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Abstract

Bioprocess modeling has become a useful tool for prediction of the process future

with the aim to deduce operating decisions (e.g. transfer or feeds). Due to variabili-

ties, which often occur between and within batches, updating (re-estimation) of model

parameters is required at certain time intervals (dynamic parameter estimation) to

obtain reliable predictions. This can be challenging in the presence of low sampling

frequencies (e.g. every 24 hours), different consecutive scales and large measurement

errors, as in the case of cell culture seed trains. In this contribution, two estimation

techniques, which differ in terms of their objective functions, were investigated regard-

ing robustness concerning the aforementioned challenges and the required amount of

experimental data (estimation horizon). A common weighted least squares estimation

(WLSE) and a moving horizon estimation (MHE), which takes prior knowledge about

model parameters into account, were applied for re-estimation of model parameters

over three consecutive cultivation scales (40 - 2,160 L) of an industrial cell culture seed

train. It is shown how the proposed MHE can deal with the aforementioned difficulties

by integration of prior knowledge, even if only data at two sampling points are avail-

able, outperforming the classical WLSE approach. A workflow illustrating the required

steps is presented.

Keywords: Dynamic parameter estimation; bioprocess, cell cultures; moving horizon

estimation; prior knowledge



1 Introduction

Mathematical models are playing an important role for simulation and prediction of bio-

processes. Model-based methods are applied in the context of model-assisted Design of

Experiments, the design, layout and optimization of production processes (Pörtner et al.,

2017, Möller et al., 2019a, Kuchemüller et al., 2020, Kroll et al., 2017, Xing et al., 2010,

Narayanan et al., 2019b,a, Schenkendorf et al., 2020). Furthermore, they are used as predic-

tive models, enabling prediction of the process future, featuring the development of decision

making, optimization and control strategies (Frahm et al., 2002, Pörtner et al., 2017, Hass

et al., 2001, Möller et al., 2019b). The performance mainly depends on the prediction ac-

curacy of the model, which in turn depends on data quality (Sommeregger et al., 2017),

the complexity of the model and the ability to address batch-to-batch variabilities (Xie and

Schenkendorf, 2019) concerning cell growth, viability, uptake and production rate, a chal-

lenging task, especially in the case of mammalian cell cultures. These are the most frequent

host for many biopharmaceuticals (e.g. antibodies & proteins for diagnostic and therapeutic

purposes) (Walsh, 2018).

An iterative model updating procedure, meaning that model parameters are updated (re-

estimated) after certain time steps, is required to take possible variabilities into account.

Figure 1 illustrates the role of this model updating procedure within the production process

steps. Data from the realized ongoing process is used in order to generate a digital twin

of the process, that means a virtual representation of the process, which provides predic-

tion of the remaining future. This prediction is then used to deduce operating decisions,

e.g. concerning cell passaging (Frahm, 2007, Hernández Rodŕıguez and Frahm, 2020, Kern

et al., 2016) or to control the process, e.g. through an Open-Loop-Optimal-Control (OLFO)

method for the control of optimal feeding (Hass et al., 2001, Mears et al., 2017) or to control

pH and temperature shifts (Paul et al., 2019). As soon as new process data becomes avail-

able model updating, meaning re-estimation of model parameters over a growing estimation

horizon (window), is performed (= dynamic parameter estimation).



In literature, different approaches for re-estimation of model parameters over a growing data

base can be found (Haseltine and Rawlings, 2005, Hedengren et al., 2014, Hedengren and

Eaton, 2017, Jewaratnam et al., 2012). They differ in terms of the objective function, which

has to be optimized, and in terms of the considered estimation horizon (number of data

points used for parameter estimation). This can be growing or moving with a fixed hori-

zon length. In this study, two estimation techniques are applied and their robustness and

impact on prediction performance are investigated, a classical weighted least squares esti-

mation (WLSE) approach and a moving horizon estimation (MHE) technique. While the

objective function of the WLSE only considers information from data points within the esti-

mation horizon, the objective function of the MHE approach includes a term containing prior

knowledge concerning the parameter values and a penalty term for the change in parameter

values (Rao et al., 2001, Haseltine and Rawlings, 2005, Hedengren and Eaton, 2017).

While typical applications found in literature cover cultivations in one scale (Jewaratnam

et al., 2012, Haseltine and Rawlings, 2005), no recommendations can be found for re-

estimation and prediction of cultivations over several consecutive scales as in the case of

cell culture seed trains. However, these are required for the production of biopharmaceuti-

cals in suspension culture to increase the cell number from cell thawing up to production

scale (Frahm, 2007, Kern et al., 2016). Cells are cultivated in cultivation systems of different

volumes , starting with small volumes (typically with shake flasks) and they are passaged

every 3-4 days into the next bigger one (using bioreactor scales in larger scales). It has

been shown that cultivation conditions during the seed train have a significant impact on

cell performance in production scale (Le et al., 2012). Consequently, simplifying or enabling

better decision making for seed train opertations is required. Moreover, monitoring, control

and development of optimization strategies play an important role.

