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ABSTRACT. Utilizing the model of novel coronavirus given by Chen et al. [A mathematical model
for simulating the phase-based transmissibility of a novel coronavirus, Infectious Diseases of Poverty,
(2020) 9:24], we intend to generalize the model to fractional order derivative in Atangana-Baleanu
sense and to show the existence of solution for the fractional model using Schaefer’s fixed point
theorem and for the uniqueness of solution we make use of Banach fixed point theorem. By using
Shehu transform and Picard successive iterative procedure, we explore the iterative solutions and
its stability for the considered fractional model.

1. Introduction and Preliminaries

The theory of fractional calculus, especially differential equations of fractional order derivatives
have a significance importance in the modeling of many real world problems arising in science and
engineering (see e.g. [1, 2, 3, 4, 5, 6, 7| and references therein). Fractional derivative due to
Riemann-Liouville and Caputo were used widely in the early literature. But due to the presence
of singularities in their kernels, some new fractional derivatives were introduced which settled the
arisen problem, for details, we refer [8, 9, 10, 11, 12, 13, 14, 15, 16]. More precisely, to study
the complex biological systems and diseases, fractional calculus played an important role as it
provides better results than the integer order models (see e.g. [17, 18, 19, 20, 21, 22].

Very recently, Chen et al. [23] developed a mathematical model of novel coronavirus. In this
paper, we generalized the model of novel coronavirus (nVoC-2019) to the ABC-fractional model
proposed by Chen et al. [23] and explore the existence and uniqueness of its solution using fixed
point theory along with a stability result.

We start with some basic notions:

First, we recall the definition of Caputo fractional derivative which can be found in many books

(see, e.g., [2]).

DEFINITION 1.1. For a differentiable function h, the Caputo derivative of order 6 € (0,1) is
defined by

(1) CD(t) = ﬁ/o h’(s)ﬁd&

DEFINITION 1.2. [9] Let h € H'(0,1) and 6 € [0, 1] then the Atangana-Baleanu-Caputo (ABC)
fractional derivative is defined by

@) ABC (1) — é”_(‘?) /0 h’(w)Es[—l;fé(t—w)ﬁ]dw.

Key words and phrases. Fractional Atangana-Baleanu derivative, novel coronavirus (nCoV-2019), Shehu
transform.
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DEFINITION 1.3. [9] The integral operator associated with ABC-fractional derivative is defined
by

(3) ABCHOR(t) = (Jl\/[_((;;)h(t) + m/o h(w)(t — w)*dw,

where M (§) is the normalization function.
DEFINITION 1.4. [24] For a function £(t) in

A ={£(t) : there exist x,t1,to > 0, [E(1)] < xexp (?) ,ift € (—=1)7 x [0,00)},

the Shehu transform of £(t) € A is given by

[e.o]

@) Su(e) = [ ear (—i) (1)t u € (—h, 1)

0

LEMMA 1.1. [25] Assume h € H'(a,b), b > a, v € (0,1) and h(t) € A, the Shehu transform
(Sy) of Atangana-Baleanu fractional derivative in Caputo sense is

) S0 (1) =

S, (h(1)) — Zh(0)).
(a7 (Su(h(0) = $h(0)

2. Fractional Model in Atangana-Baleanu Sense

Very recently, Chen et al. [23] proposed a mathematical model of a novel coronavirus (nCoV-
19) as follows:

de _ ];[ ~w,8, — (,6,(T, + WA,) — w, &M,

% = (,6,(T, + UA,) + w, S, — (1 — B,), €, — 0,0, — W, &,
(6) % = (1—=3,)n,€, — (1 + wp)Jy,

dd_gip = ,0pC, — (Tup + wp)A,,

dg:p = 7,Jp + T2, — wpR,,

ddi? = GpJp + @Ay — P,

with the initial conditions
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We now generalize the model (6) to a fractional order model using Atangana-Baleanu derivative
in Caputo sense as follows:

