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Abstract. In this paper, we investigate the decay properties of the thermoelastic Tim-
oshenko system with past history in the whole space where the thermal e¤ects are given
by Cattaneo and Fourier laws. We obtain that both systems, Timoshenko-Fourier and
Timoshenko-Cattaneo, have the same rate of decay (1 + t)�

1
4 and the regularity-loss type

property is not present in some cases. Moreover, new stability number � is introduced, such
new number controls the decay rate of the solution with respect to the regularity of the
initial data. To prove our results, we use the energy method in Fourier space to build an
appropriate Lyapunov functionals that give the desired results.
Keywords: Timoshenko system, Cattaneo law, Fourier Law, new stability num-
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1. Introduction

In this paper, we investigate the decay properties of the thermoelastic Timoshenko system
with past history in the whole space where the thermal e¤ects are given by Cattaneo and
Fourier laws. We consider two systems, the �rst one is the coupling between Timoshenko
beam with the heat conduction described by Cattaneo law with a history term, given by:
(1.1)8>><>>:

�1'tt � k ('x �  )x = 0; in (0;1)� R;
�2 tt � b xx +m

R1
0
g (s) xx (t� s; x) ds� k ('x �  ) + ��x = 0; in (0;1)� R;

�3�t + qx + � xt = 0; in (0;1)� R;
�qt + �q + �x = 0; in (0;1)� R;

with the initial data

(1.2) ('; 't;  ;  t; �; q) (x; 0) = ('0; '1;  0;  1; �0; ; q0) ;

where b; k;m; �; �; �1; �2; �3 and � are positive constants, with ',  , � and q denoting the
transversal displacement, the rotation angle of the beam, the temperature and the heat �ow,
respectively. The integral term represents a history term with kernel g satisfying the following
hypotheses:

(H1) g (:) is a non negative function.
(H2) There exist positive constants k1 and k2, such that,� k1 g (s) � g0 (s) � �k2 g (s) :
(H3) a := b�mb0 > 0; where b0 =

R1
0
g (s) ds:

1
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The second system of interest is the coupling between Timoshenko beam with the heat con-
duction described by Fourier law with a history term given by:
(1.3)8><>:

�1'tt � k ('x �  )x = 0; in (0;1)� R;
�2 tt � b xx +m

R1
0
g (s) xx (t� s; x) ds� k ('x �  ) + ��x = 0; in (0;1)� R;

�3�t �
1

�
�xx + � xt = 0; in (0;1)� R;

with the initial data

(1.4) ('; 't;  ;  t; �) (x; 0) = ('0; '1;  0;  1; �0) :

We will introduce the stability number given by

� =

�
b�1
k
� �2

�
:

The main purpose of this article is to investigate the relationship between damping terms, the
stability numbers � and their in�uence on the decay rate of solutions of systems (1.1)-(1.2)
and (1.3)-(1.4). Using the stability number, we show a new estimates for the solution of the
thermoelastic Timoshenko systems (1.1)-(1.3).
The main idea in our proof is to construct new functionals to capture the dissipation

of all components in the solution of (1.1)-(1.3). Then, we build an appropriate Lyapunov
functionals which gives the desired dissipation of all the components in the solution of (1.1)-
(1.3). It is well known in the literature that the behavior of �i(�) (see (3:4) and (3:39)) in
the low frequencies determines the rate of decay of the solution, while its behavior for high
frequencies gives the regularity restriction on the initial data see ([4], [5], [6], [7], [8], [9], [10]) :
We need to mention here that the same systems have been considered recently by [1]; the

authors showed that the solution decays as follow:

� If �0;� = 0 (resp; if �0 = 0), then

@kxU (t)

L2 � C (1 + t)�
1
8
�k
4 kU0kL1 + C (1 + t)�

l
2


@k+lx U0




L2
; t � 0:

� If �0;� 6= 0 (resp; if �0 6= 0)

@kxU (t)

L2 � C (1 + t)�
1
8
�k
4 kU0kL1 + C (1 + t)�

l
4


@k+lx U0




L2
; t � 0:

Where �0;� =
��

� � �1
k�3

��
�2 �

b�1
k

�
� ��1�

2

�3k

�
and �0 =

�
�2 �

b�1
k

�
:

It�s clear that our estimates in Theorem 4.1 and Theorem 4.2 improve the decay rates in
[1], we need to mention here that in the case where � = 0 we don�t have the regularity loss
phenomena like in [1].

This paper is organized as follows. In Section 2 we state the problem. Section 3, is devoted
for the construction of Lyapunov functionals using the energy method in the Fourier space.
The last section is dedicated to the statements and the proof of our main results.
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2. Statement of the problem

In this section and in order to establish the decay rates of the Timoshenko systems (1.1)
and (1.3), we have to transform the original problems to a �rst-order systems. Here we need
to de�ne a new variables as in [1].