Nevertheless, predictive modeling in case of only few available data points are rarely consid-

ered in literature. For various fields, such as many microbial and yeast processes, a relatively

high density of data point is available, typically from on-line measurements and in combi-



nation with soft sensors, whereas cell culture processes are usually characterized by a low

data density and samples are often taken only once or twice a day. In this contribution it is

investigated how to integrate current knowledge into dynamic optimization in order to ad-

dress possible variabilities, especially focusing on the impact of the estimation horizon (data

points used for parameter estimation) and the objective function on model parameters and

prediction performance. It is shown how changes in cell growth behaviour can be detected

through changes in model parameter values after updating model parameters. A workflow,

containing the recommended steps was developed and applied to an industrial CHO cell

culture seed train.

2 Materials and methods

In this study different scenarios concerning estimation horizon and updating strategy are

considered. Without loss of generality, they are explained for application to cultivation

data over several consecutive scales (a seed train) and assuming that data from several con-

secutive seed trains are collected. Furthermore, two different estimation techniques having

different objective functions (weighted least squares estimation (WLSE) and moving horizon

estimation (MHE)), were applied.

2.1 Estimation and prediction horizon

Re-estimation of model parameters (or model updating) is performed at different points in

time during the process. Therefore, the time span t1, ..., tn of the process (here explained for

a seed train) is divided at the current point in time ti into an estimation horizon of length N ,

ti−N , ..., ti, containing the N most recent data points, and the prediction horizon, ti+1, ..., tn.

During prediction of one seed train, the right bound (the end) of the prediction horizon is

kept fixed while the left bound (the beginning) of the prediction horizon moves forward with

new measurements (receding prediction horizon).



At the same time, the right bound of the estimation horizon moves forward (moving estima-

tion horizon). For the left bound of the estimation horizon different scenarios are applied

(see Figure 2 A): i) Fixed point in time at the beginning of the current seed train or at the

beginning of each cultivation scale (described in this work as growing estimation horizon),

ii) moving left bound, meaning that as soon as a new data point becomes available, the

oldest data point is excluded from the estimation horizon (described in this work as moving

estimation horizon of fixed length).

2.2 Objective functions

The two applied objective functions (estimation techniques) in this study are presented

below. In order to avoid confusion concerning the terminologies containing ’moving horizon’

it should be noted, that the ’moving estimation horizon’ as described above refers to the

data used directly within parameter estimation, whereby ’moving horizon estimation’ refers

to an estimation technique characterized through a specific objective function, which will be

explained below.

Weighted Least Squares Estimation (WLSE) Weighted non-linear least square methods

are widely applied estimation methods for static optimization problems (Hedengren et al.,

2014, Deppe et al., 2020). The aim is to minimize the squared deviation between n measured

and simulated data points for k variables, ym,j = (ym,j1, ..., ym,jn) and y = (yj1, ..., yjn)

respectively for a variable yj, multiplied by a weighting factor wm,ij for i = 1, ..., n and

j = 1, ..., k (e.g. to address measurement deviations and to compare quantities of different

dimensions or giving more weights to specific quantities) for a fixed period of time t =

(t0, ..., tn). Here, the weighting factor for variable yj was determined through division by

the maximum experimental value yj,max over time span t, thus wm,ij = 1
yj,max

. This can

be formulated as an static optimization problem, consisting in minimizing the following



objective function J over the space of model parameters p = (p1, ..., pk):

J(p) =
k∑
j=1

n∑
i=1

wm,ij · (ym,ij − yij(p))2 (1)

This notation is similar to J = (ym−y)TWm(ym−y), also found in literature. This estimation

method is simple to apply but suffers from sensitivities to outliers and high measurement

deviations, when applied during dynamic optimization (Hedengren et al., 2014).

Moving horizon estimation (MHE) Now, if more and more data are collected (e.g. from

several seed trains) and past and present data are used for parameter estimation (dynamic

parameter estimation), the computational cost of a simple least square estimation increases.

As stated in Haseltine and Rawlings (2005), an adequate approach to prevent computational

limitations is to formulate the parameter estimation over a fixed size estimation horizon and

to include information obtain from past data through a so called arrival cost term. This

method, presented in (Rao et al., 2001), is known as a moving horizon estimation (MHE)

and is divided into two main parts, state estimation and arrival cost estimation. A fixed

estimation horizon is defined containing measurements used for the state estimation. Every

time new measurements are supplied, old measurements are discarded and passed from the

estimation horizon to the so called arrival cost window (or historical window), whenever

they exceed a fix estimation horizon length. Information from the past (up to the estimation

horizon) is now summarized within the arrival cost term and through a penalty term for the

change in parameters. Figure 2 B illustrates how cultivation data from various seed trains

can be divided iteratively into an arrival cost window, an estimation horizon and a prediction

horizon.