ABCDIG, = ]_[ —w,& S, (T, + UA,) — w,,S,9M,

ABC@&QEP = Cp p(Tp +PA,) + Wy &M — (1 — p)1p €, — 0,0,€) — W&y,
(7) ABC@éjp = (1=P,)n,€, — (1, + wp) Ty,

ABC@&Q‘}? = (I)pQPQEp — (Tap + wp)2Ap,

WODIR, = 7,0, + Ty — Ry,

PO = ¢p + @A, — M,

where § denotes the the fractional order parameter and the model variables in (7) are nonnegative
and the initial conditions are given by

61)(0) = 61)(0) > 0, (’fp((]) = e10(0) > Oyjp(()) = jp(o)

> 0,
2A,(0) = 2A,(0) > 0,9R,(0) = R,(0) > 0,M(0) = M(0) > 0

Using the initial conditions and fractional integral operator, we convert model (7) into integral
equations

Gp(t) . Gp(o) _ ABC~5 [H wp (J + U ) wwGPDﬁ ,
_ ABC~A~6 ~
pr(t) - pr(()) - J |:(P6P(Jp + \IIle) + "‘Jw(‘ipgjt - (1 - q)p)npep

—,0,€, — Wpep] )

(8) Jp(t) = Tp(0) = ABCjé[(l = Q)€ — (7 + wp) Ty,
Ap(t) — A(0) = ABCjé[q)pQPQEp — (Tap + wp)2Ay),
Rp(t) — R,(0) = Apcye [75Tp + Taplp — wpPRy),
M(t) —MO0) = AP, + @, A, — oM].

For simplicity, we write the kernels
S1 <t7 Gp(t)) = H _wpe’p(t) - Cpep(t)(jp(t) + \Pmp(t)) - wwep(t)m(t)a

52(757 gp(t)) = Cpgp(t) (jp(t) + \I/Q[p(t)) + Ww6p(t)m(t) - (1 - (I)p)np@p(t>
—0,0,€,(t) — wp€,(t),

(9) F3(t,Tp(1) = (1= @) €p(t) — (75 + wp)Tp(2),
Fat,Ap(t) = Ppop€p(t) — (Tap + wp) (1),
Fs(tRu(t) = 1TIp(t) + Tap2Ap(t) — wpRy(2),
So(t, M(1) = ¢pTp(t) + @Ay () — 8093?(75)

and the functions

(10) T() = 1—_5, A(0) = 0
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Applying (3), (9) and (10) in (8) and writing state variables in terms of kernels, we obtain
Slt) = S0)+ YRS, +A0) [ §i(r. &)t — )",
€0) = €0)+ TOR( &)+ A0) [ Salo. &)t — )" i
W) 30 = 30 TORE0) +A0) [ Sl @) -0
B(0) = B0)+ THF A0 +A0) [ 5l 200 — ).
Rlt) = Fl0) = TORR0) +AG) [ o)) — )
M(t) = MO0)+ Y(0)Fe(t,M(t)) + A(0) /Ot ez, M(x))(t — x)6_1dx.

The Picard iterations are given by

fol(t) = T()F1(t, Gj(t) + A(6y) /t& (x 6j(m))(t—x)5_1dx,

I (t) = T(6)Fa(t, €L(t)) + A(d2) / Folz, € (2))(t — )° 'da,
) = TE)Fs(t T () + ASs) / S, T () (¢ — ) dr,
(12) W) = Y(6)Falt, A (1) + A(04) / Falz, W(2))(t — 2)° " da,

9%§+1(t) = T(@@s(t,%;(t)) + A(85) /0 Fs( x,iﬁg)(x))(t — ) e,
M) = T(0)Folt, M (1)) + Ad) /0 B, W () (¢ — )"

In order to show the existence and uniqueness of solution of the model (7), we make use of fixed
point theory. First, we re-write the model (7) in the following way:

{ABC@tSC(t> = 3(t.¢(1)),

(13) C0)=¢(y, 0<t<T < .

