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1 Introduction

Let Ω be a nonempty bounded open set of the real Euclidean space RN (N ≥ 2) with C1-boundary ∂Ω, consider

the multiple solutions for the following quasilinear Schrödinger elliptic equation with the p-Laplacian and non-

square diffusion term {
−∆pu+ V (x)|u|p−1u−∆p(|u|2α)|u|2α−2u = λf(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where ∆pu = div(|∇u|p−2∇u), N < p ≤ 2α, λ ≥ 0 is a parameter, f : Ω× R→ R is a continuous function.

The equation (1.1) involves a quasilinear and nonconvex diffusion term ∆p(|u|2α) |u|2α−2u, so in the litera-

ture it is referred as so-called modified nonlinear Schrödinger equation. For the case p = 2, the solution of (1.1)

is related to standing wave solutions of the following quasilinear Schrödinger equation

izt +4z − ω(x)z + κ∆(h(|z|2))h′(|z|2)z + g(x, z) = 0, x ∈ Rn, (1.2)

where z : R×Rn → C, ω : Rn → R is a given potential, h and g are real functions, κ is a real constant. Putting

z(t, x) = e−iβtu(x) in (1.2), where β ∈ R and u(x) > 0 is a real function, then the quasilinear equation (1.2)

reduces to the following modified ellipic form

−∆u+ V (x)u− κ∆(h(|u|2))h′(|u|2)u = f(x, u), x ∈ Rn. (1.3)

If h(s) = s, then (1.3) turns into a superfluid film equation in plasma physics

−∆u+ V (x)u− κ∆(u2)u = f(x, u), x ∈ Rn. (1.4)

Kurihara [1] used this equation to model the time evolution of the condensate wave function in superfluid film.

Moreover, if h(s) = (1 + s)
1
2 , the equation (1.3) is transformed to the following elliptic form

−∆u+ V (x)u− κ∆
[
(1 + u2)

1
2

] u

(1 + u2)
1
2

= f(x, u), x ∈ Rn, (1.5)
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which is a model of the self-channeling of a high-power ultrashort laser in matter [2, 3].

Many mathematical methods such as dual approach [4–9], iterative techniques [10–15], fixed point theorem

[16–19], variational methods [20–27] have been employed to solve the various differential equations. In particalr,

by using a constrained minimization argument, Poppenberg et al [26] established the existence of positive ground

state solution for quasilinear Schrödinger equation (1.4). Colin and Jeanjean [4], João Marcos and Severo [27]

studied the existence of positive solutions for (1.4) by the change of variables. The Nehari method and the

symmetric mountain pass lemma were also used to establish the existence of solutions in [28–30]. In [31], Liu

et al. studied the following quasilinear Schrödinger equation

−∆u+ V (x)u−∆(|u|2α)|u|2α−2u = λ|u|p−1u, x ∈ RN , (1.6)

where λ ≥ 0, 4α < p+ 1 < 4αN
N−2 , α ≥

1
2 , V ∈ C(RN ) and

(Ṽ) There exists V0 > 0 such that V (x) ≥ V0 in RN . Moreover, V (x)→∞ as |x| → ∞, or more generally,

for every M > 0, meas(x ∈ RN : V (x) ≤M) <∞, in which “meas” denotes the Lebesgue measure in RN .

The condition (Ṽ) is an essential assumption which guarantees that the embedding E ↪→ Ls(RN ) is compact

for 2 ≤ s < 2N
N−2 , where

E =

{
u ∈W 1,2(RN ) :

∫
RN

V (x)|u|2dx <∞
}

is a subspace of W 1,2(RN ) with the norm

||u||E =

(∫
RN

(|∇u|2 + V (x)|u|2)dx

) 1
2

.

Clearly, the assumptions (Ṽ) fails to hold for a general continuous and bounded function. Thus if the potential

V (x) fails to satisfy (Ṽ), whether the multiple solutions of problem (1.6) still exist or not? In order to answer

this question, in this paper, we investigate the more general modified nonlinear Schrödinger equation (1.1)

and get a positive answer, i.e., if the potential V (x) is a general continuous and bounded function, then there

exist the multiple solutions to the quasilinear Schrödinger elliptic equation with the p-Laplacian and non-square

diffusion term (1.1) under suitable growth conditions.

The rest of this paper is organized as follows. In Section 2, with help of a change of variables, we set up the

variational framework for problem (1.1) and give some lemmas of the functional associated with problem (1.1).

In Section 3 and Section 4, by using Riccer’s critical point theorem, we give the proof of main results.