Different approaches to estimate the arrival cost can be found in literature (Haseltine and

Rawlings, 2005, Hedengren et al., 2014, Hedengren and Eaton, 2017, Ungarala, 2009). In

this contribution, a the squared-error moving horizon estimation (MHE) was applied. The

aim is to add penalty terms to the weighted squared errors (see eq. 1), taking into account



learned information from historical batches (cultivations) of a fixed arrival cost window

size (e.g. one preceding seed train). One term contains the prior values ŷj = (ŷj1, ...ŷjn)

resulting from simulations (model values), based on the prior parameter vector p̂, obtained

after the previous estimation cycle. Then the deviation between the current model values

yj = (yj1, ..., yjn) and the prior model values ŷj = (ŷj1, ...ŷjn) is computed and multiplied by

a weighting factor wp,ij for i = 1, ..., n and j = 1, ..., k for regulation of the prior’s impact.

This term is also called ’forgetting term’ or ’forgetting penalty’. Furthermore, a penalty

term ∆pT c∆p for the change in parameters is added, where ∆pT describes the euclidean

distance between the current (estimated) p and the prior parameter vector p0 (calculated by

the euclidean norm of the differences) and c∆p is a constant value to regulate the impact of

the prior information. More details on this regularization technique can be found in Anane

et al. (2019).

The resulting dynamic optimization problem is defined by minimizing the following objective

function over the set of model parameters: (Hedengren et al., 2014):

J(p) =
k∑
j=1

n∑
i=1

wm,ij · (ym,ij − yij(p))2 + wp,ij · (ym,ij − ŷij)2 + ∆pT c∆p. (2)

with ∆p = γ
n
‖ps0−ps‖2 = γ

n

√∑l
i=1(ps0,i − psi )2 for scale parameter vectors ps0 and ps of length

l and constant tuning parameter γ. It should be noted that the squared-error MHE technique

can also be found without the ’forgetting term’ in equation 2 (Hedengren and Eaton, 2017).

2.3 Investigated suspension cell culture process

In this contribution, subject of investigation is an industrial CHO cell culture process con-

taining a seed train comprising five shake flask scales and three bioreactor scales as well as the

production scale, whereby the focus lies on the the bioreactor part of the seed train, which

is composed by bioreactor 1 (N-3, 40 L), bioreactor 2 (N-2, 320 L) and bioreactor 3 (N-1,

2,160 L). From experimental data (offline measurements), taken once a day, time profiles for



viable cell density Xv, viability Via, concentrations of glucose cGlc, glutamine cGln, lactate

cLac and ammonia cAmm have been used. In this work, data from 10 seed train cultivations

from six campaigns with cultivation times between 72 - 96 hours per scale (meaning 4 to 5

measurement time points per scale including the measurement at time 0 (inoculation)) were

used for investigation. Additional data sets have been generated for modeling purposes and

first parameter estimations. Therefore, 12 batch cultivations in 4 flask scales (3 cultivations

each) having filling volumes of 40, 70, 300 and 1,500 mL were provided. They cover culti-

vation time spans of 264 hours (11 days) each, meaning that also the stationary and death

phase were included. Details, e.g. about controlled process parameters, analytics and data

cleansing can be taken from Hernández Rodŕıguez et al. (2019).

2.4 Kinetic model and seed train prediction

The applied kinetic model, containing six mostly Monod-type algebraic equations (descrip-

tion of growth rate, death rate, substrate uptake and metabolite production kinetics) and

17 model parameters describing cell culture dynamics of total and viable cell density, Xt

and Xv, as well as concentrations of glucose cGlc , glutamine cGln, lactate cLac and ammonia

cAmm, can be taken from Hernández Rodŕıguez et al. (2019).

Seed train prediction starts over three consecutive bioreactor scales, containing two passag-

ing steps between them and is updated stepwise at each new sampling point. Evaluation of

the prediction performance was realized calculating the relative prediction error in percent

(= absolute deviation between predicted and afterwards added test data, divided by the test

data). This criterion provides an intuitive assessment of the obtained prediction accuracy.

Since there are different overlapping factors having an influence on predicting several con-

secutive scales, (impact of estimated model parameters, e.g. maximum growth rate, and

impact caused by possible deviations of the initial states at the beginning of each cultivation

scale), the initial concentrations at the beginning of each cultivation scale are assumed to be

known up to a certain experimental error. Otherwise, it would be unfeasible to make direct



conclusions about the impact of re-estimated model parameters on prediction performance.

