REFERENCES
Abida, H., Dolch, L.J., Meï, C., Villanova, V., Conte, M., Block, M.A., … Rébeillé, F. (2015). Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.Plant Physiology, 167(1), 118-36.
Ajmera, I., Hodgman, C., & Lu, C. (2019). An integrative systems perspective on plant phosphate research. Genes, 10, 139.
Amtmann, A., Hammond, J.P., Armengaud, P., & White, P. J. (2005). Nutrient sensing and signalling in plants: potassium and phosphorus.Advances in Botanical Research, 43, 209-257.
Bari, R., Datt, Pant, B., Stitt, M., & Scheible, W.R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants.Plant Physiology, 141, 988-999.
Bates, T. R., & Lynch, J.P. (1996). Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell and Environment 19, 529-538.
Benning, C. (1998). Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 53-75.
Bertrand, I., Holloway, R., Armstrong, R., & McLaughlin, M. (2003). Chemical characteristics of phosphorus in alkaline soils from southern Australia. Soil Research, 41, 61-76.
Bhardwaj, A.K., Zenone, T., Jasrotia, P., Robertson, G.P., Chen, J., & Hamilton, S. K. (2011). Water and energy footprints of bioenergy crop production on marginal lands. GCB Bioenergy, 3, 208-222.
Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P., … Sumner, L.W. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany,56, 323-336.
Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., & Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science,320(5880),1185-1190.
Carstensen, A., Herdean, A., Schmidt, S.B., Sharma, A., Spetea, C., Pribil, M., & Husted, S. (2018). The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology,177(1), 271-84.
Casler, M.D., Tobias, C.M., Kaeppler, S.M., Buell, C.R., Wang, Z, Cao, P., … Ronald, P. (2011). The switchgrass genome: tools and strategies. The Plant Genome, 4, 273-282.
Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113-116.
Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54.
Devaiah, B. N., Karthikeyan, A. S., & Raghothama, K.G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143, 1789-1801.
Devers, E. A., Branscheid, A., May, P., & Krajinski, F. (2011). Stars and symbiosis: microRNA-and microRNA-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiology,156(4), 1990-2010.
Ding, N., Guo, H., Kupper, J. V., & McNear, D. H. (2016). Shoot specific fungal endophytes alter soil phosphorus (P) fractions and potential acid phosphatase activity but do not increase P uptake in tall fescue. Plant and Soil, 401, 291-305.
Ding, N., Kupper, J. V., & McNear, D. H. (2015). Phosphate source interacts with endophyte strain to influence biomass and root system architecture in tall fescue. Agronomy Journal, 107, 662-670.
Du, Q., Wang, K., Zou, C., Xu, C., & Li, W. X. (2018). The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiology, 177(4), 1743-1753.
Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., … Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39, 1033-1037.
Gaude, N., Nakamura, Y., Scheible, W. R., Ohta, H., & Dörmann, P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The PlantJournal, 56, 28-39.
Goldstein, A. H., Baertlein, D. A., & McDaniel, R. G. (1988). Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells.Plant Physiology, 87, 711-715.
Gelfand, I., Sahajpal, R., Zhang, X. S., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493, 514-517.
Gopalakrishnan, G., Cristina Negri, M., & Snyder, S. W. (2011). A novel framework to classify marginal land for sustainable biomass feedstock production. Journal of Environmental Quality, 40, 1593-1600.
Gregory, A. L., Hurley, B.A., Tran, H.T., Valentine, A. J., & She, Y. (2009). In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana.Biochemical Journal, 420, 57-65.
Guretzky, J. A., Biermacher, J. T., Cook, B. J., Kering, M. K., & Mosali, J. (2011). Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition.Plant and Soil, 339, 69-81.
Hackenberg, M., Shi, B. J., Gustafson, P., & Langridge, P. (2013). Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biology, 13(1), 214.
Hammond, J. P., Broadley, M. R., Bowen, H. C., Spracklen, W. P., Hayden, R. M., & White, P. J. (2011). Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PloS one, 6(9), e24606.
Hernandez, G., Ramirez, M., Valdes-Lopez, O., Tesfaye, M., Graham, M. A., Czechowski, T., … Vance, C. P. (2007). Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiology, 144, 752-767.
