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Abstract

In this paper, we study the existence of critical points for the following
functional

I(u) =
1

2

∫
RN

|∇u|2 +
∫
RN

|u|2|∇u|2 − N

4(N + 1)

∫
RN

|u|
4(N+1)

N ,

constrained on Sc = {u ∈ H1(RN )|
∫
RN |u|2|∇u|2 < +∞, |u|2 = c, c > 0},

where N ≥ 1. The constraint problem is L2-critical. We prove that the mini-
mization problem ic = inf

u∈Sc

I(u) has no minimizer for all c > 0. We also obtain

a threshold value of c separating the existence and nonexistence of critical
points for I(u) restricted to Sc.
Keywords: L2-critical; Constrained minimization; Sharp existence; Quasilin-
ear Schrödinger equations
Mathematics Subject Classification(2010): 35J50, 35J60, 35Q55

1 Introduction and main result

In the past years, the following quasilinear Schrödinger equation

i∂tϕ+ ∆ϕ+ ϕ∆(|ϕ|2) + |ϕ|p−2ϕ = 0, (t, x) ∈ R+ × RN , (1.1)

has attracted considerable attention, where i denotes the imaginary unit and ϕ :
R+ × RN → C, p ∈ (2, 2 · 2∗), 2∗ = 2N

N−2
if N ≥ 3 and 2∗ = +∞ if N = 1, 2.

Quasilinear Schrödinger equation (1.1) appears in various physical fields, such as in
dissipative quantum mechanics, in plasma physics and in fluid mechanics, see more
information in [7, 8, 18]. One usually searches for standing waves solutions of (1.1),
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i.e. solutions of the form ϕ(t, x) = e−iλtu(x), where λ ∈ R is a parameter and
u : RN → R is a function to be founded, then (1.1) is reduced to be the following
stationary equation

−∆u+ u∆(|u|2)− |u|p−2u = λu, x ∈ RN . (1.2)

We firstly consider the case where λ is a fixed and assigned parameter. In such
direction, the critical point theory is used to look for nontrivial solutions of the
following functional

Φp(u) =
1

2

∫
RN

|∇u|2 − λ

2

∫
RN

|u|2 +

∫
RN

|u|2|∇u|2 − 1

p

∫
RN

|u|p

defined on the natural space

H :=

{
u ∈ H1(RN)|

∫
RN

|u|2|∇u|2 < +∞
}
.

However, nothing can be given a priori on the L2-norm of the solutions. We say u
a weak solution of (1.2) if u ∈ H and 〈Φ′p(u), φ〉 = lim

t→0+

Φp(u+tφ)−Φp(u)

t
= 0 for every

direction φ ∈ C∞0 (RN). Different from semilinear equations, the quasilinear term∫
RN |u|2|∇u|2 in the functional Φp is not differentiable in H when N ≥ 2. This causes

some mathematical difficulties which make the study of (1.2) particularly interest-
ing. To overcome this difficulty, during the past ten years, researchers considered
such quasilinear Schrödinger problems and a lot of existence and multiplicity results
have been obtained by using minimizations, change of variables, Nehari method and
perturbation method, see e.g. [1, 2, 4, 5, 12, 13, 14, 15, 16, 17, 19] and their references
therein.

Recently, since the physicists are often interested in “normalized solutions”, i.e.
solutions with prescribed L2-norm, it is interesting for us to study whether (1.2) has

a normalized solution. For any fixed c > 0, a solution of (1.2) with (
∫
RN |u|2)

1
2 = c

can be viewed as a critical point of the following functional

Ip(u) =
1

2

∫
RN

|∇u|2 +

∫
RN

|u|2|∇u|2 − 1

p

∫
RN

|u|p (1.3)

constrained on the L2-spheres in H:

Sc = {u ∈ H| |u|2 = c, c > 0},

where |u|2 := (
∫
RN |u|2)

1
2 . In this case, the parameter λ is not fixed any longer but

appears as an associated Lagrange multiplier. We call (uc, λc) ∈ Sc × R a couple
of solution to (1.2) if uc is a critical point of Ip(u) constrained on Sc and λc is the
associated Lagrange parameter. To obtain the normalized solutions, there are some
papers studying the following minimization problem

ip,c := inf
u∈Sc

Ip(u), (1.4)
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see [3, 9, 10]. It has been shown in [3, 10] that minimizers of ip,c are exactly critical

points of Ip|Sc . In [3], Colin, Jeanjean and Squassina proved that p = 4(N+1)
N

is L2-
critical exponent for (1.4), namely, for all c > 0, Ip(u) is bounded from below and

coercive on Sc if p ∈ (2, 4(N+1)
N

) and ip,c = −∞ if p ∈ (4(N+1)
N

, 2·2∗). When p = 4(N+1)
N

,
Jeanjean and Luo showed in [9] that there exists cN ∈ (0,+∞) such that i 4(N+1)

N
,c

= 0

for c ∈ (0, cN) and i 4(N+1)
N

,c
= −∞ for all c > cN . However, the accurate expression of

cN and the accurate value of i 4(N+1)
N

,cN
are unknown yet. Actually the method in [9]

cannot do that. In this paper, by an alternative method we succeeded in obtaining a
threshold value of c to separate the existence and nonexistence of critical points for
I 4(N+1)

N

(u) constrained on Sc.