2.1. The Cattaneo Model. We consider Timoshenko system with history and Cattaneo
law. Following the same change of variable as in [3]:

(2.1) � (t; s; x) :=  (t; x)�  (t� s; x) (t; x) 2 (0;1)� R; s � 0:

System (1.1), can be rewritten as:

(2.2)

8>>>>><>>>>>:

�1'tt � k ('x �  )x = 0; in (0;1)� R;
�2 tt � a xx �m

R1
0
g (s) �xx(s)ds� k ('x �  ) + ��x = 0; in (0;1)� R;

�3�t + qx + � xt = 0; in (0;1)� R;
�qt + �q + �x = 0; in (0;1)� R;
�t + �s �  t = 0; in (0;1)� R;
� (:; 0; :) = 0; in (0;1)� R;

where a is a positive constant given by (H3) and the operator T� = ��s is the usual operator
de�ned in systems with history terms, see for instance ([2]) and references therein. Here, the
last two equations of system (2.2) are obtained di¤erentiating equation (2.1). We de�ne also
the initial data

('; 't;  ;  t; �; q) (x; 0) = ('0; '1;  0;  1; �0; q0) ;
� (0; s; :) =  (0; :)�  (�s; :) :

As in [1]; we can rewrite system (2.2) as a �rst-order system, by considering the following
change of variables:

u = 't; z =  x; y =  t; v = 'x �  ;

Then, (2.2) takes the form:

(2.3)

8>>>>>>><>>>>>>>:

vt � ux + y = 0;
�1ut � k vx = 0;
zt � yx = 0;
�2 yt � a zx �m

R1
0
g (s) �xx (s) ds� k v + ��x = 0;

�3�t + qx + � yx = 0;
�qt + �q + �x = 0;
�t + �s � y = 0:

We de�ne the solution of (2.3) by introducing the vector U given by:

U (x) = (v; u; z; y; �; q; �)T :

The initial condition can be written as

(2.4) U0 (x) = U (x; 0) = (v0; u0; z0; y0; �0; q0; �0)
T ;

where
u0 = '1; z0 =  0;x; y0 =  1; v0 = '0;x �  0:
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2.2. The Fourier Model. Here, we consider Timoshenko system (1.3) with history and the

Fourier law. Introducing � as in the Cattaneo model, we have the following system:

(2.5)

8>>>>><>>>>>:

�1'tt � k ('x �  )x = 0; in (0;1)� R;
�2 tt � a xx �m

R1
0
g (s) �xx(s)ds� k ('x �  ) + ��x = 0; in (0;1)� R;

�3�t +
1

�
�xx + � xt = 0; in (0;1)� R;

�t + �s �  t = 0; in (0;1)� R;
� (:; 0; :) = 0; in (0;1)� R;

with initial data

('; 't;  ;  t; �) (x; 0) = ('0; '1;  0;  1; �0) ;
� (0; s; :) =  (0; :)�  (�s; :) ;

As in the previous section, we can rewrite the system as a �rst-order system, by de�ning the
following new variables:

u = 't; z =  x; y =  t; v = 'x �  :

Then, (2.5) takes the form

(2.6)

8>>>>>>><>>>>>>>:

vt � ux + y = 0;
�1ut � k vx = 0;
zt � yx = 0;
�2 yt � a zx �m

R1
0
g (s) �xx (s) ds� k v + ��x = 0;

�3�t +
1

�
�xx + � yx = 0;

�t + �s � y = 0:

We de�ne the solution of (2.6) by introducing the vector V given by:

V (x) = (v; u; z; y; �; �)T :

The initial condition can be written as

(2.7) V0 (x) = V (x; 0) = (v0; u0; z0; y0; �0; �0)
T ;

where

u0 = '1; z0 =  0;x; y0 =  1; v0 = '0;x �  0:

3. The energy method in the Fourier space

In this section, we establish some decay rates for the Fourier image of the solutions of
Timoshenko-Cattaneo Law and Timoshenko-Fourier Law systems. For each model we use
the energy method to build an appropriate Lyapunov functionals in the Fourier space. These
estimates will play a crucial role in proving our results in Theorem 4:1 and Theorem 4:2.
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3.1. Cattaneo Model. Taking Fourier transform in (2.3), we obtain the following ODE

system:

(3.1)

8>>>>>>>><>>>>>>>>:

bvt � i� bu+ by = 0;
�1but � ik� bv = 0;bzt � i� by = 0;
�2 byt � ia� bz +m� 2

R1
0
g (s)b� (s) ds� k bv + i�� b� = 0;