2 Dual approach

Let E = W 1,p(Ω) (p ≥ 1) be the Sobolev spaces with the norm

||u|| =
(∫

Ω

(|∇u|p) + V (x)|u|pdx
) 1
p

.

We focus on the existence of nontrivial weak solutions of problem (1.1). A function u is called a weak solution

of the problem (1.1) if u ∈W 1,p
0 (Ω) and for any ϕ ∈ C∞0 (Ω), one has∫

Ω

[
(1 + (2α)p−1|u|(2α−1)p|∇u|p−2∇u∇ϕ+ (2α)p−1(2α− 1)|u|p(2α−1)−2u|∇u|pϕ

]
dx

= −
∫

Ω

V (x)|u|p−2uϕdx+ λ

∫
Ω

F (x, u)dx,
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where F (x, u) =
∫ u

0
f(t, ξ)dξ. But we notice that the natural functional of problem (1.1)

I(u) =
1

p

∫
Ω

[
(1 + (2α)p−1|u|(2α−1)p|∇u|p

]
dx+

1

p

∫
Ω

V (x)|u|pdx− λ
∫

Ω

F (x, u)dx

may not be well defined and not Gâteaux differentiable in the corresponding Sobolev space E.

Thus inspired by [32], we define a function h by

h′(t) =
1

p
√

1 + (2α)p−1|h(t)|p(2α−1)
, t ≥ 0,

h(0) = 0, h(−t) = −h(t), t ≤ 0.

(2.1)

Let u = h(v), then

J(v) = I(h(v)) =
1

p

∫
Ω

|∇v|p + V (x)|h(v)|pdx− λ
∫

Ω

F (x, h(v))dx.

Moreover the corresponding energy functional J(v) is well defined onW 1,p(Ω). Since C∞0 (Ω) is dense inW 1,p(Ω),

if v ∈W 1,p(Ω) is a critical point of the functional J , i.e, for any ϕ ∈W 1,p(Ω),

〈J ′(v), ϕ〉 =
1

p

∫
Ω

|∇v|p−2∇v∇ϕ+ V (x)|h(v)|p−2h(v)h′(v)ϕdx

− λ
∫

Ω

f(x, h(v))h′(v)ϕdx,

then v is a weak solution of the equation

−∆pv = −V (x)|h(v)|p−2h(v)h′(v) + λf(x, h(v))h′(v), x ∈ Ω. (2.2)

Thus, from (2.1) and (2.2), it is easy to know that u = h(v) is a weak solution of the problem (1.1). In the

result, it is sufficient to consider the existence of solutions of (2.2) in W 1,p(Ω).

The following lemma can be found in [28]:

Lemma 1. The function h(t) enjoys the following properties:

(h1) h ∈ C2 is uniquely defined, odd, increasing and and invertible in R.

(h2) 0 < h′(t) ≤ 1,∀t ∈ R.

(h3) |h(t)| ≤ |t|,∀t ∈ R.
(h4) limt→0

h(t)
t = 1.

(h5) |h(t)| ≤ (2α)
1

2pα |t| 1
2α ,∀t ∈ R.

(h6) h(t)
2 ≤ αth

′(t) ≤ αh(t),∀t ≥ 0, αh(t) ≤ αth′(t)| ≤ h(t)
2 ,∀t ≤ 0.

(h7) there exists a ∈ (0, (2α)
1

2pα ] such that h(t)t−
1
2α → a as t→ +∞ .

(h8) there exists b0 > 0 such that

|h(t)| ≥

{
b0|t|, if |t| ≤ 1,

b0|t|
1
2α , if |t| ≥ 1,

(h9) for each τ > 0, there exists χ(τ) = m if τ = m and χ(τ) = m+ 1 if τ ∈ (m,m+ 1), m ∈ N such that

|h(τt)| ≤ χ(τ)|h(t)|, ∀t ∈ R.

(h10) 1
2h

2(t) ≤ αth′(t)h(t) ≤ αh2(t) for all t ∈ R.
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Notice that p > N , W 1,p(Ω) ↪→ C(Ω) is compact. Thus there exists a positive constant c > 0 such that

||u||∞ ≤ c||u||, ∀u ∈W 1,p(Ω), (2.3)

where ||u||∞ = supx∈Ω |u(x)|.

Different from [29–31], the following assumption on potential is adopted in this paper:

(V) V ∈ C(Ω) and there exist two constants V0, V1 > 0 such that

V0 ≤ V (x) ≤ V1, x ∈ Ω.