And the goal of this study is to learn about optimal updating strategies concerning model

parameters and to develop an adequate workflow for model updating.

3 Results and discussion

The first goal of this study was to find out, how many data points (sampling points) are

necessary for model parameter estimation to obtain high prediction accuracy of the predicted

process future, using the widely applied weighted least squares estimation (WLSE) technique

(see Section 3.1.1). In this context it was also investigated if old data points can be ignored

for parameter estimation. Secondly, it has been investigated to what extend analysis of

previous estimation steps concerning differences in model parameters can improve prediction

performance of further seed trains of the same process (Section 3.1.2). The third goal

was to investigate if the presented moving horizon estimation technique, which contains an

arrival cost term (sometimes called forgetting term) and a parameter penalty term, is able to

improve prediction performance (see Section 3.1.3). Finally, an iterative learning workflow

is presented (see Section 3.2), containing the recommended steps for dynamic parameter

estimation, based on the findings of this study.

3.1 Application to an industrial CHO cell culture process - a case study

As a case study, a seed train data set (batch data set), consisting of three consecutive

bioreactor scales were divided into the past (past data points, e.g. time interval t1, ..., t3)

and the future (future data points, e.g. time interval t4, ..., t12) of the current seed train.

The estimation horizon covers part of the past (or the whole past) and is used to re-estimate

model parameters (see Figure 2). Each time new test data are added, the estimation horizon

changes. Prediction performance of the remaining ’future’ (= prediction horizon) is evaluated

through the relative prediction error in percent, which is the discrepancy between measured



(observed) data and their expected (modeled) values, relative to the measured value. It was

calculated for all six variables but since viable cell density is the main variable of interest

only the results for viable cell density Xv are presented in the figures of this sections.

3.1.1 Impact of estimation horizon on prediction performance using weighted least

squares estimation (WLSE)

The following investigations deal with the question how many data points should be used

for re-estimation of model parameters (= model updating) using the weighted least squares

estimation (WLSE). First, the left horizon bound is kept fix meanwhile the right bound of

the estimation horizon is growing after each iteration step.

Second, the estimation horizon length is kept fixed, i.e. adding a new data point means

that the oldest data point of the estimation horizon is discarded (see Figure 2 A, top right).

Three different fix horizon lengths b were investigated, b = 2, b = 3 and b = 4. Figure

3 shows exemplary a problem that can arise, if only two data points are used for model

updating. The prediction top left is based on model parameters determined from flask scale

experiments. As mentioned before, the initial concentrations of every scale are assumed to

be known in this investigation in order to directly see the influence of model parameters on

prediction performance. It becomes clear, that viable cell density of scale 2 and scale 3 can

be predicted with high accuracy (5% and 4.2% relative prediction error). Taking measure-

ment deviations of approximately 5% into account it can be concluded, that for this example

the prediction error of scale 2 scale 3 complies more or less with the amount of irreducible

uncertainty. Prediction of scale one instead, shows a higher prediction error. The seed train

prediction in Figure 3 top right grounds on model updating over two data points and it can

be seen that prediction performance decreased for all three scales. If parameters change di-

rectly after model updating, two reasons could epxlain the decrease, a change in cell growth

behaviour or a change in parameters due to measurement errors. Measurement deviations

could get too much weight if the estimation is performed only over two data points, because



the estimation algorithm only focuses on minimizing the discrepancy between simulated and

measured values at those two data points. Only, after addition of further data points it can

be concluded which of both explanations may be appropriate. In the presented example,

taking a third and fourth data point for model updating (bottom left and bottom right)

indicates that the high prediction error after re-estimation over the first two data points

(top right) probably grounds on measurement deviations.

In order to compare the different estimation techniques more systematically, the mean of

the relative prediction error over all re-estimation steps was calculated per seed train, as

well as the minimum and the maximum prediction error. This was performed for 10 seed

trains/batches and the results are presented through boxplots in Figure 4 a) and b). The

first group of boxplots within each diagram presents the mean prediction errors per batch

over 10 seed trains, the second group shows the minimum values and the third group the

maximum values.

In Figure 4 a) two estimation techniques are compared over all re-estimation steps from point

in time t2 on (meaning that at the first model updating step, concentrations at sampling

points t1 and t2 are known and the concentrations within the prediction horizon = remaining

future, t3, ...tend, are predicted). A moving estimation horizon with a fixed horizon lengths

of 2 data points is compared to a growing estimation horizon (keeping the left bound fixed

at t1). It can be seen that taking only 2 data points for re-estimation of model parameters

sometimes leads to low prediction accuracy (high maximum values between 21 and 66 %,

left boxplot of maximum values). As mentioned earlier, this is not surprising because the

measurements contain measurement deviations and those are getting too much weight if

estimation is performed only over two data points.