For simplicity, we use I(u) and ic to denote I 4(N+1)
N

(u) and i 4(N+1)
N

,c
respectively.

Recall in (4.5) of [3] that there exists a positive constant C depending only on N

such that for any u ∈ H,
∫
RN |u|

4(N+1)
N ≤ C

(∫
RN |u|2

) 2
N
∫
RN |u|2|∇u|2. Set

A := inf
u∈H\{0}

(∫
RN |u|2

) 2
N
∫
RN |u|2|∇u|2∫

RN |u|
4(N+1)

N

≥ 1

C
> 0. (1.5)

Then our main result is as follows:

Theorem 1.1. For p = 4(N+1)
N

and N ≥ 1, let c∗ =
(

4(N+1)
N

A
)N

4
. Then

(1) ic =

{
0, 0 < c ≤ c∗,

−∞ c > c∗.

(2) ic has no minimizer for all c > 0.
(3) I(u) has no critical point on the constraint Sc for all 0 < c ≤ c∗.

Since it has been proved that problem (1.2) has at least one nontrivial solution

when p = 4(N+1)
N

( see e.g. [5, 14]), it is reasonable to conjecture that I(u) has at
least one critical point constrained on Sc for some c > c∗. In this paper, we did so.
To the best of our knowledge, there is no paper on this respect. To state our main
result, we set

Nc :=

{
u ∈ Sc|

∫
RN

|u|2|∇u|2 < N

4(N + 1)

∫
RN

|u|
4(N+1)

N

}
, (1.6)

then it follows from Theorem 1.1 (1) that Nc 6= ∅ for each c > c∗. Define

Mc := {u ∈ Nc| G(u) = 0},

where

G(u) :=

∫
RN

|∇u|2 + (N + 2)

∫
RN

|u|2|∇u|2 − N(N + 2)

4(N + 1)

∫
RN

|u|
4(N+1)

N .

Then we have the following result:
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Theorem 1.2. Assume that N ≤ 3, p = 4(N+1)
N

and c > c∗, where c∗ is given in
Theorem 1.1. Then there exists a couple of solution (uc, λc) ∈Mc×R− satisfying the
following equation

−∆u+ u∆(|u|2)− |u|
2N+4

N u = λcu, x ∈ RN (1.7)

with I(uc) = inf
u∈Mc

I(u).

To prove Theorem 1.2, since ic = −∞ for c > c∗, the minimization problem
constrained on Sc does not work. We try to construct a submanifold of Sc, on which

I(u) admits a minimizer. As
∫
RN |u|2|∇u|2 and

∫
RN |u|

4(N+1)
N behave at the same way

under L2-preserving scaling of u, it may occur that I(ut) > 0 and I(ut) is strictly

increasing with respect to t on (0,+∞) for some u ∈ Sc, where ut(x) = t
N
2 u(tx). Then

usual arguments which allowed us to benefit from the Pohozaev-Nehari constraint
{u ∈ Sc|G(u) = 0} cannot be applied here. We need to exclude the interference of

the functions satisfying that
∫
RN |u|2|∇u|2 ≥ N

4(N+1)

∫
RN |u|

4(N+1)
N , which is the reason

why the set Nc is introduced. We can show that for each u ∈ Nc, there exists a
unique t(u) > 0 such that G(ut(u)) = 0 and I(ut(u)) = max

t>0
I(ut). Then Mc can be

viewed as the suitable submanifold. To prove Theorem 1.2, we consider the following
minimization problem

mc = inf
u∈Mc

I(u)

and prove that mc is attained. There are two difficulties. First, it is not easy to
prove that Mc is a natural constraint of I|Sc , i.e. minimizers of mc are critical
points of I(u) constrained on Sc since there may be two Lagrange multipliers. We
overcome this difficulty by using the Pohozaev identity and the well-known Gagliardo-
Nirenberg inequality, which requires more careful analysis. Second, it is difficult to
show thatMc is weakly closed due to a possible lack of compactness for the minimizing
sequences. In our case it seems impossible to reduce the problem to the classical
vanishing-dichotomy-compactness scenario and to use the concentration-compactness
principle since we search for solutions constrained on Sc. To overcome this difficulty,
we construct a Schwartz symmetric minimizing sequence of mc and prove the strict
monotonicity of the function c 7→ mc to avoid possible vanishing and dichotomy of
the sequence. In the proof of the essential strictly monotonicity of mc, we use the
scaling arguments in which 4(N+1)

N
< 2∗ and N ≤ 3 is required.