Now define two functionals Φ,Ψ : E → R as follows:

Φ(v) =
1

p

∫
Ω

(|∇v|p + V (x)|h(v)|p) dx,

Ψ(v) = −
∫

Ω

F (x, h(v))dx.

For any v, w ∈ E, we have Φ,Ψ ∈ C1(E,R) and

〈Φ′(v), w〉 =

∫
Ω

(
|∇v|p−2∇v∇w + V (x)|h(v)|p−2h(v)h′(v)w

)
dx,

〈Ψ′(v), w〉 = −
∫

Ω

f(x, h(v))h′(v)wdx.

Lemma 2. For fixed r > 0 with Φ(v) ≤ r, v ∈ E, then there exists a constant % > 0 independent of r such that

Φ(v) ≥ %||v||p. (2.4)

Proof. Let v 6= 0, otherwise, the conclusion holds. In the following, we argue by contradiction to prove (2.4).

Suppose that there exists a sequence {vn} ⊂ E satisfying vn 6= 0 for all n ∈ N such that∫
Ω

|∇vn|p

||vn||p
dx+

∫
Ω

V (x)|h(vn)|p

||vn||p
dx→ 0, as n→∞. (2.5)

Set wn = vn
||vn|| , then ||wn|| = 1. Noticing that the compactness of embedding E ↪→ Ls for s ∈ [1,+∞), up to a

subsequence, we have wn(x) ⇀ w(x) in E, wn(x) → w(x) in Ls(Ω) for s ∈ [1,+∞) and wn(x) → w(x) a.e on

Ω. It follows from (2.5) that∫
Ω

|∇wn|pdx→ 0,

∫
Ω

V (x)|h(vn)|p

||vn||p
dx→ 0,

∫
Ω

V (x)wpndx→ 1. (2.6)

We assert that for any ε > 0, there exists a constant τ > 0 independent of n such that meas(Bn) ≤ ε, where

meas(·) denotes the standard Lebesgue measure and Bn = {x ∈ Ω : |vn| ≥ τ}.
In fact, if not, there exists ε0 > 0 such that meas(An) ≥ ε0, where An = {x ∈ Ω : |vn| ≥ n}. By (h8) and

the Fatou Lemma, we get ∫
Ω

(|∇vn|p + V (x)|h(vn)|p) dx ≥
∫

Ω

V (x)|h(vn)|pdx

≥
∫

Ω

V0b0|vn|
p
2α dx ≥ V0b0n

p
2α ε0 → +∞, as n→∞.

(2.7)
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The above fact contradicts with the boundedness of Φ({vn}). Therefore the above conclusion is valid.

Next it follows from the Hölder inequality and the Sobolev embedding theorem that there exists ε small

enough such that ∫
Bn

V (x)w2
ndx ≤ [V1meas(Bn)]

p−2
p ||wn||2p ≤ [V1meas(Bn)]

p−2
p ||wn||2p

≤ C1ε
p−2
p ≤ 1

4
, ∀n,

(2.8)

where C1 is a constant which is independent of ε.

On the other hand, noticing that if |vn(x)| ≤ τ , then

|vn(x)|
τ

≤ 1,

by (h8), we have ∣∣∣∣h( |vn(x)|
τ

)∣∣∣∣ ≥ b0 |vn(x)|
τ

. (2.9)

Thus it follows from (h9) of Lemma 1, (2.9) and (2.5) that∫
Ω\Bn

V (x)wpndx =

∫
Ω\Bn

V (x)
|vn|p

||vn||p
dx = τp

∫
Ω\Bn

V (x)
|vnτ |

p

||vn||p
dx

≤
(
τ

b0

)p ∫
Ω\Bn

V (x)
|h
(
vn
τ

)
|p

||vn||p
dx

≤ χ
(

1

τ

)(
τ

b0

)p ∫
Ω\Bn

V (x)
|h (vn) |p

||vn||p
dx

→ 0, as n→∞.

(2.10)

Combining (2.8) and (2.10), one has∫
Ω

V (x)wpndx =

∫
Bn

V (x)wpndx+

∫
Ω\Bn

V (x)wpndx ≤
1

4
+ o(1),

which implies that 1 ≤ 1
4 , a contradiction. So the proof is completed.

Lemma 3. Assume that V (x) satisfies (V), then Φ′ is coercive, hemicontinuous and uniformly monotone.