For comparison of larger estimation horizon lenghts (than 2 data points), the rel. prediction

errors were considered from point in time t4 on to guarantee a fair comparison (i.e. the first

considered prediction results were obtained for the prediction horizon t5, ..., tend ). The re-

sults are presented in Figure 4 b). Taking at least three data points for estimation, typically



reduces the undesired effect described for two data points (lower maximum values, second

boxplot of group maximum values). Taking the four recent data points for parameter esti-

mation lead to a similar prediction performance as when taking three data points (averaged

batch mean over 10 batches: 12.9% for horizon length = 2, 10.6% for lor horizon length = 3

and 10.3% for horizon length = 4). The best results are obtained if the whole past is used

for model updating (9.99% averaged batch mean over 10 batches), especially concerning the

maximum prediction error over one re-estimation cycle (fourth boxplot of group maximum

values.

A detailed posterior analysis of the obtained model parameters at every updating step re-

vealed further findings. If for example scale three should be predicted and model updating

was performed including data from scale 1 and scale 2, the resulting prediction for scale 3 is

not as good as prediction based on shake flask experiments. This is due to slight differences

in some model parameters for scale 1 compared to scales 2 and 3 (maximum growth rate µmax

shows a difference of 7% on average). So, prediction for scale 3, based on model updating

over scale 1 and scale 2 is a compromise between the behaviour in both scales and therefore

not optimal for scale 3. This observation is already mentioned in (Hernández Rodŕıguez

et al., 2019). Obviously, the lower cell growth in reactor scale 1 occurs because mammalian

cells have to adapt to different cultivation conditions (shaked system to stirred system).

Variation of cell growth behaviour is a common challenge in cell cultivation and reported

amoung others in (Xie and Schenkendorf, 2019). There may be differences in cell growth be-

tween different cultivation systems and also between different cultivation runs (seed trains).

The latter can be taken into account through model parameter updating after adding new

process data over a growing time horizon within a seed train. Differences in model param-

eters between cultivation scales could be detected as soon as one or more whole seed train

data sets are collected. Then, model updating for further seed trains can be performed for

each scale individually. In the next section, it was investigated, how model updating for each

scale individually can change prediction accuracy for the remaining process future.



3.1.2 One parameter set for all scales vs. individual parameter sets per scale - Impact

on prediction performance using WLSE

Figure 5 shows the results for the relative prediction error if model parameters are re-

estimated for each scale individually over a growing estimation horizon, keeping the model

parameters for the other two reactor scales fixed. These results are compared to the previ-

ously described parameter estimation technique using only one parameter set for all scales

with a growing estimation horizon.

Figure 5 a) shows exemplary for one seed train how the relative prediction error develops

within one sample-to-sample cycle. It becomes clear, that especially at the beginning of

scale 1 (when only two or three data points are available), prediction performance of the

remaining future can be improved by using individual parameter sets per scale.

Figure 5 b) shows the results over 10 seed trains. It can be seen that prediction performance

improves in terms of mean and minimum values, but especially concerning the maximum

prediction error values. Therefore, it is recommended to analyze the updated model param-

eter values concerning differences between scales, as soon as seed train data are collected.

Nevertheless, relative prediction errors of nearly 20% (maximum values) are still not entirely

satisfying and another estimation technique, which take more information into account was

investigated. The results are presented in the following sections.

3.1.3 Comparison: Parameter estimation including prior knowledge - Moving horizon

estimation (MHE) vs. weighted least squares estimation (WLSE).

While, up to know, the sample-to-sample updating cycles were subject of investigation, now

model updating is also investigated regarding the batch-to-batch updating cycles, meaning

that knowledge learned within one sample-to-sample cycle is passed to the next sample-

to-sample cycle. More specifically, this means the re-estimation of model parameters is

performed using data of the current seed train (up to the current point in time) as well

as information about model parameters from the last seed train. Technically, this can be



realized using the moving horizon estimation technique described in section 2.2. The objec-

tive function contains a term describing the discrepancy between the modeled values (e.g.

for viable cell density) based on the prior model parameters (estimated during the previous

seed train) and a penalty term for the deviation between prior and current model parameter

values. The tuning parameter for this penalty term and the weighting factor for the prior

model values were chosen as follows: c∆p = 1
n

and wp = 4
n
, with n: number of data points

within the estimation horizon. The dependence on n was introduced to reduce the influence

of prior information when the data base of the current seed train grows.