Remark 1.3. When N ≥ 4, the L2-critical exponent 4(N+1)
N

> 2∗. It seems impos-
sible to show the strict monotonicity of mc (see details in Remark 2.10 below), which
makes that our method cannot be used to deal with the case where N ≥ 4. However,
we conjecture that the conclusion of Theorem 1.2 also holds for N ≥ 4.

We also concern the behavior of the solutions uc and λc obtained in Theorem 1.2
upon the value of c > 0.
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Proposition 1.4. For any c > c∗, let (uc, λc) be the couple of solution obtained in
Theorem 1.2. Then

(1)

{
|∇uc|2 → +∞, mc → +∞,
λc → −∞

as c→ (c∗)
+.

(2)

{
|∇uc|2 → 0, mc → 0,

λc → 0
as c→ +∞.

We finally obtain a supplementary result in the special case where p = 2N+4
N

. In
[9], Jeanjean and Luo conjecture that i 2N+4

N
,c has a minimizer for some c > 0. We

succeeded in proving this conjecture.
Recall in [6, 11, 20] the well-known Gagliardo-Nirenberg inequality with the best

constant: Let p ∈ [2, 2∗) if N ≥ 3 and p ≥ 2 if N = 1, 2, then

|u|pp ≤
p

2|Qp|p−2
2

|u|p−
N(p−2)

2
2 |∇u|

N(p−2)
2

2 , ∀u ∈ H1(RN), (1.8)

with equality only for u = Qp, where up to translations, Qp is the unique ground
state solution of

−N(p− 2)

4
∆Q+

(
1 +

p− 2

4
(2−N)

)
Q = |Q|p−2Q, x ∈ RN . (1.9)

Moreover, when p = 2N+4
N

, it is proved in [6, 11] that Q 2N+4
N

is monotonically decreas-

ing away from the origin and

Q 2N+4
N

(x), |∇Q 2N+4
N

(x)| = O(|x|−
1
2 e−|x|) as |x| → +∞. (1.10)

Then we have the following existence result.

Theorem 1.5. For p = 2N+4
N

and N ≥ 1, let c∗ = |Q 2N+4
N
|2, then

(1) i 2N+4
N

,c = 0 for all 0 < c ≤ c∗ and i 2N+4
N

,c < 0 for all c > c∗.

(2) i 2N+4
N

,c has a minimizer if and only if c > c∗.

(3) I 2N+4
N

(u) has no critical point on the constraint Sc for all 0 < c ≤ c∗.

Throughout this paper, we use standard notations. For simplicity, we write
∫

Ω
h

to mean the Lebesgue integral of h(x) over a domain Ω ⊂ RN . Lp := Lp(RN) (1 ≤
p ≤ +∞) is the usual Lebesgue space with the standard norm | · |p. We use “ → ”
and “ ⇀ ” to denote the strong and weak convergence in the related function space
respectively. C will denote a positive constant unless specified. We use “ := ” to
denote definitions. We denote a subsequence of a sequence {un} as {un} to simplify
the notation unless specified.

The paper is organized as follows. In § 2, we prove Theorems 1.1 and 1.2. In § 3,
we prove Proposition 1.4. In § 4, we prove Theorem 1.5.
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2 Proof of Theorems 1.1 and 1.2

In this section, we first prove Theorem 1.1. By (1.5), we have∫
RN

|u|
4(N+1)

N ≤ 1

A
|u|

4
N
2

∫
RN

|u|2|∇u|2, ∀u ∈ H. (2.1)

In particular, for any c > 0 and any u ∈ Sc, since c∗ =
(

4(N+1)
N

A
)N

4
, we have

N

4(N + 1)

∫
RN

|u|
4(N+1)

N ≤
(
c

c∗

) 4
N
∫
RN

|u|2|∇u|2. (2.2)

Lemma 2.1. ic =

{
0, 0 < c ≤ c∗,

−∞ c > c∗.

Proof. (1) For any 0 < c ≤ c∗ and any u ∈ Sc, by (2.2) we have N
4(N+1)

∫
RN |u|

4(N+1)
N ≤∫

RN |u|2|∇u|2, then

I(u) ≥ 1

2

∫
RN

|∇u|2 > 0, (2.3)

which shows that ic ≥ 0 by the arbitrary of u.
On the other hand, for any t > 0, set ut(x) := t

N
2 u(tx), then

I(ut) =
t2

2

∫
RN

|∇u|2+tN+2

[∫
RN

|u|
4(N+1)

N − N

4(N + 1)

∫
RN

|u|
4(N+1)

N

]
→ 0 as t→ 0+,

hence ic ≤ 0. So ic = 0 for each 0 < c ≤ c∗.