Proof. Firstly, by (h4) and (h7) of Lemma 2.1, we have

lim
t→0

|h(t)|p

tp
= 1, lim

t→∞

|h(t)|p

t
p
2α

= ap,

which implies that for any sufficiently small ε > 0, there exists a constant Cε > 0 such that

|h(t)|p ≥ (1− ε)tp − Cεt
p
2α , t ∈ (0,+∞). (2.11)

On the other hand, for any v ∈ E with ||v|| > 1, (h10) of Lemma 1 and (2.11) yield

〈Φ′(v), v〉
||v||

=

∫
Ω

(
|∇v|p + V (x)|h(v)|p−2h(v)h′(v)v

)
dx

||v||

≥
∫

Ω
(|∇v|p + V (x)|h(v)|p) dx

2α||v||

≥
∫

Ω

(
|∇v|p + V (x)[(1− ε)vp − Cεv

p
2α ]
)
dx

2α||v||
.

(2.12)
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Notice that E ↪→ Ls for s ∈ [p, p∗) is continuous, then for any v ∈ E with ||v|| > 1, choose sufficiently small ε

such that ∫
Ω

(
|∇v|p + V (x)[(1− ε)vp − Cεv

p
2α ]
)
dx ≥ 1

2
||v||p − CεV1

∫
Ω

v
p
2α dx

≥ 1

2
||v||p − CεV1|Ω|1−

1
2α ||v||

p
2α

Lp ≥
1

2
||v||p − C̃ε||v||

p
2α .

(2.13)

It follows from N < p ≤ 2α,N ≥ 2, (2.12) and (2.13) that

lim
||v||→∞

〈Φ′(v), v〉
||v||

=∞, (2.14)

which implies that Φ′ is coercive. The fact that Φ′ is hemicontinuous can be verified using standard arguments.

In addition, with the help of Theorem 26 (A) in [? ] as well as, J(v) = I(h(v)) and the inequality

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ cp|ξ − η|p, p ≥ 2, cp > 0, ∀ξ, η ∈ RN ,

we know that Φ′ exists and is continuous. �

3 The existence of three solutions

In this section, we show the existence of three solutions of (1.1), the main tool used for analysis is the Riccer’s

critical point theorem [33, 34], which is given below for reader’s convenience.

Lemma 4. Let E be a separable and reflexive real Banach space, Φ : E → R be a continuously Gâteaux differ-

entiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous

inverse on E∗, and Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux derivative is

compact. Assume that

(i)

lim
||u||→+∞

(Φ(z) + λΨ(z)) = +∞

for all λ ∈ (0,+∞),

Further, assume that there are r > 0, z0, z1 ∈ E such that

(ii) Φ(z0) < r < Φ(z1),

(iii)

inf
u∈Φ−1((−∞,r))

Ψ(z) >
(Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)−Ψ(z0)
.

Then, there exist an open interval Λ ⊂ (0,∞) and a positive real number ρ such that for each λ ∈ Λ, the

equation

Φ′(z) + λΨ′(z) = 0

has at least three solutions in E, whose norms are less than ρ.

Before stating our main results, we firstly denote two constants,

k = c

(
V0|Ω|
p%

) 1
p

, µ =
V0

V1|Ω|
,

where c, V0, V1 and % are defined by (2.3), (V) and Lemma 1, |Ω| is the Lebesgue measure of Ω. And then some

assumptions on F (x, s) to be used are also list below:
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(F1) there exist a function a(x) ∈ L1(Ω) and 0 < σ < p such that

F (x, s) ≤ a(x)(1 + |s|σ)

for all (x, s) ∈ Ω× R.

(F2) F (x, 0) = 0 for any x ∈ Ω.

(F3) there exists t0 ∈ R with |t0| > 1 such that

sup
(x,|z|)∈Ω×[0,k]

F (x, z) < µ

∫
Ω
F (x, t0)dx

|t0|p
.

Now we state our main result here.

Theorem 3.1. Suppose (V) and (F1)-(F3) hold. Then there exist an open interval Λ ⊂ (0,∞) and a positive

real number ρ > 0 such that for any λ ∈ Λ, the quasilinear elliptic equation (1.1) has at least three weak solutions

whose norms are less than ρ.

Proof. By the definitions of Φ and Ψ, we know that Ψ′ is compact and Φ is weakly lower semi-continuous.

Further from Lemma 3, we know that (Φ′)−1 is well defined and continuous. Now we show that the hypotheses

of Lemma 4 are fulfilled.

It follows from (F1),(2.2) and (2.12)-(2.13) that, for any λ ≥ 0,

Φ(z) + λΨ(z) ≥ 1

2p
||z||p − C̃ε

2
||z||

p
2α − λc||a||L1 ||z||σ − λ||a||L1 , ∀z ∈ E.

