References
1. Hall JE. Guyton and Hall Textbook of Medical Physiology (12th ed.).
Philadelphia, PA: Elsevier Saunders, 2011.
2. Shivkumar K, Ajijola OA, Anand I, et al. Clinical neurocardiology
defining the value of neuroscience-based cardiovascular therapeutics. J
Physiol 2016;594:3911-3954.
3. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA.
Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol
1986;57:299–309.
4. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and
microscopic anatomy of the human intrinsic cardiac nervous system. Anat
Rec 1997;247 :289–298.
5. Ellison JP, Hibbs RG. An ultrastructural study of mammalian cardiac
ganglia. J Mol Cell Cardiol 1976;8: 89–101.
6. Ardell JL. Anatomy and function of mammalian intrinsic cardiac
neurons. In: Armour JA, Ardell JL, eds. Neurocardiology. New York, NY:
Oxford University Press; 1994:95–114.
7. Randall WC, Ardell JL, O’Toole MF, Wurster RD. Differential autonomic
control of SAN and AVN regions of the canine heart: structure and
function. Prog Clin Biol Res 1988;275:15‐31.
8. Billman GE, Hoskins RS, Randall DC, Randall WC, Hamlin RL, Lin YC.
Selective vagal postganglionic innervation of the sinoatrial and
atrioventricular nodes in the non-human primate. J Auton Nerv Syst
1989;26:27‐36.
9. Aksu T, Guler TE, Yalin K, Mutluer FO, Ozcan KS, Calò L. Catheter
Ablation of Bradyarrhythmia: From the Beginning to the Future. Am J Med
Sci 2018;355:252-265.
10. Aksu T, Güler TE, Mutluer FO, Oto MA. Vagal denervation in atrial
fibrillation ablation: A comprehensive review. Anatol J Cardiol
2017;18:142-148.
11. Opthof T, Coronel R, Vermeulen JT, Verberne HJ, van Capelle FJ,
Janse MJ. Dispersion of refractoriness in normal and ischaemic canine
ventricle: effects of sympathetic stimulation. Cardiovasc Res
1993;27:1954-1960.
12. Opthof T, Dekker LR, Coronel R, Vermeulen JT, van Capelle FJ, Janse
MJ. Interaction of sympathetic and parasympathetic nervous system on
ventricular refractoriness assessed by local fibrillation intervals in
the canine heart. Cardiovasc Res 1993;27:753-759.
13. Choi E-K, Shen MJ, Han S, et al. Intrinsic cardiac nerve activity
and paroxysmal atrial tachyarrhythmia in ambulatory
dogs. Circulation 2010;121:2615–2623.
14. Shen MJ, Choi EK, Tan AY, et al. Patterns of baseline autonomic
nerve activity and the development of pacing-induced sustained atrial
fibrillation. Heart Rhythm 2011;8:583–589.
15. Uradu A, Wan J, Doytchinova A, et al. Skin Sympathetic Nerve
Activity Precedes the Onset and Termination of Paroxysmal Atrial
Tachycardia and Fibrillation. Heart Rhythm 2017;14:964–971.
16. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in
pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart
Rhythm 2005;2:624-631.
17. Hopkins DA, Bieger D, de Vente J, Steinbusch WM. Vagal efferent
projections: viscerotopy, neurochemistry and effects of vagotomy. Prog
Brain Res 1996;107:79–96.
18. Hanna P, Rajendran PS, Ajijola OA, et al. Cardiac
neuroanatomy-Imaging nerves to define functional control. Auton Neurosci
2017;207:48-58.
19. Baluk P, Gabella G. Some parasympathetic neurons in the Guinea-pig
heart express
aspects of the catecholaminergic phenotype in vivo. Cell Tissue Res
1990;261;275–285.
20. Arora RC, Waldmann M, Hopkins DA, Armour JA. Porcine intrinsic
cardiac ganglia. Anat Rec A Discov Mol Cell Evol Biol. 2003
Mar;271(1):249-58.
21. Hardwick JC, Mawe GM, Parsons RL. Evidence for afferent fiber
innervations of parasympathetic neurons of the Guinea-pig cardiac
ganglion. J Auton Nerv Syst 1995;53:166–174.
22. Armour JA. Potential clinical relevance of the ’little brain’ on the
mammalian heart. Exp Physiol 2008;93:165-176.
23. Navickaite I, Pauziene N, Pauza DH. Anatomical evidence of
non-parasympathetic cardiac nitrergic nerve fibres in rat. J Anat
2021;238:20-35.
24. Pauza DH, Rysevaite-Kyguoliene K, Vismantaite J, et al. A combined
acetylcholinesterase and immunohistochemical method for precise
anatomical analysis of intrinsic cardiac neural structures. Ann Anat
2014;196:430-440.
25. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA. Gross and
microscopic anatomy of the canine intrinsic cardiac nervous system. Anat
Rec 1994;239:75-87.
26. Pauza DH, Pauziene N, Pakeltyte G, Stropus R. Comparative
Quantitative Study of the Intrinsic Cardiac Ganglia and Neurons in the
Rat, Guinea Pig, Dog and Human as Revealed by Histochemical Staining for
Acetylcholinesterase. Ann Anat 2002;184:125-36.
27. Pauza DH, Skripka V, Pauziene N, Stropus R. Anatomical study of the
neural ganglionated plexus in the canine right atrium: Implications for
selective denervation and electrophysiology of the siuoatrial node in
dog. Anat Rec 1999;255:271-294.
28. Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology,
distribution, and variability of the epicardiac neural ganglionated
subplexuses in the human heart. Anat Rec 2000;259:353‐382.
29. Rysevaite K, Saburkina I, Pauziene N, Noujaim SF, Jalife J, Pauza
DH. Morphologic pattern of the intrinsic ganglionated nerve plexus in
mouse heart. Heart Rhythm 2011;8:448-454.
30. Ai J, Epstein PN, Gozal D, Yang B, Wurster R, Cheng ZJ. Morphology
and topography of nucleus ambiguus projections to cardiac ganglia in
rats and mice. Neuroscience 2007;149:845–860.
31. Batulevicius D, Pauziene N, Pauza DH. Architecture and age-related
analysis of the neuronal number of the guinea pig intrinsic cardiac
nerve plexus. Ann Anat 2005;187:225-43.
32. Saburkina I, Gukauskiene L, Rysevaite K, et al. Morphological
pattern of intrinsic nerve plexus distributed on the rabbit heart and
interatrial septum. J Anat 2014;224:583-593.
33. Batulevicius D, Skripka V, Pauziene N, Pauza DH. Topography of the
porcine epicardiac nerve plexus as revealed by histochemistry for
acetylcholinesterase. Auton. Neurosci 2008;138:64–75
34. Saburkina I, Rysevaite K, Pauziene N, et al. Epicardial neural
ganglionated plexus of ovine heart: anatomic basis for experimental
cardiac electrophysiology and nerve protective cardiac surgery. Heart
Rhythm 2010;7:942–950.
35. Pauza DH, Skripka V, Pauziene N. Morphology of the intrinsic cardiac
nervous system in the dog: a whole-mount study employing histochemical
staining with acetylcholinesterase. Cells Tissues Organs
2002;172:297‐320.
36. Pauza DH, Pauziene N, Tamasauskas KA, Stropus R. Hilum of the
heart. Anat Rec 1997;248:322‐324.
37. Ulphani JS, Arora R, Cain JH, et al. The ligament of Marshall as a
parasympathetic conduit. Am J Physiol Heart Circ Physiol
2007;293:H1629-35.
38. Chiou CW, Eble JN, Zipes DP. Efferent vagal innervation of the
canine atria and sinus and atrioventricular nodes. The third fat
pad. Circulation 1997;95:2573–2584.
39. Fee JD, Randall WC, Wurster RD, Ardell JL. Selective ganglionic
blockade of vagal inputs to sinoatrial and/or atrioventricular
regions. J Pharmacol Exp Ther 1987;242:1006–1012.
40. Pauziene N, Pauza DH, Stropus R. Morphology of human intracardiac
nerves: an electron microscope study. J Anat 2000;197:437–459.
41. Saburkina I, Pauza DH. Location and variability of epicardiac
ganglia in human fetuses. Anat Embryol 2006;211:585–594.
42. Writing Committee Members, Shen WK, Sheldon RS, Benditt DG, et al.
2017 ACC/AHA/HRS guideline for the evaluation and management of patients
with syncope: A report of the American College of Cardiology/American
Heart Association Task Force on Clinical Practice Guidelines and the
Heart Rhythm Society. Heart Rhythm 2017;14:e155-e217.
43. Pachon JC, Pachon EI, Cunha Pachon MZ, Lobo TJ, Pachon JC,
Santillana TG. Catheter ablation of severe neurally meditated reflex
(neurocardiogenic or vasovagal) syncope: cardioneuroablation long-term
results. Europace. 2011 Sep;13(9):1231-42.
44. Yao Y, Shi R, Wong T, et al. Endocardial autonomic denervation of
the left atrium to treat vasovagal syncope: An early experience in
humans. Circ Arrhythm Electrophysiol 2012;5:279-286.
45. Sun W, Zheng L, Qiao Y, et al. Catheter Ablation as a Treatment for
Vasovagal Syncope: Long-Term Outcome of Endocardial Autonomic
Modification of the Left Atrium. J Am Heart Assoc 2016;5:e003471.