(2) For any c > c∗ =
(

4(N+1)
N

A
)N

4
, then A < N

4(N+1)
c

4
N . By the definition of A

there exists u ∈ H\{0} such that
|u|

4
N
2

∫
RN |u|

2|∇u|2∫
RN |u|

4(N+1)
N

< N
4(N+1)

c
4
N . Set v := c

|u|2u, then

v ∈ Sc and∫
RN

|v|2|∇v|2 =

(
c

|u|2

)4 ∫
RN

|u|2|∇u|2 <
N

4(N + 1)

(
c

|u|2

)4+ 4
N
∫
RN

|u|
4(N+1)

N

=
N

4(N + 1)

∫
RN

|v|
4(N+1)

N .

(2.4)
Hence for any t > 0,

I(vt) =
t2

2

∫
RN

|∇v|2 − tN+2

[
N

4(N + 1)

∫
RN

|v|
4(N+1)

N −
∫
RN

|v|2|∇v|2
]
→ −∞

as t→ +∞, which implies that ic = −∞ for any c > c∗.
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By the proof of Lemma 2.1, we have the following result.

Corollary 2.2. {
Nc = ∅, 0 < c ≤ c∗,

Nc 6= ∅, c > c∗,
(2.5)

where Nc is defined as in (1.6). Moreover, for any 0 < c ≤ c∗ and any u ∈ Sc,
I(u) > 0.

Lemma 2.3. ic has no minimizer for all c > 0.

Proof. The Lemma follows directly from Lemma 2.1 and Corollary 2.2.

Lemma 2.4. I(u) has no critical point constrained on Sc for each c ∈ (0, c∗].

Proof. By contradiction, we just suppose that there exists some c ∈ (0, c∗] and some
uc ∈ Sc such that (I|Sc)

′(uc) = 0, then there exists a Lagrange multiplier λc ∈ R such
that I ′(uc) − λcuc = 0. Hence by Lemma 3.1 in [3], we see that uc satisfies the
following Pohozaev identity:

(N−2)

(
1

2

∫
RN

|∇uc|2 +

∫
RN

|uc|2|∇uc|2
)
−N

2
λc

∫
RN

|uc|2−
N2

4(N + 1)

∫
RN

|uc|
4(N+1)

N = 0,

so ∫
RN

|∇uc|2 + (N + 2)

∫
RN

|uc|2|∇uc|2 =
N(N + 2)

4(N + 1)

∫
RN

|uc|
4(N+1)

N ,

which implies that uc ∈ Nc. It is a contradiction with Corollary 2.2. Then the lemma
is proved.

Proof of Theorem 1.1

Proof. Theorem 1.1 follows from Lemmas 2.1-2.4.

Next we deal with the existence of normalized solutions for I(u) restricted to Sc
when c > c∗ and N ≤ 3. Motivated by Lemma 2.4 and Corollary 2.2, we try to search
for normalized solutions constrained on Nc.

Lemma 2.5. For any u ∈ Nc, there exists a unique t̃ > 0 such that I(ut̃) =

max
t>0

I(ut) and G(ut̃) = 0, where ut(x) = t
N
2 u(tx) and

G(u) =

∫
RN

|∇u|2 + (N + 2)

∫
RN

|u|2|∇u|2 − N(N + 2)

4(N + 1)

∫
RN

|u|
4(N+1)

N . (2.6)
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Proof. For any u ∈ Nc, we consider the following path γ : (0,+∞)→ R defined as

γ(t) =
t2

2

∫
RN

|∇u|2 − tN+2

[
N

4(N + 1)

∫
RN

|u|
4(N+1)

N −
∫
RN

|u|2|∇u|2
]
,

i.e. γ(t) = I(ut). Then by an elementary analysis, we see that γ has a unique positive
critical point t̃ corresponding to its maximum, i.e. γ′(t̃) = 0 and γ(t̃) = max

t>0
γ(t).

Hence I(ut̃) = max
t>0

I(ut) and

t̃2
∫
RN

|∇u|2 + (N + 2)t̃N+2

∫
RN

|u|2|∇u|2 − N(N + 2)

4(N + 1)
t̃N+2

∫
RN

|u|
4(N+1)

N = 0.

So G(ut̃) = 0.

For any c > c∗, we define a manifold as follows:

Mc = {u ∈ Nc| G(u) = 0},

then Lemma 2.5 shows that Mc 6= ∅.
Note that 4(N+1)

N
< 2∗ for N = 1, 2, 3. Recall by the Gagliardo-Nirenberg inequal-

ity (1.8) that when N = 1, 2, 3, there exists a positive constant C depending only on
N such that ∫

RN

|u|
4(N+1)

N ≤ C|∇u|N+2
2 |u|

−N2+2N+4
N

2 , (2.7)

where we note that
−N2 + 2N + 4

N
> 0 for N ≤ 3. (2.8)

Lemma 2.6. For any c > c∗,
(1) I(u) is bounded from below and coercive on Mc.

(2) There exists a constant C0 > 0 such that
∫
RN |u|

4(N+1)
N ≥ C0 for all u ∈Mc.

(3) There exists a constant C1 > 0 such that I(u) ≥ C1 for all u ∈Mc.