Since 0 < σ < p ≤ 2α, we have

lim
||v||→∞

(Φ(z) + λΨ(z)) =∞

and (i) is verified.

Now let z0 = 0, z1 = s0 = h−1(t0), |t0| > 1, then |t0| = |h(s0)|. We denote r = 1
pV0|Ω|, then

Φ(z1) =
1

p

∫
Ω

V (x)|h(s0)|pdx ≥ 1

p
V0|Ω||h(s0)|p > 1

p
V0|Ω| = r > 0 = Φ(z0).

Thus, (ii) of Lemma 4 is satisfied.

On the other hand, from (F2) and (F3), we get
∫

Ω
F (x, t0)dx ≥ 0 and

− (Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)−Ψ(z0)

= −rΨ(z1)

Φ(z1)

=
pr
∫

Ω
F (x, h(s0))dx∫

Ω
V (x)|h(s0)|pdx

=
pr
∫

Ω
F (x, t0)dx∫

Ω
V (x)|t0|pdx

≥
pr
∫

Ω
F (x, t0)dx

|Ω|V1|t0|p

=
V0

V1

∫
Ω
F (x, t0)dx

|t0|p
.

(3.1)
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Next we focus our attention on the case when v ∈ E with Φ(v) ≤ r. By (2.2) and (2.3), we have

r ≥ Φ(v) ≥ %||v||p ≥ %
(
||v||∞
c

)p
, (3.2)

which implies that |v(x)| ≤ c
(
r
%

) 1
p

= c
(
V0|Ω|
p%

) 1
p

= k, ∀ x ∈ Ω. The above inequality and (h3) of Lemma 2.1

yield

− inf
v∈Φ−1((−∞,r])

Ψ(v) = sup
v∈Φ−1((−∞,r])

−Ψ(v)

≤
∫

Ω

sup
|v|∈[0,k]

F (x, h(v))dx

≤ |Ω| sup
(x,|v|)∈Ω×[0,k]

F (x, h(v))

≤ |Ω| sup
(x,|h(v)|)∈Ω×[0,k]

F (x, h(v))

= |Ω| sup
(x,|z|)∈Ω×[0,k]

F (x, z).

(3.3)

From (3.1),(3.3) and (F3), it is easy to get that the (iii) of Lemma 4 holds.

Thus all the hypotheses of Lemma 4 are satisfied, and hence according to Lemma 4, there exist an open

interval Λ ⊂ (0,∞) and a positive real number ρ > 0 such that for any λ ∈ Λ, the quasilinear elliptic equation

(1.1) has at least three weak solutions whose norms are less than ρ.

Theorem 3.2. Assume (V) and (F1)-(F2) and the following condition hold:

(F∗3) there exists a constant M > 0 such that F (x, z) ≤ 0, (x, |z|) ∈ Ω × [0,M ] and lim|z|→∞ F (x, z) > 0 for

x ∈ Ω uniformly holds.

Then there exist an open interval Λ ⊂ (0,∞) and a positive real number ρ > 0 such that for any λ ∈ Λ, the

quasilinear elliptic equation (1.1) has at least three weak solutions whose norms are less than ρ.

Proof. By (F1), similar as the proof of Theorem 3.1, it is easy to know that the hypotheses (i) of Lemma 4

holds. Thus we only need to verify the hypotheses (ii) and (iii). In fact, it follows from (F∗3) that, for any x ∈ Ω,

there exists a sufficiently large

|t0| > max

{
1,
M

c

(
p%

V0|Ω|

) 1
p

}

such that F (x, t0) > 0. We take z0 = 0, z1 = s0 = h−1(t0), then 1 < |t0| = |h(s0)|. Denote r = %
(
M
c

)p
, we have

Φ(z1) =
1

p

∫
Ω

V (x)|h(s0)|pdx ≥ 1

p
V0|Ω||t0|p

> %

(
M

c

)p
= r > 0 = Φ(z0).

Thus, (ii) of Lemma 4 is satisfied.
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On the other hand, from (F2) and (F∗3), we have

− (Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)−Ψ(z0)

= −rΨ(z1)

Φ(z1)

=
pr
∫

Ω
F (x, h(s0))dx∫

Ω
V (x)|h(s0)|pdx

=
pr
∫

Ω
F (x, t0)dx∫

Ω
V (x)|t0|pdx

≥
p%
(
M
c

)p ∫
Ω
F (x, t0)dx

|Ω|V1|t0|p

> 0.