Figure 6 shows the prediction results comparing the WLSE technique using 1 parameter set

for all scales, using 1 individual parameter set per scale and the MHE technique using also

1 individual parameter set per scale and including prior knowledge. The diagram in Figure

6 (left side) shows exemplary the development of the relative prediction error for one seed

train and all three methods, showing that especially during the first model updating steps,

the WLSE techniques, using only one parameter set for all scales, shows a higher prediction

error (> 30%) than using individual parameter sets (prediction error < 15%) or using the

MHE approach (prediction error < 10%). An improvement can be achieved using individual

parameter sets, one per batch. However, the best result is obtained using the MHE tech-

nique, even during the first updating steps when only very few data points are available for

parameter estimation.

In order to obtain more representative results, the prediction error was evaluated over 10

seed trains. These results are presented in Figure 6 (right side). It can be seen that the

MHE technique leads to lower mean and maximum values of relative prediction error than

the compared techniques (see Figure 6 (right side) first three boxplots and last three box-

plots). Moreover, it should be highlighted that there is a very low variation of the prediction

error during an sample-to-sample updating cycle, which stands for a robust estimator. In

section 3.1.1 it has been shown that estimation over two data points can lead to low pre-

diction accuracy (sometimes more than 100%) in the presence of measurement deviations.



The MHE approach turned out not to be sensitive to measurement deviations or outliers.

Prediction errors of more than 20 % were not observed over 10 tested seed trains and the

mean comes to 9%.

It has been shown that a possible bias caused by measurement deviations can be prevented

this way. Furthermore, this benefit can be achieved without high computational costs, be-

cause learned information is included without increasing the data base used for parameter

estimation. Another benefit is, that batch-to-batch variabilities and variabilities between

cultivation systems can be taken into account.

Furthermore, it was investigated if it is necessary to go 1, 2 or 3 seed trains back and to

learn from these cultivations in order to receive an optimal prediction.

The following results show what happens if three consecutive batch-to-batch cycles are per-

formed. This means that learned knowledge from seed train one is used for re-estimation

and prediction of seed train 2. The obtained information is used for seed train 3 and the

updated knowledge after seed train 3 is used for seed train 4 (see Figure 7 a)). This could

be also described as a arrival cost window size of 3 seed trains / batches. The results pre-

sented in Figure 7 indicate that it is not necessary to include more than one historical seed

train. The example in Figure 7 a) show that there is hardly any difference in prediction

performance between the three arrival cost window sizes and at all points in time, a relative

prediction error less than 10 % has been achieved. Although, there are differences between

the investigated seed trains, Figure 7 b) shows that most seed trains show a mean prediction

error of approximately 9 % and maximum values of approximately 14 %, not exceeding 18%.

3.2 Developed iterative learning workflow

Based on the findings obtained in this study, a workflow for seed train prediction was deduced

illustrating the required steps to account for variabilities and possible differences between

scales. Simply spoken, the concept of the proposed workflow (see Figure 8) is to iteratively

include knowledge gained from ’new’/current data, without discarding the knowledge already



obtained during the previous steps. After providing a kinetic model, model parameters from

previous experiments and a process model (e.g. containing equations for the computation

of passaging between two scales/vessels) a new seed train for given initial concentrations is

considered. Samples are taken in specific time steps and the following ’sample-to-sample’

updating cycle is performed. At every new sampling point, the model is updated, meaning

that model parameters are re-estimated through the moving horizon estimation technique

taking model parameters from previous experiments into account in form of additional terms

within the objective function (see equation 2).

The now obtained model parameters are used as new prior model parameters in form of

additional terms within the objective function for the next cultivation run and so on (batch-

to-batch updating cycle).

Moreover, if differences between scales are observed it is advisable to use different model

parameter sets for each individual scale and to update them individually (first model pa-

rameters for the first scale, then for the second scale and so on). Then the next cultivation

run (e.g. the next seed train within the same production process) is considered. A new

’sample-to-sample’ updating cycle is performed, including learned knowledge from the first

sample-to-sample updating cycle.

This proceeding lead to the results presented in Subsection 3.1.3. Compared to a common

weighted least squares approach, prediction accuracy for viable cell density could be im-

proved this way from 16.7 % to 8.6 % mean values and from 38.8 % to 13.2 % maximum

values. Moreover, the standard deviation of the relative prediction error has been reduced

from 9.5% to 2.9 % relative prediction error. These results emphasize the robustness of the

proposed estimation workflow.

3.3 Common features of MHE and Bayesian parameter estimation

The estimation techniques applied in this study belong to the group of point estimates,

meaning that for each future point in time within the prediction horizon, only one value



per state variable is predicted (e.g. one value for viable cell density at point in time t1, one

value at point in time t2 and so on). Meanwhile the Bayesian approach belongs to the group

of interval estimates, meaning that for every future point in time a whole interval (e.g. a

90%-interval) containing the possible values for a state variable is predicted, including the

specific probability of occurrence for each value. In other words, prediction can be made at

every future point in time including information about the predictive uncertainty (possible

deviation). Common features of Bayesian parameter estimation and the presented MHE

approach are, that both techniques include prior knowledge concerning the possible model

parameter values as a kind of ’memory’, integrated in the parameter estimation process.