Proof. For any u ∈Mc, G(u) = 0 and

I(u) = I(u)− 1

N + 2
G(u) =

N

2(N + 2)

∫
RN

|∇u|2 ≥ 0. (2.9)

Then I is bounded from below and coercive on Mc. Moreover, by G(u) = 0 and (2.7),
we see that there exists C > 0 depending only on N and c such that(

1

C

∫
RN

|u|
4(N+1)

N

) 2
N+2

≤ |∇u|22 ≤
N(N + 2)

4(N + 1)

∫
RN

|u|
4(N+1)

N ≤ N(N + 2)

4(N + 1)
C|∇u|N+2

2 ,

then ∫
RN

|u|
4(N+1)

N ≥

(
4(N + 1)

N(N + 2)C
2

N+2

)N+2
N

:= C0

8



and |∇u|2 ≥
(

4(N+1)
N(N+2)C

) 1
N
, which and (2.9) show that

I(u) ≥ N

2(N + 2)

(
4(N + 1)

N(N + 2)
C

) 2
N

:= C1

for all u ∈Mc.

For any c > c∗, set
mc := inf

u∈Mc

I(u), (2.10)

we see from Lemma 2.6 that mc > 0.
To prove Theorem 1.2, we need the following essential lemmas.

Lemma 2.7. The function c 7→ mc is strictly decreasing on (c∗,+∞).

Proof. For any c1, c2 ∈ (c∗,+∞) satisfying that c1 < c2, it is enough to prove that
mc2 < mc1 .

By the definition of mc1 and Lemma 2.5, there exists un ∈Mc1 such that I(un) ≤
mc1 + 1

n
and I(un) = max

t>0
I(utn).

Case 1: N = 2, 3.
Set vn(x) := ( c1

c2
)
N
2
−1un( c1

c2
x), then |vn|2 = c2 and |∇vn|2 = |∇un|2. Moreover,∫

RN

|vn|2|∇vn|2 =

(
c1

c2

)N−2 ∫
RN

|un|2|∇un|2 ≤
∫
RN

|un|2|∇un|2, (2.11)

and by (2.8),∫
RN

|vn|
4(N+1)

N =

(
c2

c1

)−N2+2N+4
N

∫
RN

|un|
4(N+1)

N >

∫
RN

|un|
4(N+1)

N , (2.12)

i.e. vn ∈ Nc2 since un ∈Mc1 . Then by Lemma 2.5 there exists a sequence {tn} ⊂ R+

such that vtnn ∈Mc2 and I(vtnn ) = max
t>0

I(vtn).

Furthermore, there exists C > 0 independent of n such that tn ≥ C for all n.
Indeed, we just assume that tn → 0 as n → +∞. By the definition of {vn}, we see
that {vn} is uniformly bounded in H. Then we conclude from Lemma 2.6 (3) that
0 < mc2 ≤ lim

n→+∞
I(vtnn ) → 0, which is impossible. So by Lemma 2.6 (2) and (2.11)

we have

mc2 ≤ I(vtnn ) ≤ I(utnn )−
(

(
c2

c1

)
−N2+2N+4

N − 1

)
tN+2
n

∫
RN

|un|
4(N+1)

N

< max
t>0

I(utn)−
(

(
c2

c1

)
−N2+2N+4

N − 1

)
tN+2
n C0

≤ I(un)−
(

(
c2

c1

)
−N2+2N+4

N − 1

)
tN+2
n C0

≤ mc1 +
1

n
−
(

(
c2

c1

)
−N2+2N+4

N − 1

)
CN+2C0,

(2.13)
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where C0 is a positive constant independent of n given in Lemma 2.6. Hence it follows
that mc2 < mc1 .

Case 1: N = 1.
Set vn(x) := un(( c1

c2
)2x), then |vn|2 = c2 and |∇vn|2 = ( c1

c2
)2|∇un|2. Similarly to

(2.11) and (2.12), we have∫
R
|vn|2|∇vn|2 =

(
c1

c2

)2 ∫
R
|un|2|∇un|2 <

∫
R
|un|2|∇un|2,

and ∫
R
|vn|

4(N+1)
N =

(
c2

c1

)2 ∫
R
|un|

4(N+1)
N >

∫
R
|un|

4(N+1)
N ,

Then vn ∈ Nc2 . By the same process as in (2.13), we see that

mc2 ≤ mc1 +
1

n
−
(

(
c2

c1

)2 − 1

)
CN+2C0,

so it follows that mc2 < mc1 . Then we complete the proof of the lemma.

Lemma 2.8. For any c > c∗, each minimizer of mc is a critical point of I(u)
constrained on Sc.

Proof. We note that Mc = {u ∈ Sc| G(u) = 0}. then mc = inf
{u∈Sc| G(u)=0}

I(u).