(3.4)

Moreover, for Φ(v) ≤ r, v ∈ E, by (2.3) and Lemma 2, we have

|v(x)| ≤ ||v||∞ ≤ c||v|| ≤ c
(

Φ(v)

%

) 1
p

≤ c
(
r

%

) 1
p

= M, ∀ x ∈ Ω.

The above inequality and (h3) of Lemma 1 show that

− inf
v∈Φ−1((−∞,M ])

Ψ(v) = sup
v∈Φ−1((−∞,r])

−Ψ(v)

≤
∫

Ω

sup
|v|∈[0,M ]

F (x, h(v))dx

≤ |Ω| sup
(x,|v|)∈Ω×[0,M ]

F (x, h(v))

≤ |Ω| sup
(x,|h(v)|)∈Ω×[0,M ]

F (x, h(v))

= |Ω| sup
(x,|z|)∈Ω×[0,M ]

F (x, z)

≤ 0.

(3.5)

(3.3) and (3.5) show that the (iii) of Lemma 4 holds.

According to Lemma 4, the conclusion of Theorem 3.2 also holds.

4 The existence of infinitely many solutions

In this section, we use an infinitely many critical points theorem to obtain the multiple solutions result of the

problem (1.1).

Let E be a reflexive real Banach space, Φ : E → R be a (strongly) continuous, coercive sequentially weakly

lower semi- continuous and Gâteaux differentiable functional, Ψ : E → R be a sequentially weakly upper

semicontinuous and Gâteaux differentiable functional.
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For all r > infE Φ, let

ϕ(r) = inf
z∈Φ−1((−∞,r))

(
supz∈Φ−1((−∞,r)) Ψ(z)

)
−Ψ(z)

r − Φ(z)
,

and

γ = lim inf
r→+∞

ϕ(r), δ = lim inf
r→(infE Φ)+

ϕ(r).

Lemma 5. [35] Suppose E,Φ,Ψ satisfy the above assumptions, then the following conclusions hold:

(a) If γ < +∞ then, for each λ ∈ (0, 1
γ ), the following alternative holds: either the functional Φ − λΨ

has a global minimum, or there exists a sequence {zn} of critical points (local minima) of Φ − λΨ such that

limn→+∞ Φ(zn) = +∞.
(b) If δ < +∞ then, for each λ ∈ (0, 1

δ ), the following alternative holds: either there exists a global minimum

of Φ which is a local minimum of Φ − λΨ, or there exists a sequence {zn} of pairwise distinct critical points

(local minima) of Φ− λΨ, with limn→+∞ Φ(zn) = infE Φ, which weakly converges to a global minimum of Φ.

Suppose f : Ω× R→ R+ is continuous and denote

l = lim inf
κ→+∞

∫
Ω

max|t|≤κ F (x, t)dx

κp
, L = lim sup

κ→+∞

∫
Ω
F (x, κ)dx

κp
.

We state the result of the multiple solutions as follows:

Theorem 4.1. Assume that and
l

L
<

p%

cpV1|Ω|

hold. Then for any

λ ∈ (
V1|Ω|
pL

,
%

cpl
)

the quasilinear elliptic equation (1.1) has an unbounded sequence of weak solutions in W 1,p(Ω).

Proof. Firstly, for any v ∈ E, define

Φ(v) =
1

p

∫
Ω

(|∇v|p + V (x)|h(v)|p) dx, Ψ(v) =

∫
Ω

F (x, h(v))dx.

Then Φ : E → R is a continuous, coercive sequentially weakly lower semi-continuous and Gâteaux differentiable

functional, Ψ : E → R is a sequentially weakly upper semicontinuous and Gâteaux differentiable functional.

Take λ ∈ (V1|Ω|
pL , 1

pcpl ), and let {κn} be a real sequence satisfying limn→∞ κn =∞, and so we have

l = lim inf
n→+∞

∫
Ω

max|t|≤κn F (x, t)dx

κpn
. (4.1)

Letting rn = %
(
κn
c

)p
, n ∈ N and considering Φ(z) < rn. According to (2.3) and Lemma 2, we have

|z(x)| ≤ ||z||∞ ≤ c||z|| ≤ c
(

Φ(z)

%

) 1
p

≤ c
(
rn
%

) 1
p

= κn, ∀ x ∈ Ω. (4.2)
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Consequently, from (4.1) and (h3) of Lemma 1, one has

ϕ(rn) = inf
z∈Φ−1((−∞,rn))

(
supz∈Φ−1((−∞,rn)) Ψ(z)

)
−Ψ(z)

rn − Φ(z)

= inf
Φ(z)<rn

(
supΦ(z)<rn Ψ(z)

)
−Ψ(z)

rn − Φ(z)

≤
supΦ(z)<rn

∫
Ω
F (x, h(z))dx

rn

≤
∫

Ω
max|z|≤κn F (x, h(z))dx

rn

≤
∫

Ω
max|h(z)|≤κn F (x, h(z))dx

rn

=

∫
Ω

max|t|≤κn F (x, t)dx

rn

=
cp
∫

Ω
max|t|≤κn F (x, t)dx

%κpn
, n ∈ N,

(4.3)

which implies that

γ = lim inf
r→+∞

ϕ(r) ≤ cpl

%
< +∞.