�3
b�t + i� bq + i�� by = 0;

�bqt + �bq + i� b� = 0;b�t + b�s � by = 0:
The solution vector and initial data are given by bU (�; t) = �bv; bu; bz; by;b�; bq;b��Tand bU (�; 0) =bU0 (�).
First, we de�ne the corresponding energy as:

(3.2) bE (�; t) = �1 jbuj2 + �2 jbyj2 + �3

���b����2 + k jbvj2 + a jbzj2 + � jbqj2 +m�2
Z 1

0

g (s) jb� (s)j2 ds:
The energy (3.2) satis�es the following estimate (Lemma3.1, [1]):

d

dt
bE (�; t) = �2� jbqj2 +m�2

Z 1

0

g0 (s) jb� (s)j2 ds;
using (H2), we have

d

dt
bE (�; t) � �2� jbqj2 � k1m�

2

Z 1

0

g (s) jb� (s)j2 ds:
Here, we give the pointwise estimates of the functional bE (�; t). This estimate will play the
essential role in proving our main theorem. The result is stated below:

Proposition 3.1. For any t � 0 and � 2 R, we have the following estimates

(3.3) bE (�; t) � ( C e�c�1(�) t bE (�; 0) ; if � = 0;

C e�c�2(�) t bE (�; 0) ; if � 6= 0;

where

(3.4) �1 (�) =
�2

1 + �2
; �2 (�) =

�2�
1 + �2

�2 :
Here C and c are two positive constants.

We show that the decay rate of the solution will depend on the value of �. The proof will
be given through several lemmas.
First, we will use the following notation for the product of complex numbers:�

hbz1; bz2i = bz1 bz2;
jbz1j2 = bz1 bz1:
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Lemma 3.2. Let the functional

F1 (�; t) =
2��3�
1 + �2

� ReDbq; i�b�E :
We have the following estimate:

(3.5)
�2�

1 + �2
��3 ���b����2 + d

dt
F1 (�; t) � C ("1) � jbqj2 + "1

�2�
1 + �2

��2 jbyj2 ;
for any "1 > 0, C and C ("1) are positive constants.

Proof. Multiplying (3:1)6 by i�b� and using (3:1)5, we get
0 = �

d

dt

Dbq; i�b�E+ �
D
i�bq;b�tE+ �

Dbq; i�b�E+ �2
���b����2

= �
d

dt

Dbq; i�b�E� �

�3
�2 jbqj2 � ��

�3
�2 hbq; byi+ �

Dbq; i�b�E+ �2
���b����2 ;

then, we deduce

(3.6) �3�
2
���b����2 + ��3

d

dt
Re
Dbq; i�b�E = ��2 jbqj2 + ���2Re hbq; byi � �3� Re

Dbq; i�b�E :
Multiplying (3.6) by

1�
1 + �2

� and applying Young�s inequality, to the terms on the right-hand
side of (3.6), then (3.5) holds. This �nishes the proof of Lemma 3.2. �

Lemma 3.3. Let the functional

F2 (�; t) = �
2�2�

2

b0
�
1 + �2

� Re�Z 1

0

g (s)b� (s) ds; by� :
We have the following estimate, for any "2 > 0,

�2�
1 + �2

��2 jbyj2 + d

dt
F2 (�; t) � C

�2�
1 + �2

��3 ���b����2 + "2
�2�

1 + �2
�a jbzj2(3.7)

+C ("2)m�
2

Z 1

0

g (s) jb� (s)j2 ds+ "2
�2�

1 + �2
�2k jbvj2 ;

where C and C ("2) are positive constants.

Proof. Multiplying (3:1)7 by g (s) by and using (3:1)4, we get
0 =

d

dt
hb�; g (s) byi � hg (s)b�; byti+ hg (s)b�s; byi � g (s) jbyj2

= hg (s)b�s; byi+ d

dt
(hb�; g (s) byi)� jbyj2 + a

�2
hi�g (s)b�; bzi

+
m

�2
� 2
�
g (s)b�;Z 1

0

g (s)b� (s) ds�� k

�2
hg (s)b�; bvi+ �

�2

D
g (s)b�; i� b�E ;
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integrating with respect to s over (0;1), using the fact that b0 =
R1
0
g (s) ds and using

integrating by parts, we get

�2 jbyj2 � �2
b0

d

dt
Re

�Z 1

0

g (s)b� (s) ds; by�
= ��2

b0
Re

�Z 1

0

g0 (s)b� (s) ds; by�+ a

b0
Re

�
i�

Z 1

0

g (s)b� (s) ds; bz�+ m

b0
� 2
����Z 1

0

g (s)b� (s) ds����2
� k

b0
Re

�Z 1

0

g (s)b� (s) ds; bv�+ �

b0
Re

�Z 1

0

g (s)b� (s) ds; i� b�� ;(3.8)