Let m̃c := inf
{u∈Sc| G(u)=0}

I(u). Suppose that u ∈ Mc is a minimizer of mc, then u

is also a minimizer of m̃c. Hence by standard arguments, there exist λ, µ ∈ R such
that I ′(u)− λu− µG′(u) = 0, i.e. u satisfies the following equation

−(1− 2µ)∆u+ [1− (N + 2)µ]u∆(|u|2)− [1− (N + 2)µ]|u|2+ 4
N u = λu. (2.14)

It is enough to prove that λ 6= 0 and µ = 0.
By contradiction, we just suppose that µ 6= 0. By (2.14), we know that u satisfies

the following Pohozaev identity

(N − 2)

[
1− 2µ

2

∫
RN

|∇u|2 + [1− (N + 2)µ]

∫
RN

|u|2|∇u|2
]
− N

2
λ

∫
RN

|u|2

− N2

4(N + 1)
[1− (N + 2)µ]

∫
RN

|u|
4(N+1)

N = 0.

We conclude from (2.14) again that

(1− 2µ)

∫
RN

|∇u|2 + (N + 2)[1− (N + 2)µ]

∫
RN

|u|2|∇u|2

− N(N + 2)

4(N + 1)
[1− (N + 2)µ]

∫
RN

|u|
4(N+1)

N = 0,
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i.e.

G(u)− µ
[
2

∫
RN

|∇u|2 + (N + 2)2

(∫
RN

|u|2|∇u|2 − N

4(N + 1)

∫
RN

|u|
4(N+1)

N

)]
= 0.

Then combing G(u) = 0 with µ 6= 0, we conclude that
∫
RN |∇u|2 = 0, which contra-

dicts Lemma 2.6 (3). So it follows that µ = 0 and then u is a critical point of I(u)
constrained on Sc.

The following Lemma is similar to that in [3], so we omit its proof.

Lemma 2.9. Let {un} ⊂ H be a bounded sequence of Schwartz Symmetric functions
satisfying un ⇀ u in H, then∫
RN

|∇u|2+(N+2)

∫
RN

|u|2|∇u|2 ≤ lim inf
n→+∞

(∫
RN

|∇un|2 + (N + 2)

∫
RN

|un|2|∇un|2
)
.

Proof of Theorem 1.2

Proof. Let {un} ⊂Mc be a minimizing sequence of mc, then by Lemma 2.6 (1), {un}
is uniformly bounded in H. To obtain a minimizer of mc, let {vn} be the sequence
of Schwartz Symmetric functions for {un}, then by the Pólya-Szegö inequality (see
also Lemma 4.3 in [3]), we have∫

RN

|∇vn|2 ≤
∫
RN

|∇un|2,
∫
RN

|vn|2 =

∫
RN

|un|2 = c2,∫
RN

|vn|
4(N+1)

N =

∫
RN

|un|
4(N+1)

N ,∫
RN

|∇vn|2 + (N + 2)

∫
RN

|vn|2|∇vn|2 ≤
∫
RN

|∇un|2 + (N + 2)

∫
RN

|un|2|∇un|2,

(2.15)
hence the sequence {vn} is also uniformly bounded in H. Moreover, we have

G(vn) ≤ G(un) = 0. (2.16)

Since {vn} is uniformly bounded, up to a subsequence, there exists v ∈ H such that{
vn ⇀ v, in H,

vn → v, in Lp(RN), ∀ p ∈ (2, 2∗).
(2.17)

In particular, since 4(N+1)
N

< 2∗, by (2.15) and Lemma 2.6 we see that∫
RN

|v|
4(N+1)

N = lim
n→+∞

∫
RN

|vn|
4(N+1)

N = lim
n→+∞

∫
RN

|un|
4(N+1)

N ≥ C0 > 0, (2.18)
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which implies that v 6= 0, where C0 > 0 is a constant given in Lemma 2.6 (2). Set
α := |v|2, then α ∈ (0, c]. We conclude from Lemma 2.9 and (2.16)-(2.18) that

G(v) ≤ lim inf
n→+∞

G(vn) ≤ 0,

i.e. v ∈ Nα and G(v) ≤ 0. So it follows from Corollary 2.2 that α ∈ (c∗, c]. By
Lemma 2.5, there exists a unique t ∈ (0, 1] such that vt ∈ Mα. Then by Lemma 2.7
we have

mα ≤ I(vt) = I(vt)− 1

N + 2
G(vt) =

N

2(N + 2)
t2
∫
RN

|∇v|2

≤ N

2(N + 2)
lim inf
n→+∞

∫
RN

|∇vn|2

≤ N

2(N + 2)
lim inf
n→+∞

∫
RN

|∇un|2

= lim inf
n→+∞

(
I(un)− 1

N + 2
G(un)

)
= mc ≤ mα,

where the equality holds only for α = c and t = 1. So α = c and I(v) = mc.
Therefore we obtain a minimizer v ∈ Mc of mc. By Lemma 2.8, we see that v is a
critical point of I(u) constrained on Sc. That is to say, there exists λc ∈ R such that
I ′(v)− λcv = 0. Hence by G(v) = 0, we have

λcc
2 =

∫
RN

|∇v|2 + 4

∫
RN

|v|2|∇v|2 −
∫
RN

|v|
4(N+1)

N

=
N2 − 2N − 4

N(N + 2)

∫
RN

|∇v|2 − 4

N

∫
RN

|v|2|∇v|2 < 0,

i.e. λc < 0. So (v, λc) ∈ Sc × R− is a couple of solution to the problem (1.7). The
theorem is proved.