The vector ((t) = (S,, €,, T, A,, R, M) and § in (13) represent the state variables and a contin-
uous vector function respectively defined as follows:

N LL, - @(0) ~GE(3,0) + EB(1) @y ()70
% GSp(1)(Tp(t) + VA, (1)) + wu & ( ) (t) — ( D), Ep(1)
33 —®,0,€, (t) — (t)
(14) § = 34 = (1- (I)p)npq3 (t) — ( )jp( )
Fe q)pQPQS (t) — (Tap +wp) A, (1)
o W0 R l0) )
¢pJ ()+prL() M)
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with initial conditions (y(t) = (6,(0), €,(0),7,(0),2A,(0),R,(0),M(0)). Corresponding to (13),

the integral equation is give by

(15) C(8) = G+ TO(C) +A0) [ 3l (@)t — 2

3. Existence Results

Consider A = [0,7], £ = C(A,R®) and the Picard operator P : £ — £ be given by

(16) PICB)] = o+ T(3)S(t, ¢(1)) + A(9) /0 (@, C(a)(t — )’ da.
Together with the supremum norm || - ||¢, on ( is defined by
(17) €@ lle = Sup IC@, ¢(t) € €,

& defines a Banach space. Assume the following

[A1: ] Let §: A x RS — RS is continuous.
9: ere exists > ( such that
Ay: ] There exists Cs > 0 such th

|{§<t7C) - S(ZL’, C/)| < O&K - </|
for all (,¢' € RS t € A.

[As: | There exist a constant L > 0 such that |§(x, ()| < L(1 + |¢|) for each z € A and all

¢ € RS,

We prove the existence of solution of (13) by Schaefer’s fixed point theorem.

THEOREM 3.1. Assuming [A;]-[As] together with 1 —"(0)L > 0, (13) has at least one solution.

PROOF. We first show that the operator P given in (16) is continuous. Consider a sequence

(¢;) such that ¢; — ¢ in £. Now
[PG(t) =P = \wm(t, G (1) + A @) / 5, (@)t — 2)"da

CY()F(C(0) — AWG) / §(x, (@)t — 2) da

IN

T(&](&(u G1) — §(L.C(L)

+A(0) /0 §(x, ¢(x))(t — a:)‘s_ldx — /0 S, ((2)(t — 2)° tde

IN

IN

6
< (16)+ 25 )eslisto, 6 o) — 3o clale

Continuity of § implies the continuity of P.

T@)’(S(t, G(1) =3, C(t)))‘ +A(9) /O [§ (2, G(@) = F@, C(2))[(t — 2)°da

td

T(0)CsllS(x, ¢(2)) = B2, ¢(2)le + A0)C5[18(2, G(2)) — (2, C(@))lle5
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Now suppose that W = {¢ € £ : ||¢|| < ¢ > 0}. We now show that P[W] is bounded, i.e. there
exists d > 0 such that for every ¢ € W, ||P(|| < d. For any t € A, we have

Pet)] = QrPN®%@@@»+A®%[3@&X@Xﬁ—@“wx

IN

mw+namw<wﬂ+AwyAs@¢u»@—méwx

IN

|Gl + TS, C(8)] + A(S) /Ot [§(, C(@)|(t — @) dw

IN

[Gol + T(0)L(1 +[¢]) +A(5)L/O (1+1¢(@))(t — =)~ da

)

[Gol +TO) L+ ISl + A() L(1 + IICII)%

IA

|Co| + Y(O)L(1 +¢) + A(6)L(1 + C)T_6

IN

0
T5
= |G| + (T(é) + A(é)T)L(l +c¢)=d,
which implies
PC(t)] < d.

For the equicontinuity of P, let t1,ty € A with 0 < 1,5 < T and ¢ € W. Utilizing [A5], we have

