References
[1] Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., & Zhang,
Q. (2020). Coronavirus infections and immune responses. Journal of
medical virology , 92 (4), 424-432.
[2]
https://www.worldometers.info/coronavirus/coronavirus-death-toll/
[3] Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020).
Preliminary identification of potential vaccine targets for the COVID-19
coronavirus (SARS-CoV-2) based on SARS-CoV immunological
studies. Viruses , 12 (3), 254.
[4] Raj, V. S., Mou, H., Smits, S. L., Dekkers, D. H., Müller, M.
A., Dijkman, R., & Thiel, V. (2013). Dipeptidyl peptidase 4 is a
functional receptor for the emerging human
coronavirus-EMC. Nature , 495 (7440), 251-254.
[5] Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., &
Phoolcharoen, W. (2020). Perspectives on monoclonal antibody therapy as
potential therapeutic intervention for Coronavirus disease-19
(COVID-19). Asian Pacific Journal of Allergy and
Immunology , 38 (1), 10-18.
[6] Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., & Jiang, S. (2017).
MERS-CoV spike protein: a key target for antivirals. Expert
opinion on therapeutic targets , 21 (2), 131-143.
[7] Kruse, R. L. (2020). Therapeutic strategies in an outbreak
scenario to treat the novel coronavirus originating in Wuhan,
China. F1000Research , 9 .
[8] Jin, Y. H., Cai, L., Cheng, Z. S., Cheng, H., Deng, T., Fan, Y.
P., & Han, Y. (2020). A rapid advice guideline for the diagnosis and
treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia
(standard version). Military Medical Research , 7 (1), 4.
[9] Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F.
(2020). Network-based drug repurposing for novel coronavirus
2019-nCoV/SARS-CoV-2. Cell Discovery , 6 (1), 1-18.
[10] Wang, M. et al. Remdesivir and chloroquine effectively inhibit
the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.
https://doi.org/10.1038/s41422-020-0282-0 (2020).
[11] Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H.,
Wiesman, J., Bruce, H., & Diaz, G. (2020). First case of 2019 novel
coronavirus in the United States. New England Journal of
Medicine .
[12] Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang,
W., & Chen, H. D. (2020). A pneumonia outbreak associated with a new
coronavirus of probable bat origin. Nature , 579 (7798),
270-273.
[13] De Clercq, E. (2019). New Nucleoside Analogues for the
Treatment of Hemorrhagic Fever Virus Infections. Chemistry–An
Asian Journal , 14 (22), 3962-3968.
[14] Oestereich, L., Lüdtke, A., Wurr, S., Rieger, T.,
Muñoz-Fontela, C., & Günther, S. (2014). Successful treatment of
advanced Ebola virus infection with T-705 (favipiravir) in a small
animal model. Antiviral research , 105 , 17-21.
[15] Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K.
Y. (2016). Coronaviruses—drug discovery and therapeutic
options. Nature reviews Drug discovery , 15 (5), 327.
[16] Canonico, P. G., Jahrling, P. B., & Pannier, W. L. (1982).
Antiviral efficacy of pyrazofurin against selected RNA
viruses. Antiviral research , 2 (6), 331-337.
[17] Buchanan, J. G. (1983). The C-nucleoside antibiotics.
In Fortschritte der Chemie organischer Naturstoffe/Progress in the
Chemistry of Organic Natural Products (pp. 243-299). Springer, Vienna.
[18] Hacksell, U., & Daves Jr, G. D. (1985). 1 The Chemistry and
Biochemistry of C-Nucleosides and C-Arylglycosides. In Progress in
medicinal chemistry (Vol. 22, pp. 1-65). Elsevier.
[19] De Clercq, E. (2009). Another ten stories in antiviral drug
discovery (part C):“old” and “new” antivirals, strategies, and
perspectives. Medicinal research reviews , 29 (4), 611-645.
[20] De Clercq, E. (2015). Curious (old and new) antiviral
nucleoside analogues with intriguing therapeutic
potential. Current medicinal chemistry , 22 (34), 3866-3880.
[21] De Clercq, E. (2016). C-Nucleosides to be revisited:
Miniperspective. Journal of medicinal chemistry , 59 (6),
2301-2311.
[22] Ren, D., Wang, S. A., Ko, Y., Geng, Y., Ogasawara, Y., & Liu,
H. W. (2019). Identification of the C‐Glycoside Synthases during
Biosynthesis of the Pyrazole‐C‐Nucleosides Formycin and
Pyrazofurin. Angewandte Chemie International
Edition , 58 (46), 16512-16516.