Especially when only few data are available and these data contain measurement errors, this

’memory’ helps not to propagate the change in model parameters caused by the measurement

deviation onto the prediction of the future process.

Despite the added values of the Bayesian approach mentioned in (Hernández Rodŕıguez

et al., 2019), the MHE-based workflow presented in this contribution may be useful for

many applications, where it is desired to save computational cost and to use a parameter

estimation process simple to implement.

4 Conclusion

Two different estimation techniques (weighted least squares estimation (WLSE) and moving

horizon estimation (MHE), having different objective functions) were applied and compared

as well as the data base used for re-estimation of model parameters.

When using the WLSE technique at least 3 data points are necessary to reduce the maxi-

mum values of relative prediction error for viable cell density to less than 25% for the applied

set up. Moreover, if differences between cultivation scales are observed, individual model

parameter sets should be updated per scale (see row three of the overview in Table 1). Con-

cerning the compared estimation techniques WLSE and MHE, it turned out that the optimal



solution was obtained using the moving horizon estimation technique (MHE) and individual

set of model parameters per scale in case of differences between scales. High prediction

accuracy, represented through a relative prediction error of less than 15% maximum values

was achieved from the beginning on as well as less than 10% on average. This estimation

technique requires prior information (estimated model parameters based on previous culti-

vation data), whereby estimation results based on one preceding seed train turned out to be

sufficient.

These results were then formulated in form of an iterative learning workflow, which is pre-

sented in section 3.2. The performance of this workflow is described by the relative prediction

error shown in row 6 of table 1 (Arrival cost window: 1 previous seed train). A mean value

of 8.6% relative prediction error and maximum values of 13.2% on average were achieved for

viable cell density.

To properly asses these results concerning prediction error, the intermadiate precision (within-

lab reproducability) of viable cell density should be taken into account. As stated in

(Hernández Rodŕıguez et al., 2019) it is expressed as 4.7% coefficient of variation for the

investigated process. Now, the prediction error has to be considered in relation to the in-

termediate precision, giving the precision-weighted prediction error. Values close to 1 mean,

that the prediction error is more or less the amount of irreducible uncertainty, which stands

for stable models representing the stochastic nature of the enviroment. Therefore, low values

are desired, meaning that there is not much reducible uncertainty. As can be seen in Table 1

columns 6 and 8, applying the MHE lead to a precision-weighted prediction error of 1.8 - 1.9

on average in comparison to 2.3-2.9 on average for the WLSE, which shows the superiority

of the MHE-based iterative learning workflow.

Advantages of this workflow are that process knowledge is generated and incorporated during

the process and possible variabilities (e.g. batch-to-batch variabilities concerning maximum

cell growth) can be taken into account, which could lead to improved decision making (e.g.

regarding points in time for passaging or split ratios). Problems arising from re-estimation



over very few data points (e.g. bias due to measurement deviation when re-estimating over

two sampling points) can be mitigated through the integration of prior knowledge within the

objective function. Furthermore, the computational cost can be kept manageable because

past data points from previous cultivation runs don not have to be used for re-estimation of

model parameters. Even though, the learned knowledge from these cultivations flow in the

re-estimation process. The general form of this framework allows the application to other

bioprocesses as well as an implementation as part of predictive control methods.
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R. (2002). Adaptive, model-based control by the open-loop-feedback-optimal (olfo) con-

troller for the effective fed-batch cultivation of hybridoma cells. Biotechnology progress,

18(5):1095–1103.

Haseltine, E. L. and Rawlings, J. B. (2005). Critical evaluation of extended kalman filtering

and moving-horizon estimation. Industrial & Engineering Chemistry Research, 44(8):2451–

2460.

Hass, V. C., Lane, P., Hoffmann, M., Frahm, B., Schwabe, J.-O., Pörtner, R., and Munack,
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Kern, S., Platas-Barradas, O., Pörtner, R., and Frahm, B. (2016). Model-based strategy for

cell culture seed train layout verified at lab scale. Cytotechnology, 68(4):1019–1032.

Kroll, P., Hofer, A., Ulonska, S., Kager, J., and Herwig, C. (2017). Model-based methods in

the biopharmaceutical process lifecycle. Pharmaceutical research, 34(12):2596–2613.

Kuchemüller, K. B., Pörtner, R., and Möller, J. (2020). Efficient optimization of pro-

cess strategies with model-assisted design of experiments. Methods in molecular biology

(Clifton, N.J.), 2095:235–249.

Le, H., Kabbur, S., Pollastrini, L., Sun, Z., Mills, K., Johnson, K., Karypis, G., and Hu,

W.-S. (2012). Multivariate analysis of cell culture bioprocess data–lactate consumption as

process indicator. Journal of biotechnology, 162(2-3):210–223.