Remark 2.10. When N ≥ 4, similarly to the proof of Lemma 2.5, we see that mc is
also well defined. However, it seems impossible to show the strict monotonicity of mc

by the scaling arguments as Lemma 2.7. Indeed, for any c > c∗ and any u ∈Mc, set
uθ(x) := θαu(θβx), ∀ θ > 1, where α, β ∈ R are to be undetermined so that uθ ∈ Nθc.
Then it should require that 

2α−Nβ = 2,

2α + (2−N)β ≤ 0,

4α + (2−N)β ≤ 0,

4(N+1)
N

α−Nβ ≥ 0.
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Hence we conclude that

− N

N + 2
≤ α ≤ 2−N

2

and then we obtain a necessary condition: −N2 + 2N + 4 ≥ 0, which is impossible
since N ≥ 4.

3 Proof of Proposition 1.4

Proof of Proposition 1.4

Proof. For any c > c∗, let (uc, λc) ∈ Mc × R− be the solution of (1.7) obtained in
Theorem 1.2, then G(uc) = 0,

mc = I(uc) =
N

2(N + 2)

∫
RN

|∇uc|2 (3.1)

and

λcc
2 =

N − 2

N + 2

∫
RN

|∇uc|2 −
1

N + 1

∫
RN

|uc|
4(N+1)

N . (3.2)

We complete the proof in three steps.
(1) We claim that the function c 7→ mc is continuous on (c∗,+∞).
To prove that the function c 7→ mc is continuous at c ∈ (c∗,+∞), by Lemma 2.7

it is enough to show that lim sup
cn→c−

mcn ≤ mc for any sequence cn → c−.

Since cn → c−, for n large enough, cn
c
uc ∈ Ncn and by Lemma 2.5 there exists a

sequence {tn} ⊂ R+ such that cn
c
utnc ∈Mcn , moreover, lim

cn→c−
tn = 1. So

mcn ≤ I(
cn
c
utnc )→ I(uc) = mc,

which implies the conclusion.

(2)


mc → +∞,∫
RN |∇uc|2 → +∞,
λc → −∞,

as c→ (c∗)
+.

We conclude from Lemma 2.6 (3) and (3.1) that
∫
RN |∇uc|2 ≥ 2(N+2)

N
C1 > 0,

where C1 > 0 is a positive constant. Hence by (2.2) and (2.7) we have∫
RN

|∇uc|2 ≤
N(N + 2)

4(N + 1)

[
1−

(c∗
c

) 4
N

] ∫
RN

|uc|
4(N+1)

N

≤ N(N + 2)

4(N + 1)
C

[
1−

(c∗
c

) 4
N

]
c

−N2+2N+4
N

(∫
RN

|∇uc|2
)N+2

2

,

which implies that
∫
RN |∇uc|2 → +∞ and

∫
RN |uc|

4(N+1)
N∫

RN |∇uc|2
→ +∞ as c→ (c∗)

+. So the

results follow from (3.1) and (3.2).
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(3)


mc → 0,∫
RN |∇uc|2 → 0,

λc → 0,

as c→ +∞.

Let c0 > c∗ be fixed and uc0 ∈Mc0 be the minimizer of mc0 . For any c > c0, then
w(x) := uc0((

c0
c

)
2
N x) ∈ Nc, hence by Lemma 2.5 there exists

t =

 1
N+2

∫
RN |∇w|2

N
4(N+1)

∫
RN |w|

4(N+1)
N −

∫
RN |w|2|∇w|2

 1
N

such that wt ∈Mc. So

mc ≤ I(wt) =
N
∫
RN |∇w|2

2(N + 2)

 1
N+2

∫
RN |∇w|2

N
4(N+1)

∫
RN |w|

4(N+1)
N −

∫
RN |w|2|∇w|2

 2
N

= mc0

 1
N+2

( c
c0

)N−2
∫
RN |∇uc0|2

( c
c0

)
4
N

N
4(N+1)

∫
RN |uc0|

4(N+1)
N −

∫
RN |uc0|2|∇uc0|2

 2
N

−→ 0

as c→ +∞, which implies that lim
c→+∞

mc = 0 and by (3.1) we have
∫
RN |uc|2 → 0 as

c→ +∞. Then by (3.2) and (2.7) we see that lim
c→+∞

λc = 0.