Now we show that the functional Φ − λΨ is unbounded from below. To do this, we take a real sequence

{en} such that limn→∞ en = +∞. Notice (h8) of Lemma 1, we have h(en) ≥ b0e
1
2α
n →∞, n→∞, and then

L = lim
n→+∞

∫
Ω

F (x, en)

epn
dx = lim

n→+∞

∫
Ω

F (x, h(en))

h(en)p
dx. (4.4)

Let wn(x) = en, n ∈ N, x ∈ Ω, then we have

Φ(wn) =
1

p

∫
Ω

V (x)|h(wn))|pdx ≤ V1|Ω|
p

hp(en),

and

Φ(wn)− λΨ(wn) ≤ V1|Ω|
p

hp(en)− λ
∫

Ω

F (x, h(en))dx.

We divide L into two cases to prove that Φ− λΨ is unbounded from below.

Case 1: If L < +∞, choose 0 < ε < L− V1|Ω|
λp , then by (4.4), there exists N0 > 0 such that for any n > N0,

we have ∫
Ω

F (x, h(en))dx > (L− ε)h(en)p.

Thus,

Φ(wn)− λΨ(wn) ≤ V1|Ω|
p

hp(en)− λ
∫

Ω

F (x, h(en))dx

≤ V1|Ω|
p

hp(en)− λ(L− ε)hp(en)

= hp(en)

(
V1|Ω|
p
− λ(L− ε)

)
.

It follows from the choice of ε that V1|Ω|
p − λ(L− ε) < 0, and then, one gets limn→∞(Φ(wn)− λΨ(wn)) = −∞.
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Case 2: If L = +∞, we can choose sufficiently large M0 >
V1|
λp Ω|, and from (4.4), there exists NM0

> 0 such

that for any n > NM0 , we have ∫
Ω

F (x, h(en))dx > M0h
p(en).

Consequently,

Φ(wn)− λΨ(wn) ≤ V1|Ω|
p

hp(en)− λ
∫

Ω

F (x, |h(en)|)dx

≤ V1|Ω|
p

hp(en)− λM0h
p(en)

= hp(en)

(
V1|Ω|
p
− λM0

)
.

It follows from the choice of M0 that

lim
n→∞

(Φ(wn)− λΨ(wn)) = −∞.

The above facts show that the functional Φ− λΨ is unbounded from below. According to (a) of Lemma 5,

the functional Φ− λΨ admits a sequence {vn} of critical points, that is, {h(vn)} are exactly the weak solutions

of the quasilinear elliptic equation (1.1). �

It follows from Theorem 4.1 that we have the following corollary:

Corollary 1. Assume (V) holds, and l < +∞, L = +∞. Then for any

λ ∈ (0,
%

cp l̃
)

the quasilinear elliptic equation (1.1) has an unbounded sequence of weak solutions in W 1,p(Ω).

Denote

l̃ = lim inf
κ→0+

∫
Ω

max|t|≤κ F (x, t)dx

κp
, L̃ = lim sup

κ→0+

∫
Ω
F (x, κ)dx

κp
,

then with help of (h3)-(h4) of Lemma 1 and arguing as in the proof of Theorem 4.1, we easily obtain the

following results:

Theorem 4.2. Assume (V) holds, and cpV1|Ω|l̃ < L̃p%. Then for any

λ ∈ (
V1|Ω|
pL̃

,
%

cp l̃
),

the quasilinear elliptic equation (1.1) has an unbounded sequence of weak solutions in W 1,p(Ω).

Theorem 4.3. Assume (V) holds, and l̃ < +∞, L̃ = +∞. Then for any

λ ∈ (0,
%

cp l̃
),

the quasilinear elliptic equation (1.1) has an unbounded sequence of weak solutions in W 1,p(Ω).



13

References

[1] S. Kurihara, Large amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981) 3262-3267.

[2] A. Kosevich, B. Ivanov, A. Kovalev, Magnetic solitons, Phys. Rep., 194 (1990) 117-238.