where the following inequalities have been used:��R1
0
g (s)b� (s) ds��2 � b0

R1
0
g (s) jb� (s)j2 ds;��R1

0
g0 (s)b� (s) ds��2 � b0max fk1; k2g

R1
0
g (s) jb� (s)j2 ds:

k�2

b0
�
1 + �2

� ��
R1
0
g (s)b� (s) ds; bv��� = �2

�����
*p

k

b0

R1
0
g (s)b� (s) ds; p

k�
1 + �2

�bv+�����
� C ("2)m�

2
R1
0
g (s) jb� (s)j2 ds+ "2

�2�
1 + �2

�2k jbvj2 :
Now, multiplying (3.8) by

�2�
1 + �2

� and applying Young�s inequality, to the terms on the
right-hand side of (3.8), then (3.7) holds. This �nishes the proof of Lemma 3.3. �

Lemma 3.4. Let the functional

F3 (�; t) = � 2�2�
1 + �2

� Re hby; i� bzi � 2�1�
1 + �2

� Re hbu; bzi � 2�1�3�
1 + �2

� ReDb�; buE
+

2�2�3
k
�
1 + �2

� ReDb�; i� byE :
We have the following estimate, for any "3 > 0,

�2�
1 + �2

�a jbzj2 + d

dt
F3 (�; t) � C�2

�2�
1 + �2

� jbyj2 + C�3
�2�

1 + �2
� ���b����2(3.9)

+Cm�2
Z 1

0

g (s) jb� (s)j2 ds+ C ("3) � jbqj2
+"3

�2�
1 + �2

�2�1 jbuj2
where C and C ("3) are positive constants.

Proof. Multiplying (3:1)4 by i�bz and using (3:1)3, we get
�2a jbzj2 � �2

d

dt
hby; i� bzi = �2�2 jbyj2 +m� 2

�
i�

Z 1

0

g (s)b� (s) ds; bz�
+�� 2

Db�; bzE� k hbv; i�bzi :
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Using (3:1)2 and (3:1)3, we have

(3.10) �k hbv; i�bzi = �1 hbut; bzi = �1
d

dt
hbu; bzi+ �1 hi�bu; byi ;

then, (3:10) becomes

�2a jbzj2 � �2
d

dt
hby; i� bzi � �1

d

dt
(hbu; bzi)(3.11)

= �2�2 jbyj2 +m� 2
�
i�

Z 1

0

g (s)b� (s) ds; bz�
+�� 2

Db�; bzE+ �1 hi�bu; byi :
Multiplying (3:1)5 by bu and using (3:1)2, we get

(3.12) � hby; i�bui = �3
d

dt

Db�; buE+ hi�bq; bui+ �3
�1

D
i�b�; bvE ;

by using (3:1)4 in (3:12), we obtain

� hby; i�bui = �3
d

dt

Db�; buE+ hi�bq; bui+ �2�3
k�1

D
i�b�; bytE� a�3

k�1
� 2
Db�; bzE

�m�3
k�1

� 2
�b�; i� Z 1

0

g (s)b� (s) ds�+ ��3
k�1

�2
���b����2

= �3
d

dt

Db�; buE+ hi�bq; bui � a�3
k�1

� 2
Db�; bzE

�m�3
k�1

� 2
�b�; i� Z 1

0

g (s)b� (s) ds�+ ��3
k�1

�2
���b����2

��2�3
k�1

d

dt

Db�; i� byE+ �2
k�1

D
�3b�t; i� byE ;

using (3:1)5, we deduce

� hby; i�bui = �3
d

dt

Db�; buE+ hi�bq; bui � a�3
k�1

� 2
Db�; bzE

�m�3
k�1

� 2
�b�; i� Z 1

0

g (s)b� (s) ds�+ ��3
k�1

�2
���b����2

��2�3
k�1

d

dt

Db�; i� byE� �2
k�1

�2 h bq; byi � ��2
k�1

�2 jbyj2 ;(3.13)
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by using (3:13) in (3:11), we obtain

�2a jbzj2 � �2
d

dt
(Re hby; i� bzi)� �1

d

dt
(Re hbu; bzi)

��1�3
d

dt
Re
Db�; buE+ �2�3

k

d

dt

�
Re
Db�; i� byE�

=

�
1� �

k

�
�2�

2 jbyj2 + ��3
k
�2
���b����2 +m� 2Re

�
i�

Z 1

0

g (s)b� (s) ds; bz�
+
�
� � a�3

k

�
� 2Re

Db�; bzE� �1Re hbq; i�bui
�m�3

k
� 2Re

�b�; i� Z 1

0

g (s)b� (s) ds�� �2
k
�2Re h bq; byi :(3.14)