Hernandez, G., Valdés-López, O., Ramírez, M., Goffard, N., Weiller, G, Aparicio-Fabre, R., …Vance, C.P. (2009). Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiology, 151(3), 1221-1238.
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review.Plant and Soil, 237, 173-195.
Hsieh, L. C., Lin, S. I., Shih, A. C., Chen, J. W., Lin, W.Y., Tseng, C.Y., Li, W. H., & Chiou, T. J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.Plant Physiology, 151, 2120-2132.
Huen, A., Bally, J., & Smith, P. (2018). Identification and characterization of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5’RACE analysis. BMC Genomics, 19(1), 940.
Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J., & Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research, 45 (D1), D1040-D1045.
Kanno, S., Cuyas, L., Javot, H., Bligny, R., Gout, E., Dartevelle, T., … Nussaume, L. (2016). Performance and limitations of phosphate quantification: guidelines for plant biologists. Plant and Cell Physiology, 57, 690-706.
Kc, S., Liu, M., Zhang, Q., Fan, K., Shi, Y., & Ruan, J. (2018). Metabolic changes of amino acids and flavonoids in tea plants in response to inorganic phosphate limitation. International Journal of Molecular Sciences, 19(11), 3683.
Kering, M. K., Biermacher, J.T., Butler, T. J., Mosali, J., & Guretzky, J. A. (2012). Biomass yield and nutrient responses of switchgrass to phosphorus application. Bioenergy Research, 5 (1), 71-78.
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360.
King, J. S., Ceulemans, R., Albaugh, J.M., Dillen, S.Y., Domec, J. C, Fichot, R., …Trnka, M. 2013. The challenge of lignocellulosic bioenergy in a water-limited world. BioScience, 63, 102-117.
Lambers, H., Clode, P., Hawkins, H., Laliberté, E., Oliveira, R., Reddell, P., …Weston, P. (2015b). Metabolic adaptations of the non-mycotrophic proteaceae to soil with a low phosphorus availability.Annual Plant Reviews, 48, 289-336.
Lambers, H., Finnegan, P. M., Jost, R., Plaxton, W.C., Shane, M. W., & Stitt, M. (2015a). Phosphorus nutrition in proteaceae and beyond.Nature Plants, 1, 15109.
Lambers, H., Finnegan, P.M., Laliberté, E., Pearse, S. J., Ryan, M. H., Shane, M. W., & Veneklaas, E. J. (2011). Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiology, 156, 1058-1066.
Lee, H. Y., Chen, Z., Zhang, C., & Yoon, G. M. (2019). Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. Journal of Experimental Botany, 70(6), 1927-1940.
Liu, T. Y., Aung, K., Tseng, C. Y., Chang, T. Y., Chen, Y. S., & Chiou, T. J. (2011). Vacuolar Ca2+/H+transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiology, 156(3), 1176-1189.
Lin, W. Y., Lin, Y. Y., Chiang, S. F., Syu, C., Hsieh, L. C., & Chiou, T. J. (2018). Evolution of micro RNA 827 targeting in the plant kingdom.New Phytologist, 217(4),1712-1725.
Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6, 26.
Luo, Q., Wang, S., Sun, L., & Wang, H. (2017). Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS. Scientific Reports, 7, 39878.
Lynch, J. P. (1995). Root architecture and plant productivity.Plant Physiology, 109, 7-13.
Lynch, J. P. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology,156, 1041-1049.
McCune, B., & Mefford, M. J. 1999. PC-ORD. Multivariate Analysis of Ecological Data, Version 4. MjM Software Design, Gleneden Beach, Oregon, USA.
Meï, C. E., Cussac, M., Haslam, R. P., Beaudoin, F., Wong, Y. S., Maréchal, E., & Rébeillé, F. (2017). C1 metabolism inhibition and nitrogen deprivation trigger triacylglycerol accumulation in Arabidopsis thaliana cell cultures and highlight a role of NPC in phosphatidylcholine-to-triacylglycerol pathway. Frontiers in Plant Science, 7, 2014.