[PC(t) — PC(ta)] = ‘T(5)3(t17é(t1)) +A(0) /0 1 S, C(@)(t — )’ da

—Twmu%amwﬂM®A2Maqwxw—@*wx

gT@*thm»—3@£®Dﬂ

+A@)Alm%q@xh—@éwx—AQm@qu@—méwx

< T(3)

(s(tl,é(h))—S(tz,é(tz)))‘+A(5) /013(1%((37))(751—3?)“6196

—Alﬂadwxw—@éWx—ZQM%d@Xb—@5Ww

ST@*MhﬂwD—%m£@mﬂ+Aw>Almaquh—m*%wm—@*wm

+ A(9)

ZQMmamxm—@*wx




= T<5>]<3<th (1)) = 3tz <<t2>>>\ +A(9) (@)t = )" = (2 = )" ")da

AL+ ) / (ty — )| da

t1

< r<5>\<s<t1,c<t1>> —s(tQ,qm))\ L AQ)

(ta — t1)°
e

As t; tends to to, continuity of § tends R.H.S of above inequality to zero. Hence P is equicontinuous.
Therefore, we conclude by Arzela-Ascoli Theorem that P is completely continuous.

Finally, we show that the set Q(P) = {¢ € £ : ( = 9P( for some 9 € (0,1)} is bounded. For each
t € A, we have

/0 3@ (@)t — 2) — (ty — 1) e

+ A(O)L(1 +d)

[PC)] = Co+T(5)$(t,Cj(t))+A(5)/03(%(;‘(90))(75—56)5_1%

< [Gol +TO)[3 (£, ¢(2))] + A(6) /0S(ﬂﬁ,é(fﬂ))(t—33)‘5_16&1j

< |C0|+T(5)|§(taC(t))|+A(5)/0 [§ (2, (@)t — )’ da

< Gl +TE) LA+ [C)]) + AL /(1+|C( )Nt =)’ da

< 1Gol + YL + (O] + AG) L—+A /|g JI(t = 2)da
=l + TOL = THLEO]+ AL +AGL [ It - )

Writing S = [(o| + Y(6)L + A((S)LT and since 1 — Y ()L > 0, we can have

|P((t)\§1_$(5) 5 /IC .

utilizing Gronwall’s inequality, we obtain

S A(6)LT®
PC(t)] < 11— T((;)Lexp((l - T(5)L)5>'

Therefore Q(P) is bounded. Consequently, by Schaefer’s theorem P has a fixed point which is
infact a solution of (13). O

We now show by using Banach contraction principle that solution of (13) is unique.

THEOREM 3.2. Assuming [A;]-[As] together with (T(é) + A(JT)Ta) Cz < 1, there exists a unique
solution of (13).

PRroOF. Considering (3) together with (13), we have
(18) ¢(t) = PIC(H)].
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The operator P given in (16), is well defined by [A4;]. Now for all {,(’ € £, we have

PIC(H)] = PIC@)]]
= |TO)EE 1) =3, (1)) + A(0) /0 (§(x,¢(x)) = F(x,¢'(2)))(t — 2)"'dw

< TOIFC0) = S0 +A0) [ 186 ~ 5 i - o)
< OO0 - O+ AG [ 1o — @l — ) e
< YOCsIC— ¢l + MO ~ Cle [ (¢ ds
< o)+ 2 e ¢
= Al
where
A= (T(é) T A(‘?T5> Cs.
This implies
(19) IPLC) - PO < AlC ¢l

Thus the defined operator P is a contraction, and hence Banach contraction principle guarantees
that P has a unique fixed point which is the solution model (13). O

4. Special Solution by Iterative Approach

We obtain iterative solution of the model (7). Apply Shehu transforms (S,) on both sides of
(7), we get

SuAECD0GE,] = S H —wpG, — (,6,(T, + IA,) — w,E,9M|

SR, = Su[G6p(Tp + UR,) + Wy S9N — (1 — By)1, €, — B,0,€, — Wy,
(20)  Sp[*PCDT,] = S[(1 - ) €y — (1 + wp)Tp],

Su[PeD,] SulPpor€p — (Tap + wp) 2y,

Sp[ABCDOR,] Su[TpTp + TapAy — w,Ry),

Sp[*BCDM] = Su[¢pT, + @A, — oM.