Multiplying (3.14) by
1�

1 + �2
� , and applying Young�s inequality, to the terms on the right-

hand side of (3.14) and the fact that

1�
1 + �2

� jhbq; i�buij = �����
*bq; i ��

1 + �2
�bu+����� � C ("3) � jbqj2 + "3

�2�
1 + �2

�2�1 jbuj2 ;
then (3.9) holds. This �nishes the proof of Lemma 3.4. �
Lemma 3.5. Let the functionals

G (�; t) = �2�2Re hby; bvi+ 2��Re hbq; bvi � 2a�1k Re hbu; bzi
�2m�1

k
Re


i�
R1
0
g (s)b� (s) ds; bu � ;

H (�; t) = 2�2Re hby; bvi :
� If � = 0 : Let the functional F4 (�; t) =

�2�
1 + �2

�G (�; t) , then we have the following
estimate

�2�
1 + �2

�k jbvj2 + d

dt
F4 (�; t) � C ("4) m�

2

Z 1

0

g (s) jb� (s)j2 ds(3.15)

+C ("4) � jbqj2 + C
�2�2�
1 + �2

� jbyj2 + "4
�2�1�
1 + �2

� jbuj2 :
� If � 6= 0 :Let the functional F4 (�; t) =

�2�
1 + �2

�2H (�; t) , then we have the following
estimate

�2�
1 + �2

�2k jbvj2 + d

dt
F4 (�; t) � C ("4)m�

2

Z 1

0

g (s) jb� (s)j2 ds+ C
�2�3�
1 + �2

� ���b����2

(3.16) +C ("4)
�2�2�
1 + �2

� jbyj2 + C
a �2�
1 + �2

� jbzj2 + "4
�2�1�
1 + �2

�2 jbuj2 ;
for any "4 > 0 , C and C ("4) are positive constants.
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Proof. Using (3:1)6 and(3:1)1, we get

�
D
i�b�; bvE = ��� hbqt; bvi � �� hbq; bvi

= ��� d
dt
hbq; bvi+ �� hbq; bvti � �� hbq; bvi

= ��� d
dt
hbq; bvi � �� hi�bq; bui � �� hbq; byi � �� hbq; bvi ;

then, we have

(3.17) �
D
i�b�; bvE = ��� d

dt
hbq; bvi � �� hi�bq; bui � �� hbq; byi � �� hbq; bvi :

Multiplying (3:1)7 by i�bu g (s), then we get
0 = hg (s)b�s; i�bu i+ d

dt
hg (s)b�; i�bu i � hg (s)b�; i�but i � hg (s) by; i�bu i ;

integrating with respect to s over (0;1) and using integrating by parts, we obtain

0 =

�
i�

Z 1

0

g0 (s)b� (s) ds; bu�� d

dt

�
i�

�Z 1

0

g (s)b� (s) ds; bu��
+

�
i�

Z 1

0

g (s)b� (s) ds; but�� �Z 1

0

g (s) ds

�
hby; i�bu i ;

using (3:1)2 and (H3), we have

0 =

�
i�

Z 1

0

g0 (s)b� (s) ds; bu�� d

dt

��
i�

Z 1

0

g (s)b� (s) ds; bu��
+
k

�1
�2
�
i�

Z 1

0

g (s)b� (s) ds; bv�� b0 hby; i�bu i ;
then, we deduce

k

�1
�2
�
i�

Z 1

0

g (s)b� (s) ds; bv� = �
�
i�

Z 1

0

g0 (s)b� (s) ds; bu�(3.18)

+
d

dt

�
i�

Z 1

0

g (s)b� (s) ds; bu�+ b0 hby; i�bu i :
Multiplying (3:1)4 by bv , and using (3:1)1, then we obtain

k jbvj2 = �2 (hby; bvi) + �2 hi�by; bui+ �2 jbyj2 � a hi� bz; bvi(3.19)

+m� 2
�Z 1

0

g (s)b� (s) ds; bv�+ �
D
i� b�; bvE ;

using (3:10) ; (3:17) and (3:18), we get

k jbvj2 � �2
d

dt
Re hby; bvi+ ��

d

dt
(Re hbq; bvi)

�a�1
k

d

dt
Re hbu; bzi � m�1

k

d

dt
Re

�
i�

Z 1

0

g (s)b� (s) ds; bu� =
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�2 jbyj2 � �b�1k � �2

�
Re hi�by; bui � m�1

k
Re

�
i�

Z 1

0

g0 (s)b� (s) ds; bu�
���Re hi�bq; bui � ��Re hbq; byi � ��Re hbq; bvi :(3.20)