Meyer, E., Aspinwall, M. J., Lowry, D. B., Palacio-Mejía, J. D., Logan, T. L., Fay, P. A., & Juenger, T. E. (2014). Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.).BMC Genomics, 15, 527.
Misson, J., Raghothama, K. G., Jain, A., Jouhet, J, Block, M. A., Bligny, R., … Rolland, N. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934-11939.
Mo, X., Zhang, M., Liang, C., Cai, L., & Tian, J. (2019). Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes. Plant Physiology and Biochemistry, 139, 697-706.
Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B. D., BLÄSING, O., … Scheible, W. R. (2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus.Plant, Cell and Environment, 30, 85-112.
Muir, J. P., Sanderson, M. A., Ocumpaugh, W. R., Jones, R. M., & Reed, R. L. (2001). Biomass production of Alamo switchgrass in response to nitrogen, phosphorus, and row spacing. Agronomy Journal, 93, 869-901.
Muller, J., Gödde, V., Niehaus, K., & Zorb, C. (2015). Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency.Frontiers in Plant Science, 6, 1014.
Muller, R., Morant, M., Jarmer, H., Nilsson, L., & Nielsen, T. H. (2007). Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiology, 143, 156-171.
Nguyen, V. L., Palmer, L., Roessner, U., & Stangoulis, J. (2019). Genotypic variation in the root and shoot metabolite profiles of wheat (Triticum aestivum L.) indicate sustained, preferential carbon allocation as a potential mechanism in phosphorus efficiency.Frontiers in Plant Science, 10, 995.
O’Rourke, J. A., Yang, S. S., Miller, S. S., Bucciarelli, B., Liu, J., Rydeen, A., … Allan, D. (2013). An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiology, 161, 705-724.
Oono, Y., Kawahara, Y., Kanamori, H., Mizuno, H., Yamagata, H., Yamamoto, M., … Matsumoto, T. (2011). mRNA-seq reveals a comprehensive transcriptome profile of rice under phosphate stress.Rice, 4, 50-65.
Oono, Y., Kobayashi, F., Kawahara, Y., Yazawa, T., Handa, H., Itoh, T., & Matsumoto, T. (2013). Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. BMC Genomics, 14(1), 77.
Ouyang, X., Hong, X., Zhao, X., Zhang, W., He, X., Ma, W., … Tong, Y. (2016). Knock out of the PHOSPHATE 2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Scientific Reports, 6, 29850.
Pang, J., Ryan, M. H., Lambers, H., & Siddique, K. H. M. (2018). Phosphorus acquisition and utilization in crop legumes under global change. Current Opinion in Plant Biology, 45, 1-7.
Pant, B., Pant, P., Erban, A., Huhman, D., Kopka, J., & Scheible, W. (2015a). Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR 1 as a major regulator of metabolic changes during phosphorus limitation. Plant, Cell and Environment, 38(1), 172-187.
Pant, B., Burgos, A., Pant, P., Cuadros-Inostroza, A., Willmitzer, L., & Scheible, W. (2015b). The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. Journal of Experimental Botany, 66 (7), 1907-1918.
Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., … Scheible, W. R. (2009). Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiology, 150, 1541-1555.
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J.T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290-295.
Plaxton, W.C., & Carswell, M. C. (1999). Metabolic aspects of the phosphate starvation response in plants. In Plant Responses to Environmental Stresses: From Phytohormones to Genome Organization (eds H.R. Lerner), pp. 349-372. Springer, USA.
Plaxton, W. C., & Tran, H. T. (2011). Metabolic adaptations of phosphate-starved plants. Plant Physiology, 156, 1006-1015.
Ramamoorthy, R., & Kumar, P. P. (2012). A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.).Plant Cell Reports, 31(10), 1923-1931.
Ramette, A. (2007). Multivariate analyses in microbial Ecology.FEMS Microbiology Ecology, 62, 142-160.
Rao, I. M., & Terry, N. (1995). Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet (IV. Changes with time following increased supply of phosphate to low-phosphate plants). Plant Physiology, 107(4), 1313-1321.
Rouached, H., Secco, D., Arpat, B., & Poirier, Y. (2011). The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biology, 11(1),19.
