell, R. M., McNamara, J. P., & Tague, C. (2015). Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resources Research, 51(9), 6973-6987. https://doi.org/10.1002/2015WR017039.
Brutsaert, W. (2005). Hydrology: an introduction . Cambridge, UK: Cambridge University Press.
Brutsaert, W. (2008). Long‐term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resources Research44 , W02409. https://doi.org/10.1029/2007WR006518.
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research13 , 637-643. https://doi.org/10.1029/WR013i003p00637.
Buttle, J. M. (2016). Dynamic storage: A potential metric of inter‐basin differences in storage properties. Hydrological processes30 (24), 4644-4653. https://doi.org/10.1002/hyp.10931.
Buttle, J. M. (2018). Mediating stream baseflow response to climate change: The role of basin storage. Hydrological Processes32 (3), 363-378. https://doi.org/10.1002/hyp.11418.
Central Geological Survey. (2012).Hydrogeology Investigation and Groundwater Resource Assessment for Taiwan-Groundwater Recharge Estimation and Model Simulation Pingtung Plain . Central Geological Survey. Taipei, ROC: Central Geological Survey. (in Chinese)
Cheng, L., Zhang, L., & Brutsaert, W. (2016). Automated selection of pure base flows from regular daily streamflow data: Objective algorithm. Journal of Hydrologic Engineering21 (11), 06016008. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001427.
Cheng, L., Zhang, L., Chiew, F. H., Canadell, J. G., Zhao, F., Wang, Y. P., … & Lin, K. (2017). Quantifying the impacts of vegetation changes on catchment storage‐discharge dynamics using paired‐catchment data. Water Resources Research53 (7), 5963-5979. https://doi.org/10.1002/2017WR020600.
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P. H., & Al-Malki, A. (2003). Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. Journal of hydrology274 (1-4), 248-269. https://doi.org/10.1016/S0022-1694(02)00418-3.
Dralle, D. N., Karst, N. J., Charalampous, K., Veenstra, A., & Thompson, S. E. (2017). Event-scale power law recession analysis: quantifying methodological uncertainty. Hydrology and Earth System Sciences21 (1), 65-81. https://doi.org/10.5194/hess-21-65-2017.
Dwivedi, R., Meixner, T., McIntosh, J. C., Ferré, P. T., Eastoe, C. J., Niu, G. Y., … & Chorover, J. (2019). Hydrologic functioning of the deep critical zone and contributions to streamflow in a high‐elevation catchment: Testing of multiple conceptual models. Hydrological processes33 (4), 476-494. https://doi.org/10.1002/hyp.1336.
Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes: An International Journal19 (2), 507-515. https://doi.org/10.1002/hyp.5675.
Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology352 (1-2), 168-173. https://doi.org/10.1016/j.jhydrol.2008.01.005.
Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change4 (11), 945. https://doi.org/10.1038/nclimate2425.
Huang, C. C., & Yeh, H. F. (2019). Hydrogeological Parameter Determination in the Southern Catchments of Taiwan by Flow Recession Method. Water11 (1), 7. https://doi.org/10.3390/w11010007.
IPCC. (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, UK and New York, NY: Cambridge University Press.
Kingsford, R. T., Thomas, R. F., 2002. Environmental Flows on the Paroo and Warrego Rivers: Progress Report Year 2. National Parks & Wildlife Service, Sydney, NSW, Australia .
Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall‐runoff modeling, and doing hydrology backward. Water Resources Research45 (2), 1-34. https://doi.org/10.1029/2008WR006912.
Li, W., Zhang, K., Long, Y., & Feng, L. (2017). Estimation of Active Stream Network Length in a Hilly Headwater Catchment Using Recession Flow Analysis. Water9 (5), 348. https://doi.org/10.3390/w9050348.
Lin, L., Gao, M., Liu, J., Wang, J., Wang, S., Chen, X., & Liu, H. (2020). Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River. Hydrology and Earth System Sciences , 24 (3), 1145-1157. https://doi.org/10.5194/hess-24-1145-2020.
Lin, K. T., & Yeh, H. F. (2017). Baseflow recession characterization and groundwater storage trends in northern Taiwan. Hydrology Research48 (6), 1745-1756. https://doi.org/10.2166/nh.2017.237.