Mears, L., Stocks, S. M., Sin, G., and Gernaey, K. V. (2017). A review of control strategies for



manipulating the feed rate in fed-batch fermentation processes. Journal of biotechnology,

245:34–46.
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Tables

Table 1: Summary table containing the mean and maximum values of the relative prediction

error (Rel. pred. error) and the precision-weighted prediction error (Precision-weighted

pred. error) for different estimation techniques (WLSE/MHE), estimation horizon, arrival

cost windows and number of parameter sets (Par.-sets), here 1 parameter set for all three

scales vs. 3 parameter sets = one per scale).

Estimation technique Adaption Mean values Max values

WLSE / Estimation Arrival cost Par.- Rel. Precision- Rel. Precision-

MHE horizon window sets pred. weighted pred. weighted

error [%] pred. error [%] pred.

error [-] error [-]

WLSE Whole past of none 1 11.8 2.5 23.2 4.9

current

seed train

WLSE The last 2 none 1 13.7 2.9 38.8 8.3

data points

WLSE Past of none 3 10.6 2.3 18.9 4

current scale

MHE Past of Shake flasks 3 9.0 1.9 14.2 3

current scale

MHE Past of 1 previous 3 8.6 1.8 13.2 2.8

current scale seed train

MHE Past of 2 previous 3 8.6 1.8 13.5 2.9

current scale seed trains

MHE Past of 3 previous 3 9.0 1.9 14.7 3

current scale seed trains



Figure legends

Figure 1: Role of parameter estimation techniques within a biopharmaceutical production
process

Figure 2: Scheme of different estimation horizons. A i) Growing estimation horizon and ii)
moving estimation horizon of fixed length, both applied within the weighted least squares es-
timation (WLSE) technique; B Growing estimation horizon including an arrival cost window,
applied within the moving horizon estimation (MHE) technique.

Figure 3: Viable cell concentration over time expamlary for seed train no. 1, before parameter
estimation (top left), in contrast after re-estimation of model parameters based on data points
at t1 and t2 (top right), after re-estimation of model parameters based on data points at t1,
t2 and t3 (bottom left) and after re-estimation of model parameters based on data points at
t1, t2, t3 and t4 (bottom right).

Figure 4: a) Prediction error for viable cell density over 10 seed trains using weighted least
squares estimation; moving estimation horizon of length 2 vs. growing estimation horizon
(from the second data point on). b) Prediction error for viable cell density over 10 seed
trains using weighted least squares estimation; moving estimation horizon of length 2, 3 and
4 vs. growing estimation horizon (from the fourth data point on).

Figure 5: Comparison of prediction error for viable cell density using weighted least squares
estimation; One parameter set over all scales (growing estimation horizon) vs. three param-
eter sets (one parameter set per scale, over growing estimation horizon). a) Exemplary for
seed train no. 1, b) results of 10 seed trains.

Figure 6: Comparison: Prediction error for viable cell density based on weighted least squares
estimation (WLSE), which does not include any arrival cost term containing information
from a-priori performed parameter estimation vs. moving horizon estimation (MHE) (which
includes an arrival cost term containing information from a-priori performed parameter esti-
mations, here from shake flask scale. a) Prediction error (relative deviation between predicted
and measured values) over sampling times examplary for seed train no. 1; b) Prediction error
over 10 seed trains.



Figure 7: Impact of historical (arrival cost) window size for MHE technique. a) Prediction
error for viable cell density, exemplary for seed train no. 1, b) prediction error for viable cell
density over 10 seed trains and c) the corresponding updating scheme.

Figure 8: Proposed iterative learning workflow. Incorporation of knowledge (combining
previous knowledge and new knowledge) during the whole process progress through sample-
to-sample updating cycle during a batch / seed train and batch-to-batch updating cycle
between batches / seed trains.



Nomenclature

γ Tuning parameter

∆p euclidean distance beteween estimated and prior parameter vector

c∆p Constant value to regulate the impact of the prior information

cAmm Ammonia concentration [mmol L−1]

cGlc Glucose concentration [mmol L−1]

cGln Glutamine concentration [mmol L−1]

cLac Lactate concentration [mmol L−1]

J Objective function

l Number of estimated parameter components

n Number of simulated points in time within estimation horizon

p Parameter vector

p0 Initial parameter vector

t Time [hr]

Xt Total cell density [cells/L]

Xv Viable cell density [cells/L]

y Concentration values in general (data)

y0 Initial concentration values

ŷ prior model values (simulated values based on prior model parameters)



Abbreviations

MPC Model Predictive Control

MHE Moving horizon estimation

WLSE Weighted Least Squares Estimation