Russo, M. A., Quartacci, M. F., Izzo, R., Belligno, A., & Navari-Izzo, F. (2007). Long- and short-term phosphate deprivation in bean roots: plasma membrane lipid alterations and transient stimulation of phospholipases. Phytochemistry, 68, 1564-1571.
Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209-219.
Sanderson, M.A., Read, J. C., & Reed, R. L. (1999). Harvest management of switchgrass for biomass feedstock and forage production.Agronomy Journal, 91, 5-10.
Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, & Stitt M. 1997. Nitrate acts as signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell,9(5), 783-798.
Scheible, W.R., & Rojas-Triana, M. (2015). Sensing, signalling, and control of phosphate starvation in plants: molecular players and applications. Annual Plant Reviews online, 48, 23-63.
Secco, D., Jabnoune, M., Walker, H., Shou, H. X., Wu, P., Poirier, Y., & Whelan, J. (2013). Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. ThePlant Cell, 25, 4285-4304.
Secco, D., Shou, H., Whelan, J., & Berkowitz, O. (2014). RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics, 15(1), 230.
Serba, D.D., Uppalapati, S.R., Mukherjee, S., Krom, N., Tang, Y., Mysore, K.S., & Saha, M. C. (2015). Transcriptome profiling of rust resistance in switchgrass using RNA-Seq analysis. Plant Genome,8, 1-12.
Shane, M.W., Cramer, M.D., Funayama-Noguchi, S., Cawthray, G. R., Millar, A. H., Day, D. A., & Lambers, H. (2004). Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiology, 135(1), 549-560.
Sharma, M. K., Sharma, R., Cao, P., Jenkins, J., Bartley, L. E., Qualls M., … Ronald, P. C. (2012). A genome-wide survey of switchgrass genome structure and organization. PloS one, 7, e33892.
Tomasi, N., Kretzschmar, T., Espen, L., Weisskopf, L., Fuglsang, A. T., Palmgren, G., … Cesco, S. (2009). Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell and Environment, 32, 465-475.
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31, 46-53.
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., … Masanori, A. (2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12: 523-526.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., … Raven, J. A. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 195, 306-320.
Vu, H.S., Shiva, S., Roth, M.R., Tamura, P., Zheng, L., Li, M., … Welti, R. (2014). Lipid changes after leaf wounding in Arabidopsis thaliana : expanded lipidomic data form the basis for lipid co-occurrence analysis. The Plant Journal, 80, 728-743.
Wang, J., Qin, Q., Pan, J., Sun, L., Sun, Y., Xue, Y., & Song, K. (2019). Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress. Scientific Reports, 9(1), 1-2.
Wissuwa, M., Gamat, G., & Ismail, A. M. (2005). Is root growth under phosphorus deficiency affected by source or sink limitations?Journal of Experimental Botany, 56, 1943-1950.
Xu, F., Liu, Q., Chen, L., Kuang, J., Walk, T., Wang, J., & Liao, H. (2013). Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics, 14(1), 66.
Yacoubi, B., Lyons, B., Cruz, Y., Reddy, R., Nordin, B., Agnelli, F., … de Crecy-Lagard, V. (2009). The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA.Nucleic Acids Research, 37, 2894-2909.
Yang, J., Worley, E., Ma, Q., Li, J., Torres-Jerez, I., Li, G., … Udvardi, M. (2016). Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum . New Phytologist, 211, 75-89.
Yuan, H., Blackwell, M., Mcgrath, S., George, T., Granger, S., Hawkins, J., … Shen, J. (2016). Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils. The Journal of Agricultural Science, 154, 98-108.
Zeng, H., Zhang, X., Zhang, X., Pi, E., Xiao, L., & Zhu, Y. (2018). Early transcriptomic response to phosphate deprivation in soybean leaves as revealed by RNA-sequencing. International Journal of MolecularSciences, 19(7), 2145.
Zhang, J., Lee, Y., Torres-Jerez, I., Wang, M., Yin, Y., Chou, W., … Udvardi, M. K. (2013). Development of an intergrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). The Plant Journal, 74, 160-173.
Zhang, K., Liu, H., Song, J., Wu, W., Li, K., & Zhang, J. (2016). Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling. BMC Plant Biology, 16, 129.