[23] Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., &
Cassone, A. (2006). New insights into the antiviral effects of
chloroquine. The Lancet infectious diseases , 6 (2), 67-69.
[24] Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K. F., Wei, Y., &
Jiang, C. (2013). Anti-malaria drug chloroquine is highly effective in
treating avian influenza A H5N1 virus infection in an animal
model. Cell research , 23 (2), 300-302.
[25] Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R.,
Rollin, P. E., Ksiazek, T. G., & Nichol, S. T. (2005). Chloroquine is a
potent inhibitor of SARS coronavirus infection and
spread. Virology journal , 2 (1), 69.
[26] Liu, W., Morse, J. S., Lalonde, T., & Xu, S. (2020). Learning
from the past: possible urgent prevention and treatment options for
severe acute respiratory infections caused by
2019‐nCoV. Chembiochem .
[27] Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., &
Einav, S. (2020). A systematic review on the efficacy and safety of
chloroquine for the treatment of COVID-19. Journal of Critical
Care .
[28] Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., &
Raoult, D. (2020). Chloroquine and hydroxychloroquine as available
weapons to fight COVID-19. Int J Antimicrob
Agents , 105932 .
[29] Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., &
Zhan, S. (2020). In vitro antiviral activity and projection of optimized
dosing design of hydroxychloroquine for the treatment of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical
Infectious Diseases .
[30] Gurwitz, D. (2020). Angiotensin receptor blockers as tentative
SARS‐CoV‐2 therapeutics. Drug development research .
[31] Li, G., Hu, R., & Zhang, X. (2020). Antihypertensive treatment
with ACEI/ARB of patients with COVID-19 complicated by
hypertension. Hypertension Research , 1-3.
[32] Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K.,
Berne, M. A., & Choe, H. (2003). Angiotensin-converting enzyme 2 is a
functional receptor for the SARS
coronavirus. Nature , 426 (6965), 450-454.
[33] Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ‐protective
Effect of Angiotensin‐converting Enzyme 2 and its Effect on the
Prognosis of COVID‐19. Journal of Medical Virology .
[34] Voiriot, G., Philippot, Q., Elabbadi, A., Elbim, C., Chalumeau,
M., & Fartoukh, M. (2019). Risks Related to the Use of Non-Steroidal
Anti-Inflammatory Drugs in Community-Acquired Pneumonia in Adult and
Pediatric Patients. Journal of clinical medicine , 8 (6),
786.
[35] Little, P. (2020). Non-steroidal anti-inflammatory drugs and
covid-19. BMJ (Clinical research ed .), 368, m1185.
[36] Little, P., Moore, M., Kelly, J., Williamson, I., Leydon, G.,
McDermott, L., & Stuart, B. (2013). Ibuprofen, paracetamol, and steam
for patients with respiratory tract infections in primary care:
pragmatic randomised factorial trial. Bmj , 347 , f6041.
[37] Li, G., & De Clercq, E. (2020). Therapeutic options for the
2019 novel coronavirus (2019-nCoV). Nature reviews. Drug
discovery , 19(3), 149.
[38] Haviernik, J., Štefánik, M., Fojtíková, M., Kali, S., Tordo,
N., Rudolf, I., & Ruzek, D. (2018). Arbidol (Umifenovir): a
broad-spectrum antiviral drug that inhibits medically important
arthropod-borne flaviviruses. Viruses , 10 (4), 184.
[39]https://www.drugtargetreview.com/news/58915/nafamostat-inhibits-sars-cov-2-infection
preventing covid19transmission/fbclid
[40] Debar, S., Kumarapeli, P., Kaski, J. C., & De Lusignan, S.
(2010). Addressing modifiable risk factors for coronary heart disease in
primary care: an evidence-base lost in translation. Family
practice , 27 (4), 370-378.
[41] Stellbrink, H. J., Arastéh, K., Schürmann, D., Stephan, C.,
Dierynck, I., Smyej, I., & Mariën, K. (2014). Antiviral Activity,
Pharmacokinetics, and Safety of the HIV-1 Protease Inhibitor TMC310911,
Coadministered With Ritonavir, in Treatment-Naive HIV-1–Infected
Patients. JAIDS Journal of Acquired Immune Deficiency
Syndromes , 65 (3), 283-289.