4 Proof of Theorem 1.5

Recall from the well-known Gagliardo-Nirenberg inequality (1.8)-(1.10) in section 1
that for any u ∈ Sc, we have∫

RN

|u|
2N+4

N ≤ N + 2

N

( c
c∗

) 4
N

∫
RN

|∇u|2, ∀ u ∈ H1(RN), (4.1)

with equality only for u = Q 2N+4
N

, where c∗ := |Q 2N+4
N
|2. Moreover, we conclude from

(1.9) and the associated Pohozaev identity that∫
RN

|∇Q 2N+4
N
|2 =

∫
RN

|Q 2N+4
N
|2 =

N

N + 2

∫
RN

|Q 2N+4
N
|
2N+4

N . (4.2)

Proof of Theorem 1.5

Proof. (1) For any c > 0 and u ∈ Sc, set ut(x) := t
N
2 u(tx), t > 0. Then ut ∈ Sc and

I 2N+4
N

(ut)→ 0 as t→ 0+, then i 2N+4
N

,c ≤ 0.

If 0 < c ≤ c∗, then by (4.1) we have 1
2

∫
RN |∇u|2 ≥ N

2N+4

∫
RN |u|

2N+4
N and then

I 2N+4
N

(u) ≥
∫
RN

|u|2|∇u|2 > 0,
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which implies that i 2N+4
N

,c ≥ 0. So i 2N+4
N

,c = 0 for each 0 < c ≤ c∗.

If c > c∗, set Qt
c(x) := ct

N
2

c∗
Q 2N+4

N
(tx), ∀t > 0, then Qt

c ∈ Sc and by (1.10) and

(4.2) we see that

I(Qt
c) =

( c
c∗

)4
∫
RN

|Q 2N+4
N
|2|∇Q 2N+4

N
|2tN+2 − c2

2

[( c
c∗

) 4
N − 1

]
t2 := f(t)

Hence

i 2N+4
N

,c ≤ inf
t>0

I(Qt
c) = − N

2(N+2)

[
(c∗)4

(N+2)
∫
RN |Q 2N+4

N
|2|∇Q 2N+4

N
|2

] 2
N

c2− 4
N

[(
c
c∗

) 4
N − 1

]1+ 2
N

< 0.

(2) For any 0 < c ≤ c∗ and any u ∈ Sc, by (1) we see that I 2N+4
N

(u) > 0. So there

exists no minimizer for i 2N+4
N

,c.

For any c > c∗, let {un} ⊂ Sc be a minimizing sequence for i 2N+4
N

,c < 0. Let

uθn(x) = un(θ−
2
N x) with ∀ θ > 1, then uθn ∈ Sθc and I 2N+4

N
(uθn) ≤ θ2I 2N+4

N
(un). Letting

n→ +∞, then
i 2N+4

N
,θc ≤ θ2i 2N+4

N
,c < i 2N+4

N
,c,

which implies that i 2N+4
N

,c is strictly decreasing on (c∗,+∞).

Since I 2N+4
N

(un) → i 2N+4
N

< 0 as n → +∞, we conclude that for n large enough

I 2N+4
N

(un) ≤ 1. By the Hölder and Sobolev inequalities (see also (4.5) in [3]), there

exists a positive constant C depending only on N such that∫
RN

|un|
2N+4

N ≤ Cc
2N2+8

N2+2N

(∫
RN

(1 + |un|2)|∇un|2
) 2

N+2

. (4.3)

Then

1

2

∫
RN

(1 + un|2)|∇un|2 ≤
N

2N + 4

∫
RN

|un|
2N+4

N + 1

≤ N

2N + 4
Cc

2N2+8

N2+2N

(∫
RN

(1 + |un|2)|∇un|2
) 2

N+2

+ 1,

which implies that {un} is uniformly bounded in H.
Similarly to the proof of Theorem 1.2, let {vn} ⊂ Sc be the sequence of Schwartz

symmetric functions for {un}, then {vn} is a uniformly bounded minimizing sequence
for i 2N+4

N
,c. Hence there exists v ∈ H such that vn ⇀ v in H and

I(v) ≤ lim
n→+∞

I(vn) = i 2N+4
N

,c < 0,

which implies that c∗ < α := |v|2 < c. Set w(x) = v((α
c
)

2
N x), then w ∈ Sc and

i 2N+4
N

,c ≤ I(w) ≤ (
c

α
)2I(v) < i 2N+4

N
,c,
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which is a contradiction. So v ∈ Sc and I(v) = i 2N+4
N

,c.

(3) By contradiction, if there exists some c ∈ (0, c∗] and some uc ∈ Sc such that
(I|Sc)

′(uc) = 0, then similarly to the proof of Lemma 2.4, we see that u satisfies∫
RN

|∇uc|2 + (N + 2)

∫
RN

|uc|2|∇uc|2 =
N

N + 2

∫
RN

|uc|
2N+4

N ,

hence I 2N+4
N

(uc) = −N
2

∫
RN |uc|2|∇uc|2 < 0, which is a contradiction with (1). Then

the theorem is proved.
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