46. Aksu T, Guler TE, Mutluer FO, Bozyel S, Golcuk SE, Yalin K.
Electroanatomic-mapping guided cardioneuroablation versus combined
approach for vasovagal syncope: a crosssectional observational study. J
Interv Card Electrophysiol 2019;54:177–88.
47. Hu F, Zheng L, Liang E, et al. Right anterior ganglionated plexus:
the primary target of cardioneuroablation. Heart Rhythm
2019;16:1545-1551.
48. Calo L, Rebecchi M, Sette A, et al. Catheter ablation of right
atrial ganglionated plexi to treat cardioinhibitory neurocardiogenic
syncope: a long-term follow-up prospective study. J Interv Card
Electrophysiol. 2020 Aug 6. doi: 10.1007/s10840-020-00840-9.
49. Aksu T, Guler TE, Bozyel S, Yalin K, Gopinathannair R. Usefulness of
post-procedural heart rate response to predict syncope recurrence or
positive head up tilt table testing after cardioneuroablation. Europace
2020;22:1320-1327.
50. Scherlag BJ, Yamanashi W, Patel U, Lazzara R, Jackman WM.
Autonomically induced conversion of pulmonary vein focal firing into
atrial fibrillation. J Am Coll Cardiol 2005;45:1878-1886.
51. Po SS, Scherlag BJ, Yamanashi WS, et al. Experimental model for
paroxysmal atrial fibrillation arising at the pulmonary vein-atrial
junctions. Heart Rhythm 2006; 3:201-208.
52. Pokushalov E, Romanov A, Shugayev P, et al. Selective ganglionated
plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm
2009;6:1257-1264.
53. Katritsis DG, Giazitzoglou E, Zografos T, Pokushalov E, Po SS, Camm
AJ. Rapid pulmonary vein isolation combined with autonomic ganglia
modification: a randomized study. Heart Rhythm 2011;8:672-8.
54. Berger WR, Neefs J, van den Berg NWE, et al. Additional Ganglion
Plexus Ablation During Thoracoscopic Surgical Ablation of Advanced
Atrial Fibrillation: Intermediate Follow-Up of the AFACT Study. JACC
Clin Electrophysiol 2019;5:343-353.
55. Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman
WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in
patients with atrial fibrillation. Heart Rhythm 2009;6: S26-S34.
56. Lin J, Scherlag BJ, Niu G, et al. Autonomic elements within the
ligament of Marshall and inferior left ganglionated plexus mediate
functions of the atrial neural network. J Cardiovasc Electrophysiol
2009; 20:318-24.
57. Valderrábano M, Peterson LE, Swarup V, et al. Effect of Catheter
Ablation With Vein of Marshall Ethanol Infusion vs Catheter Ablation
Alone on Persistent Atrial Fibrillation: The VENUS Randomized Clinical
Trial. JAMA 2020;324:1620-1628.
58. Derval N, Duchateau J, Denis A, et al. Marshall bundle elimination,
Pulmonary vein isolation, and Line completion for ANatomical ablation of
persistent atrial fibrillation (Marshall-PLAN): Prospective,
single-center study. Heart Rhythm 2020:S1547-5271(20)31218-2.
59. Po SS, Nakagawa H, Jackman WM. Localization of left atrial
ganglionated plexi in patients with atrial fibrillation. J Cardiovasc
Electrophysiol 2009;20:1186-1189.
60. Kim MY, Sikkel MB, Hunter RJ, et al. A novel approach to mapping the
atrial ganglionated plexus network by generating a distribution
probability atlas. J Cardiovasc Electrophysiol. 2018
Dec;29(12):1624-1634.
61. Pokushalov E, Romanov A, Shugayev P, et al. Selective ganglionated
plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm
2009;6:1257-1264.
62. Sun W, Zheng L, Qiao Y, et al. Catheter Ablation as a Treatment for
Vasovagal Syncope: Long-Term Outcome of Endocardial Autonomic
Modification of the Left Atrium. J Am Heart Assoc 2016;5:e003471.
63. Pachon M JC, Pachon M EI, Pachon M JC, et al. A new treatment for
atrial fibrillation based on spectral analysis to guide the catheter
RF-ablation. Europace 2004;6:590-601.
64. Lellouche N, Buch E, Celigoj A, et al. Functional characterization
of atrial electrograms in sinus rhythm delineates sites of
parasympathetic innervation inpatients with paroxysmal atrial
fibrillation. J Am Coll Cardiol 2007;50:1324-1331.
65. Aksu T, Golcuk E, Yalin K, Guler TE, Erden I. Simplified
cardioneuroablation in the treatment of reflex syncope, functional AV
block, and sinus node dysfunction. Pacing Clin Electrophysiol
2016;39:42-53.
66. Jungen C, Scherschel K, Eickholt C, et al. Disruption of cardiac
cholinergic neurons enhances susceptibility to ventricular arrhythmias.
Nat Commun 2017;8:14155.