Using definition of Shehu transforms of ABC-derivative, we get

- (?1(?(2)5 [Sh(ep) - (%) Gp(o)} = S, []_[ 0,6, — (,6,(3, + A — w, &S, ,
M(9) (v _ 5 o (-
s e - () eo] = s 66,0+ U) + 6T~ (1= ),
—P,0,€, — Wp@p] )
M(9) Ay (Y ~ _ B w3
oo (i) 503) = () 0] = Sil(L=0)m€, — (5, +w,)3).
M) (v _ N —
o (i) [S0(@) = (2)2,(0)] = Su[®,00€, — (rup + )2,
] (;M((?( )5 [Sh<%p) - (E) fﬁp(O)- = SulmpTp + Tapp — wp MRy,
— 0+ u S i
M6 U
s :5)(2)5 [Sh@ﬁp) - (; M,(0)] = SulgpTp + @Ay — MM,
On rearranging
u\d
(&) = (%) 8,0+ %5@ [];[ —,8, — (6, (T, + V) — w, &, M|
u\ 0
Sh(ep) = (%) pr(()) + %Sh {Cp@pwp + \IJle) + Ww@pim - (1 - CDP)UpQEp
—P,0,€), — wp@p] 3
u\d
o @) = (930 + 0 s e e, - 6 )
u\d
Sp(RAp) = (%) 21,(0) - i\;’(;)(}) Sh[®Ppor€, — (Tap + wp)Ry),
u —5+0(Y)°
S = (%) 9%(0)+%Sh[fﬂpﬂaﬂp—%%],
u\d
Sp(MM,) = (g) o, (0) %Sh[(ﬁpjp + @A, — MY,
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Operating S;, " on both sides of (21) and taking into account that S, ' (%) = 1, we get

5+5
6, = 6p(0)+sh1{ Sh H —w,S S,(J, + VA,) — w,, &, M

3

1—90+9
Qsp = QEp(o) + S}L_I{W)()Sh {Qp ( D + qu[p) + Wwprm - (1 - q)p)n’pep

—0,0,€, — wpep] }7

22) 3, = 3,0+ 5" {%w >npep—<7p+wp>3p1},

A, = A (0)+ Sh {%Sh[ p0P&p — (Tap + Wpﬂlp]} )

o 1=0+9
%p = mp(O)‘i‘Shl{W)()Sh[TpJ +Tap9[ —wpiﬁp]},

1—6+06(%)°

m, = mgmy+af{ 0

ShlppTp + @Ay — goﬁﬁ]} ;

The recursive formula is given by

§+6
Gt = 63@04—Sh1{———]Z&5L)—Sh[II—u@G” (&, (3, + VAT) — w, & M"

p }

L—d+48(%)

et = @0+ S, { 0)

S {cpenrwww%e”w (1— ®,),€"

—CDPQPQE;L — wPGZ] },

(233,70 = 350 +5, {%Sh[( Oy )1p €y — (1 + wp)ﬁg]} ,
A = { -0 + 5 Sp|®popr €, — (Tap + Wp)mZ]} ,
Rt = +Sl{1 5+6 &¢@1+mﬂl—wﬁﬁ@,
= -+Sl{1 5+5 é%WJ“+a%%-—¢mﬂ}

The approximate solution of (23) is given by

S, = lim6&;, ¢ =1I1m¢, J,=1Im7

Y
n—oo n—oo n—oo p

20, = lim %n R, = lim 9%” M, = lim M.

n—oo n—oo n—oo p
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5. Stability Analysis and Iterative Solution
Consider a Banach space X together with norm ||z|| = m[a>b<] |z(t)|, x € X and F a self map on
tcla,

X. The recursive procedure is
(24) Snt1 = h(F, Sn).
The set of fixed points Fiz(F) of F is nonempty and S,, converges to a point of Fiz(F). Choose

a sequence (f,) in X and e, = ||funi1 — h(F,S,)||. The recursive procedure (24) is F-stable if
lim e, = 0. We suppose that the sequence (f,,) is bounded above, else it will diverge. Under these

n—oo
conditions, S,+1 = FS, is Picard’s iteration as described in [26], implies it is F-stable.