[42] Harrison, C. (2020). Coronavirus puts drug repurposing on the
fast track. Nature biotechnology .
[43] Wang, Z., Chen, X., Lu, Y., Chen, F., & Zhang, W. (2020).
Clinical characteristics and therapeutic procedure for four cases with
2019 novel coronavirus pneumonia receiving combined Chinese and Western
medicine treatment. Bioscience trends .
[44] Chu, C. M., Cheng, V. C. C., Hung, I. F. N., Wong, M. M. L.,
Chan, K. H., Chan, K. S., & Peiris, J. S. M. (2004). Role of
lopinavir/ritonavir in the treatment of SARS: initial virological and
clinical findings. Thorax , 59 (3), 252-256.
[45] Teissier, E., Zandomeneghi, G., Loquet, A., Lavillette, D.,
Lavergne, J. P., Montserret, R., & Pécheur, E. I. (2011). Mechanism of
inhibition of enveloped virus membrane fusion by the antiviral drug
arbidol. PloS one , 6 (1).
[46] Wang, Y., Ding, Y., Yang, C., Li, R., Du, Q., Hao, Y., & Yang,
Z. (2017). Inhibition of the infectivity and inflammatory response of
influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and
ferret). Biomedicine & Pharmacotherapy , 91 , 393-401.
[47] Dong, L., Hu, S., & Gao, J. (2020). Discovering drugs to treat
coronavirus disease 2019 (COVID-19). Drug Discoveries &
Therapeutics , 14 (1), 58-60.
[48] Ziółkowska, N. E., O’Keefe, B. R., Mori, T., Zhu, C.,
Giomarelli, B., Vojdani, F., & Wlodawer, A. (2006). Domain-swapped
structure of the potent antiviral protein griffithsin and its mode of
carbohydrate binding. Structure , 14 (7), 1127-1135.
[49] O’Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R.,
Chan, P. K., McMahon, J. B., & McCray, P. B. (2010). Broad-spectrum in
vitro activity and in vivo efficacy of the antiviral protein griffithsin
against emerging viruses of the family Coronaviridae. Journal of
virology , 84 (5), 2511-2521.
[50] Kakuda, T. N., Crauwels, H., Opsomer, M., Tomaka, F., van de
Casteele, T., Vanveggel, S., & de Smedt, G. (2015).
Darunavir/cobicistat once daily for the treatment of HIV. Expert
review of anti-infective therapy , 13 (6), 691-704.
[51] Gallant, J. E., Koenig, E., Andrade-Villanueva, J.,
Chetchotisakd, P., DeJesus, E., Antunes, F., & Liu, Y. (2013).
Cobicistat versus ritonavir as a pharmacoenhancer of atazanavir plus
emtricitabine/tenofovir disoproxil fumarate in treatment-naive HIV type
1–infected patients: week 48 results. The Journal of infectious
diseases , 208 (1), 32-39.
[52] Elion, R., Cohen, C., Gathe, J., Shalit, P., Hawkins, T., Liu,
H. C., & Warren, D. R. (2011). Phase 2 study of cobicistat versus
ritonavir each with once-daily atazanavir and fixed-dose
emtricitabine/tenofovir df in the initial treatment of HIV
infection. Aids , 25 (15), 1881-1886.
[53] Santos, J. R., Curran, A., Navarro-Mercade, J., Ampuero, M. F.,
Pelaez, P., Pérez-Alvarez, N., & Moltó, J. (2019). Simplification of
antiretroviral treatment from darunavir/ritonavir monotherapy to
darunavir/cobicistat monotherapy: effectiveness and safety in routine
clinical practice. AIDS research and human
retroviruses , 35 (6), 513-518.
[54] Mathias, A. A., German, P., Murray, B. P., Wei, L., Jain, A.,
West, S., & Kearney, B. P. (2010). Pharmacokinetics and
pharmacodynamics of GS‐9350: a novel pharmacokinetic enhancer without
anti‐HIV activity. Clinical Pharmacology &
Therapeutics , 87 (3), 322-329.
[55] Momattin, H., Al-Ali, A. Y., & Al-Tawfiq, J. A. (2019). A
Systematic Review of therapeutic agents for the treatment of the Middle
East Respiratory Syndrome Coronavirus (MERS-CoV). Travel medicine
and infectious disease , 30 , 9-18.