Multiplying (3.20) by
�2�

1 + �2
� if � = 0; and (3.19) by �2�

1 + �2
�2 if � 6= 0 and applying

Young�s inequality, to the terms on the right-hand side of (3.20) and (3.19), then (3:15) and
(3:16) holds. This �nishes the proof of our Lemma 3.5. �

Lemma 3.6. Let the functional(
G (�; t) = ��1Re hbv ; i�bu i � �1�3

�
Re
Db�; buE+ �2�3

k�
Re
Db�; i� byE ;

H (�; t) = �2�1Re hbv ; i�bu i :
� If � = 0 : Let the functional F5 (�; t) =

1�
1 + �2

�G (�; t) , then we have the following
estimate

�1
�2�

1 + �2
� jbuj2 + d

dt
F5 (�; t) � C

�2�
1 + �2

�k jbvj2 + C
�2�

1 + �2
��2 jbyj2(3.21)

+C
�2�

1 + �2
��3 ���b����2 + C

�2�
1 + �2

�a jbzj2
+C� jbqj2 + Cm�2

Z 1

0

g (s) jb� (s)j2 ds:
� If � 6= 0 :Let the functional F5 (�; t) =

1�
1 + �2

�2H (�; t), then we have the following
estimate

(3.22) �1
�2�

1 + �2
�2 jbuj2 + d

dt
F5 (�; t) � C

�2�
1 + �2

�2k jbvj2 + C
�2�

1 + �2
��2 jbyj2 :

Here C is positive constant.

Proof. Multiplying (3:1)1 by i�bu and using (3:1)2, we get
(3.23) �1�

2 jbuj2 � �1
d

dt
hbv ; i�bu i = �1�

2 jbvj2 + �1 hby; i�bu i
using (3:13), we obtain

�1�
2 jbuj2 � �1

d

dt
hbv ; i�bu i(3.24)

��1�3
�

d

dt

�Db�; buE�+ �2�3
k�

d

dt

�Db�; i� byE�
= �1�

2 jbvj2 � �2
k
�2 jbyj2 � ��1

Dbq; i�b�E� a�3
k�

� 2
Db�; bzE

�m�3
k�

� 2
�b�; i� Z 1

0

g (s)b� (s) ds�+ �3
k
�2
���b����2 � �2

k�
�2 h bq; byi :
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Multiplying (3:24) by
1�

1 + �2
� if � = 0 and (3:23) by

1�
1 + �2

�2 if � 6= 0 and applying

Young�s inequality, to the terms on the right-hand side of (3:24) and (3:23), then (3:21) and
(3:22) holds. This �nishes the proof of Lemma 3.6. �

Proof of Proposition 3.1. In this step, we build the Lyapunov functional L(�; t). In order to
construct this functional, we need to take into account two main things. First, this functional
should satisfy the estimate (3:27) and second, it should verify another estimate of the form

c1 bE(�; t) � L(�; t) � c2 bE(�; t);
where c1 and c2 are two positive constants.
Now, we introduce the Lyapunov functional L (�; t)

(3.25) L (�; t) = N Ê (�; t) +N1F1 (�; t) +N2F2 (�; t) +N3F3 (�; t) +N4F4 (�; t) +F5 (�; t) ;
where N , Ni for i = 1::4, are positive constants that will be �xed later.

� If (� = 0) :
Taking the derivative of L (�; t) with respect to t and making use of (3:5), (3:7),

(3:9), (3:15) and (3:21), we have

@

@t
L (�; t) + (N1 �N2C �N3C � C)

�2�
1 + �2

��3 ���b����2
+(N2 �N1"1 �N3C �N4C � C)

�2�
1 + �2

��2 jbyj2
+(N3 �N2"2 � C)

�2�
1 + �2

�a jbzj2(3.26)

+(N4 �N2"2 � C)
�2�

1 + �2
�k jbvj2 + (1�N4"4 �N3"3)

�2�
1 + �2

��1 jbuj2
� �

�
2�

�
N � (N1C ("1) +N3C ("3) +N4C ("4) + C)

�
� jbqj2

� (Nk1 � (N2C ("2) +N3C +N4C ("4) + C)) m�2
Z 1

0

g (s) jb� (s)j2 ds:
Here we have used

"3
�2�

1 + �2
�2�1 jbuj2 � "3

�2�
1 + �2

��1 jbuj2 ;
and

"2
�2�

1 + �2
�2k jbvj2 � "2

�2�
1 + �2

�k jbvj2 :
Now, we �x the constants in (3:26) as follows

"4 =
1

4N4
; "3 =

1

4N3
, "2 =

1

2N2
; N4 = 1 + C, N3 = 1 + C ,

"1 =
1

2N1
; N2 = 1 +N3C +N4C + C and N1 =

1

2
+N2C +N3C + C .
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Finally, we choose N large enough such that