THEOREM 5.1. Let (X, || -|) be a Banach space and F be a self map on X satisfying
(25) [Fe = Fyll < Rllz = Fal| +rllz -yl
forall z,y € X, where R >0 and 0 < r < 1. Then F is Picard F-stable.

THEOREM b5.2. A self map F given by

F(&p(t) = &7 (1)

0+
= GZ(t) + S}Zl {Wf)sh [H wp6n Cp@n(fvn + \Ilen) UJwGZgﬁn

}

F(&t) = ()
= Qfg(t)+S}jl{%&l[gp6”(”“+qfﬂ”)+ww6"9ﬁ" (1—®,)n,e"
— 0,0, — wp@Z} }
F3@) = 37)

= J(t)+ S, {%&[( )1, €0 — (7, + wp)jg]}
FOU®) = wh

-0 —|— 5
Sh[ pQP@Z — (Tap + WP>Q[Z]}

1— (5—|—(5
= + S 1 { Sh[ +7_ap91$ - wme]}

Sh [9pT,) + R — gp?)ﬁ"]}
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is F-stable in H'(a,b) if the following conditions holds:

(1= ful) — (L Ly WLy + L) () — sl + L) o) < 1
LS00+ L VEDA() + ol + E09 ~ (1= 8004 00 i) <1
L+ (1 = @) fr(k) — (1 +wp) fs(r) < 1
1+ @,0p fo(k) — (Tap + wp) fro(k) < 1
L+ 7, fu1(K) + Tap f12(K) — wp fi3(k) < 1
L+ @pfra(r) + @pfis(k) — @p(k) fis(k) <1

Proor. We first show that F has a fixed point. For m,n € N, we have

F(6,(1) = F(G;(1))

5+6
=&p(t) - &' (t) + S, {]\;Tf)sh []_[ —w, " — (& (T 4 VAT) — w, S "

}

— St {%Sh []_[ —w, & — (ST (I + VAT — wwemzmm] }

F(E)(t) — F(& (1))

= () - er(t) + S, {%&l {gpen(”" + WA) + w, GIM” — (1 — D, ), €L

— ®,0,&) — prE”} }

1—-6+0 m(ym m meyyym m
_ 5 {W)()ghlgpg (T + UAT) + w, ST M™ — (1 — B,)1, €D

— ®,0,&" — wp(‘f:;”] }
F(O0) = F(3,1)

p p

= AL(E) — AN (E) + S, {%S}L[ p0PEL — (Tup + wp)mg}}

— S}: {%Sh[ pQPQE;n — (Tap + WP)Q[ZL]}



13

- %Z(t) - %?(t) + Sh {%S}L[TPJ + Tap; — wp%;]}

-1 0+9 ( ) m
- S, {WS}L[TI,J + T2y — WAy ]}
FO(1)) — F(M"(1))

1—§+6(4)°
M(9)

é
1— 046 (%
— 5t {—Qsh (6,77 + A — gpsmm]}

=M (t) — M (1) + St { SuldpT, + wpA; — soim”]}

M(9)
Taking norm, we have

IF(S,(1) = F(S; (1)l

p

1—640
< |!62(t)—6$(t)||+’ShI{W)()Sh []_[ 0, B — (& (I + WA — ww6gmt"}
g {%& [] -8 - G&0Or + b2 — w, & }H
1—0+46(%
<t - oyt + 5, {0 Cl e - el - ey - 71