Liu, S. C., Shiu, C. J., Chen, J. P., & Fu, C. B. (2008, August). Changes of precipitation intensity in East Asia. 2008 Taiwan Climate Change Conference . Taipei, ROC. (in Chinese)
Lu, M. M., Cho, Y. M., Lee, S.Y., Lee, C. T., & Lin, Y. C. (2012). Climate variations in Taiwan during 1911-2009. Atmospheric Science , 40 (3), 297-321. (in Chinese)
Mendoza, G. F., Steenhuis, T. S., Walter, M. T., & Parlange, J. Y. (2003). Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. Journal of Hydrology279 (1-4), 57-69. https://doi.org/10.1016/S0022-1694(03)00174-4.
Meriö, L. J., Ala‐aho, P., Linjama, J., Hjort, J., Kløve, B., & Marttila, H. (2019). Snow to Precipitation Ratio Controls Catchment Storage and Summer Flows in Boreal Headwater Catchments. Water Resources Research55 (5), 4096-4109. https://doi.org/10.1029/2018wr02303.
Oyarzún, R., Godoy, R., Núñez, J., Fairley, J. P., Oyarzún, J., Maturana, H., & Freixas, G. (2014). Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. Journal of Arid Environments105 , 1-11. https://doi.org/10.1016/j.jaridenv.2014.02.012.
Parra, V., Arumí, J. L., Muñoz, E., & Paredes, J. (2019). Characterization of the Groundwater Storage Systems of South-Central Chile: An Approach Based on Recession Flow Analysis. Water11 (11), 2324. https://doi.org/10.3390/w11112324.
Patnaik, S., Biswal, B., Kumar, D. N., & Sivakumar, B. (2015). Effect of catchment characteristics on the relationship between past discharge and the power law recession coefficient. Journal of Hydrology528 , 321-328. https://doi.org/10.1016/j.jhydrol.2015.06.032.
Ploum, S. W., Lyon, S. W., Teuling, A. J., Laudon, H., & van der Velde, Y. (2019). Soil frost effects on streamflow recessions in a subarctic catchment. Hydrological Processes33 (9), 1304-1316. https://doi.org/10.1002/hyp.13401.
Roques, C., Rupp, D. E., & Selker, J. S. (2017). Improved streamflow recession parameter estimation with attention to calculation of− dQ/dt. Advances in water resources108 , 29-43. https://doi.org/10.1016/j.advwatres.2017.07.013.
Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., & Boll, J. (2015). Baseflow recession analysis in the inland Pacific Northwest of the United States. Hydrogeology Journal23 (2), 287-303. https://doi.org/10.1007/s10040-014-1191-4.
Santos, R. M. B., Fernandes, L. S., Moura, J. P., Pereira, M. G., & Pacheco, F. A. L. (2014). The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. Journal of hydrology519 , 1297-1314. https://doi.org/10.1016/j.jhydrol.2014.09.001.
Savenije, H. H., Hoekstra, A. Y., & van der Zaag, P. (2014). Evolving water science in the Anthropocene. Hydrology and Earth System Sciences18 , 319-332. https://doi.org/ 10.5194/hessd-10-7619-2013.
Shaw, S. B. (2016). Investigating the linkage between streamflow recession rates and channel network contraction in a mesoscale catchment in New York state. Hydrological Processes30 (3), 479-492. https://doi.org/10.1002/hyp.10626.
Stoelzle, M., Stahl, K., Morhard, A., & Weiler, M. (2014). Streamflow sensitivity to drought scenarios in catchments with different geology. Geophysical Research Letters41 (17), 6174-6183. https://doi.org/10.1002/2014GL061344.
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really characteristic?. Hydrology and Earth System Sciences17 (2), 817-828. https://doi.org/10.5194/hessd-9-10563-2012.
Sugita, M., & Brutsaert, W. (2009). Recent low-flow and groundwater storage changes in upland watersheds of the Kanto region, Japan. Journal of Hydrologic Engineering14 (3), 280-285. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:3(280).
Szilagyi, J., Gribovszki, Z., & Kalicz, P. (2007). Estimation of catchment-scale evapotranspiration from baseflow recession data: Numerical model and practical application results. Journal of hydrology336 (1-2), 206-217. https://doi.org/10.1016/j.jhydrol.2007.01.004.