N > max

�
�

2�
(N1C ("1) +N3C ("3) +N4C ("4) + C) ;

1

k1
(N2C ("2) +N3C +N4C ("4) + C)

�
:

With these choices, (3:26) takes the following form

(3.27)
@

@t
L (�; t) + c0F (�; t) � 0;

where c0 is a positive constant, and

F (�; t) =
�2�

1 + �2
�k jbvj2 + �2�

1 + �2
��1 jbuj2 + �2�

1 + �2
��2 jbyj2(3.28)

+
�2�

1 + �2
�a jbzj2 + �2�

1 + �2
��3 ���b����2 +m�2

Z 1

0

g (s) jb� (s)j2 ds+ � jbqj2 .
Since N is large enough and by using (3:25) then there exist two positive constants

c1 and c2

(3.29) c1Ê (�; t) � L (�; t) � c2Ê (�; t) :

From (3:28), we deduce that

(3.30) F (�; t) � � (�) Ê (�; t) ;

where � (�) =
�2�

1 + �2
� : Consequently, from(3:27), (3:29) and (3:30), we can �nd C

and c such that bE (�; t) � C Ê (�; 0) e�c �(�) t:

� If (� 6= 0) : Taking the derivative of L (�; t) with respect to t and making use of (3:5),
(3:7), (3:9), (3:16) and (3:22), we �nd

@

@t
L (�; t) + (N1 �N2C �N3C �N4C)

�2�
1 + �2

��3 ���b����2(3.31)

+(N2 �N1"1 �N3C �N4C ("4)� C)
�2�

1 + �2
��2 jbyj2

+(N3 �N2"2 �N4C)
�2�

1 + �2
�a jbzj2

+(N4 �N2"2 � C)
�2�

1 + �2
�2k jbvj2 + (1�N4"4 �N3"3)

�2�
1 + �2

�2�1 jbuj2
� �

�
2�

�
N � (N1C ("1) +N3C ("3))

�
� jbqj2

� (Nk1 � (N3C +N2C ("2) +N4C ("4))) m�
2

Z 1

0

g (s) jb� (s)j2 ds:
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Now, we �x the constants in (3:31) as follows

"3 =
1

4N3
; "4 =

1

4N4
, "2 =

1

2N2
; N4 = 1 + C,

N3 = 1 +N4C , "1 =
1

2N1
; N2 = 1 +N3C +N4C ("4) + C and N1 =

1

2
+N2C +N3C +N4C.

Finally, we choose N large enough such that

N > max

�
�

2�
(N1C ("1) +N3C ("3)) ;

1

k1
(N3C +N2C ("2) +N4C ("4))

�
:

With these choices, (3:31) takes the form

(3.32)
@

@t
L (�; t) + c0F (�; t) � 0;

where c0 is a positive constant, and

F (�; t) =
�2�

1 + �2
�2k jbvj2 + �2�

1 + �2
�2�1 jbuj2 + �2�

1 + �2
��2 jbyj2(3.33)

+
�2�

1 + �2
�a jbzj2 + �2�

1 + �2
��3 ���b����2 +m�2

Z 1

0

g (s) jb� (s)j2 ds+ � jbqj2 :
Since N is large enough and using (3:25) then there exist two positive constants c1

and c2

(3.34) c1Ê (�; t) � L (�; t) � c2Ê (�; t) :

From (3:33), we deduce that

(3.35) F (�; t) � � (�) Ê (�; t) ;

where � (�) =
�2�

1 + �2
�2 : Consequently, from(3:32), (3:34) and (3:35), we can �nd C

and c such that bE (�; t) � C Ê (�; 0) e�c �(�) t

This �nishes the proof of the Proposition.
�

3.2. Fourier Model. Taking Fourier transform in (2:6), we obtain the following ODE sys-
tem:

(3.36)

8>>>>>>><>>>>>>>:

bvt � i� bu+ by = 0;
�1but � ik� bv = 0;bzt � i� by = 0;
�2 byt � ia� bz +m� 2

R1
0
g (s)b� (s) ds� k bv + i�� b� = 0;

�3b�t + 1

�
� 2 b� + i�� by = 0;b�t + b�s � by = 0:

The solution vector and initial data are given by bV (�; t) = �bv; bu; bz; by;b�;b��Tand bV (�; 0) =bV0 (�).
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The energy functional corresponding to the above system is de�ned as:

(3.37) bE (�; t) = �1 jbuj2 + �2 jbyj2 + �3

���b����2 + k jbvj2 + a jbzj2 +m�2
Z 1

0

g (s) jb� (s)j2 ds:
The energy (3:37) satis�es the following estimate (see Lemma 3:7, [1]):

d

dt
bE (�; t) = � 2

�
�2
���b����2 +m�2

Z 1

0

g0 (s) jb� (s)j2 ds;
using (H2), we have

d

dt
bE (�; t) � � 2

�
�2
���b����2 � k1m�

2

Z 1

0

g (s) jb� (s)j2 ds:
The pointwise estimates of the functional bE (�; t) are given in the proposition below. This
estimate will play an important role in proving our main result.