1G] — &) — NG Sp A — )| — [WGA (6] — &) — [Jen & (" — |

20) ~lmns; - o7 ]

Due to similar functioning of both solutions, we have

I

16, (1) = &,

p

1€,(1) = ()]
15,(8) = T @)
1265 () — =07 ()]
1935 (2) = R (@)l

RUS ORIk

I

I

(27)

12

I

Replacing (27) in (26), we get

IF(S,(t) = F(S ()l

p

1-6+06(%)°
I3 - syl + 5 {00 2B ey - el - oy - oyl

=163, (6; = Gl = 196,6,(6, = )| = VG (S, — &) — [[wnS, (6" — 6™

IN

) laomne; - sy |
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The sequences &y, I, 207, 9™ are bounded being convergent, so there exist Ly, L3, L}, Lg for all
t such that

IS1 < L, 135711 < Ly, [IRG7] < L, [[997]] < L.
Together with this, (28) become

IF(&,(1)) = F(S; (1)l
(29) < {1 =wpfi(k) = G(Ly + Ly + WLy + VL) fo(k) — wo(Ln + Lg) }fa(R) 16 — &,

1-5+5( 2 )

where f; are the functions obtained by S;l{ )

Shl- ]} In a similar fashion, we can have

IF(&,() = F(E I < [1 + Gp(Ly + Ly + WLy + WLY) fu(k) + wu(Ly + Lg) f5(5)

(30) (1= B+ Dpoy + wp}fa(ﬁ:)} e — e
(B1)  IFOLO) — FORON < {1+ (1= B)nfals) — (1 + ) falR)} 3T — 37
(32)  FEW) — FOO < {1+ Bpoufols) — (rap + ) o)} 27 — 27|

33)  [FOG®) - FOGOI < {1+ 7/u(k) + Tapfrz2(r) — wpfis(r) HIR, — R

(34) [lFE(@) = FO"@) < AL+ ¢pfralk) + @pfis(k) — @p(k) fre(k) O — D™,
where

(1 — wpfi(k) = Ly + Ly + ULy 4+ UL, fok) — wu(Ly + L)} fa(k) < 1

1+ Cp(Ll + Ly + WLy + WLY) fa(k) + ww (L1 + L) f5(k) = {(1 = @p)mp + Ppop +wpt fo(k) < 1
L+ (1= @)npfr(k) — (7, +wp) fa(k) < 1

L+ ®p0p fo(k) = (Tap + wp) fro(k) < 1
1+ 7, f11(K) + Tap f12(K) — wp f1a(k) <
L1+ dpfra(k) + @pfis(k) — wp(k) fis(k )

Hence, F possesses a fixed point. Thus to prove that the assumptions of Theorem 5.1 are satisfied
by F, we assume inequalities (29)-(34) holds, denote r = (0,0,0,0,0,0) and

(1 — wyfi(k) — Co(Ly 4 Ly 4+ WLy + WL, fo(k) — we(Ly + L)} f3(k) < 1

+ (1= ®p)n,fr(k) — (1, + wp) fs(r) < 1
1+q)pQPf9( ) = (Tap + wp) fro(k) < 1
L+ 7o f11(K) + Tap fr2(k) — wp fi3(k) <
|1+ pf1a(r) + @pf15(K) — @p(k) fre(s )

Hence all the conditions of Theorem 5.1 are satisfied, therefor F is Picard F-stable. O

L+ Cp(Ll + Ly + WLy + VL) fa(k) + wu(Ly + Lg) f5(k) = {(1 = @p)np + Ppop + wptfe(k) <

1
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6. Conclusion

In this paper, considering fractional order derivative due to Atangana and Baleanu we have

studied mathematical model of novel coronavirus proposed by Chen et al. [23]. We presented
the existence and uniqueness of the related fractional fractional differential equation of the model
utilizing Schaefer’s and Banach fixed point theorems respectively. Making use of Shehu transform
and Picard iterative procedure, we presented iterative solutions and proved the stability of iterative
method.
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