Thomas, B. F., Vogel, R. M., Kroll, C. N., & Famiglietti, J. S. (2013). Estimation of the base flow recession constant under human interference. Water Resources Research49 (11), 7366-7379. https://doi.org/10.1002/wrcr.20532.
Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G. J., Lyon, S. W., … & Verhoest, N. E. C. (2013). The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resources Research49 (9), 5099-5116. https://doi.org/10.1002/wrcr.20407.
Van Dijk, A. I. J. M. (2010). Climate and terrain factors explaining streamflow response and recession in Australian catchments. Hydrology and Earth System Sciences14 (1), 159-169. https://doi.org/10.5194/hess-14-159-2010.
van Tol, J. J., & Lorentz, S. A. (2018). Hydropedological interpretation of regional soil information to conceptualize groundwater–surface water interactions. Vadose Zone Journal17 (1). https://doi.org/10.2136/vzj2017.05.0097.
Wang, D. (2011). On the base flow recession at the Panola mountain research watershed, Georgia, United States. Water Resources Research47 (3), W03527, 2011. https://doi.org/10.1029/2010WR009910.
Wang, D., & Cai, X. (2009). Detecting human interferences to low flows through base flow recession analysis. Water resources research45 , W07426. https://doi.org/10.1029/2009WR007819.
Wang, D., & Cai, X. (2010). Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds. Geophysical Research Letters37 (6), L06406. https://doi.org/10.1029/2009GL041879.
Wang, D., & Cai, X. (2010). Recession slope curve analysis under human interferences. Advances in Water Resources33 (9), 1053-1061. https://doi.org/10.1016/j.advwatres.2010.06.010.
Ward, A. S., Schmadel, N. M., Wondzell, S. M., Harman, C., Gooseff, M. N., & Singha, K. (2016). Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession. Water Resources Research52 (2), 1479-1497. https://doi.org/10.1002/2015WR018225.
Water Resources Agency. (1986). Basic Plan of The Regulation Scheme in Bazhang river . Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2000). Planning of Drainage System and Environment Rehabilitation of Yanshuei-chi Drainage in Tainan Are a. Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2004). Development of the Watershed Digital Topography Information System for Integrated Basin Management . Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2007). The Regulation and Management Scheme in The Upstream of Laonong River . Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2014). 2014 Annual report on Taiwan water use statistics. Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2015). Hydrological year book . Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2016). The Third Stage Management Project of Climate Change Impacts and Adaptation on Water Environment (3/5) . Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2017). Assessment of groundwater potential exploiting zones and groundwater yields in Kaoping and Chianan Watersheds (2/2) . Taipei, ROC: Water Resources Agency. (in Chinese)
Wittenberg, H. (1999). Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes13 (5), 715-726. https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N.
Wittenberg, H. (2003). Effects of season and man‐made changes on baseflow and flow recession: case studies. Hydrological Processes17 (11), 2113-2123. https://doi.org/10.1002/hyp.1324.
Wu, Y. C., Chen, Y. M., & Chu, J. L. (2010). Taiwan’s climate change trend. National Applied Research Laboratories Quarterly ,25 , 40-46. (in Chinese)
Yeh, H. F., & Huang, C. C. (2019). Evaluation of basin storage–discharge sensitivity in Taiwan using low‐flow recession analysis. Hydrological Processes33 (10), 1434-1447. https://doi.org/10.1002/hyp.13411.
Zecharias, Y. B., & Brutsaert, W. (1988). Recession characteristics of groundwater outflow and base flow from mountainous watersheds. Water Resources Research24 (10), 1651-1658. https://doi.org/10.1029/WR024i010p01651.
Zhang, L., Brutsaert, W., Crosbie, R., & Potter, N. (2014). Long-term annual groundwater storage trends in Australian catchments. Advances in water resources74 , 156-165. https://doi.org/10.1016/j.advwatres.2014.09.001.
Zhang, L., Chen, Y. D., Hickel, K., & Shao, Q. (2009). Analysis of low-flow characteristics for catchments in Dongjiang Basin, China. Hydrogeology journal17 (3), 631-640. https://doi.org/10.1007/s10040-008-0386-y.