[3] G. Quispel, H. Capel, Equation of motion for the Heisenberg spin chain, Physica A, 110 (1982) 41-80.

[4] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equations: Adual approach, Nonlinear Anal.,

56(2004)213-226.

[5] X. Zhang, L. Liu, Y. Wu, The entire large solutions for a quasilinear Schrödinger elliptic equation by the

dual approach, Appl. Math. Lett., 55 (2016) 1-9.

[6] X. Zhang, L. Liu, Y. Wu, Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger

equation with a non-square diffusion term, Appl. Math. Lett., 74 (2017) 85-93.

[7] X. Zhang, L. Liu, Y. Wu, Y. Cui, The existence and nonexistence of entire large solutions for aquasilinear

Schrodinger elliptic system by dual approach, J. Math. Anal. Appl., 464(2018)1089-1106.

[8] X. Zhang, L. Liu, Y. Wu, Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger

equation via dual approach, Electronic Journal of Differential Equations, 147(2018)1-15.

[9] X. Zhang, J. Jiang, Y. Wu, Y. Cui,The existence and nonexistence of entire large solutions for a quasilinear

Schrödinger elliptic system by dual approach, Appl. Math. Lett., 100(2020)106018.

[10] X. Zhang, L. Liu, Y. Wu, L. Caccetta, Entire large solutions for a class of Schrödinger systems with a

nonlinear random operator, J. Math. Anal. Appl., 423 (2015) 1650-1659.

[11] X. Zhang, Y. Wu, Y. Cui, Existence and nonexistence of blow-up solutions for a Schrödinger equation

involving a nonlinear operator, Appl. Math. Lett., 82(2018)85-91.

[12] Y. Sun, L. Liu, Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear

Schrödinger equations on infinite domains, J. Comput. Appl. Math., 321(2017) 478-486.

[13] X. Zhang, J. Xu, J. Jiang, Y. Wu, Y. Cui, The convergence analysis and uniqueness of blow-up solutions

for a Dirichlet problem of the general k- Hessian equations, Appl. Math. Lett.,102 (2020)106124.

[14] X. Zhang, L. Liu, Y. Wu, Y. Cui,A sufficient and necessary condition of existence of blow-up radial solutions

for a k-Hessian equation with a nonlinear operator, Nonlinear Anal. Model. Control, 25(2020)126-143.

[15] T. Ren, S. Li, X. Zhang, L. Liu, Maximum and minimum solutions for a nonlocal p-Laplacian fractional

differential system from eco-economical processes, Bound. Value Probl., 2017, 2017:118.

[16] X. Zhang, J. Jiang, Y. Wu, and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear

Schrödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 90(2019)229-237.

[17] J. He, X. Zhang, L. Liu, Y. Wu, Y. Cui, A singular fractional Kelvin-Voigt model involving a nonlinear

operator and their convergence properties, Bound. Value Probl., (2019) 2019:112.



14

[18] J. He, X. Zhang, L. Liu, Y. Wu, Existence and nonexistence of radial solutions of Dirichlet problem for a

class of general k-Hessian equations, Nonlinear Anal. Model. Control, 23(2018) 475-492.

[19] X. Zhang, L. Liu, Y. Wu, Multiple positive solutions of a singular fractional differential equation with

negatively perturbed term, Math. Comput. Modelling, 55(2012)1263-1274.

[20] X. Zhang, L. Liu, Y. Wu, Variational structure and multiple solutions for a fractional advection-dispersion

equation, Comput. Math. Appl., 68 (2014) 1794-1805.

[21] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Nontrivial solutions for a fractional advection dispersion

equation in anomalous diffusion, Appl. Math. Lett., 66 (2017) 1-8.

[22] X. Zhang, L. Liu, Y. Wu, Y. Cui, New result on the critical exponent for solution of an ordinary fractional

differential problem, Journal of Function Spaces, 2017(2017), Article ID3976469.

[23] J. Liu, Z. Zhao, Existence of positive solutions to a singular boundary-value problem using variational

methods, Electron. J. Differential Equ., 2014(135)(2014)1-9.

[24] J. Liu, Z. Zhao, Multiple solutions for impulsive problems with non-autonomous perturbations, Appl.

Math. Lett., 64 (2017) 143-149.

[25] J. Liu, Z. Zhao, An application of variational methods to second-order impulsive differential equation with

derivative dependence, Electron. J. Differential Equ., 2014(62) (2014) 1-13.

[26] M. Poppenberg, K. Schmitt, Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger

equations, Calculus Var. Partial Differ. Equations, 14(2002) 329-344.
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