Proposition 3.7. For any t � 0 and � 2 R, we have the following estimates

(3.38) bE (�; t) � ( C e�c�1(�) t bE (�; 0) ; if � = 0

C e�c�2(�) t bE (�; 0) ; if � 6= 0

where

(3.39) �1 (�) =
�2

1 + �2
; �2 (�) =

�2�
1 + �2

�2 ;
and C and c are two positive constants.

As in the previous subsection, we show that the decay rate of the solution will depend on
the value of �. The proof will be given through several lemmas.

Lemma 3.8. Let the functional

K0 (�; t) = �
2�2�

2

b0
�
1 + �2

� Re�Z 1

0

g (s)b� (s) ds; by� :
we have the following estimate: for any "0 > 0,

�2�
1 + �2

��2 jbyj2 + d

dt
K0 (�; t) � C�2�3

���b����2 + "0
�2�

1 + �2
�a jbzj2(3.40)

+C ("0)m�
2

Z 1

0

g (s) jb� (s)j2 ds+ "0
�2�

1 + �2
�2k jbvj2 ;

where C and C ("0) are positive constants.

Proof. Multiplying (3:36)6 by g (s) by and using (3:1)4, we get
0 =

d

dt
hb�; g (s) byi � hg (s)b�; byti+ hg (s)b�s; byi � g (s) jbyj2

= hg (s)b�s; byi+ d

dt
(hb�; g (s) byi)� jbyj2 + a

�2
hi�g (s)b�; bzi

+
m

�2
� 2
�
g (s)b�;Z 1

0

g (s)b� (s) ds�� k

�2
hg (s)b�; bvi+ �

�2

D
g (s)b�; i� b�E ;
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integrating with respect to s over (0;1) and integrating by parts the �rst term on the right-
hand side of the above equality, we get

�2 jbyj2 � �2
b0

d

dt
Re

�Z 1

0

g (s)b� (s) ds; by�
= ��2

b0
Re

�Z 1

0

g0 (s)b� (s) ds; by�+ a

b0
Re

�
i�

Z 1

0

g (s)b� (s) ds; bz�
+
m

b0
� 2
����Z 1

0

g (s)b� (s) ds����2 � k

b0
Re

�Z 1

0

g (s)b� (s) ds; bv�
+
�

b0
Re

�Z 1

0

g (s)b� (s) ds; i� b�� ;(3.41)

where the following inequalities have been used:��R1
0
g (s)b� (s) ds��2 � b0

R1
0
g (s) jb� (s)j2 ds;��R1

0
g0 (s)b� (s) ds��2 � b0max fk1; k2g

R1
0
g (s) jb� (s)j2 ds:

Now, multiplying (3.41) by
�2�

1 + �2
� , using the fact that

k

b0
�2

�����
*Z 1

0

g (s)b� (s) ds; 1�
1 + �2

� bv+����� � C ("0)m�
2

Z 1

0

g (s) jb� (s)j2 ds+ "0
�2�

1 + �2
�2k jbvj2

and applying Young�s inequality, to the terms on the right-hand side of (3.41), then (3.40)
holds. This �nishes the proof of Lemma 3.8. �

Lemma 3.9. Let the functional

G (�; t) = �2�2Re hby; i� bzi � 2�1Re hbu; bzi � 2�1�3�
Re
Dbu;b�E� 2�2�3

�
Re
D by; i�b�E :

Let the functional K1 (�; t) =
1�

1 + �2
�G (�; t) , then we have the following estimate

�2�
1 + �2

�a jbzj2 + d

dt
K1 (�; t) � C ("5) �3�

2
���b����2 + C

�2�
2�

1 + �2
� jbyj2(3.42)

+Cm�2
Z 1

0

g (s) jb� (s)j2 ds+ "5
�2�1�
1 + �2

�2 jbuj2 :
for any "5 > 0, C and C ("5) are positive constants.

Proof. Multiplying (3:36)2 by b� and Using (3:36)5, we get
hi�bu; byi =

�3
�

d

dt

Dbu;b�E� �3
�

Dbut;b�E+ 1

��
� 2
Dbu; b�E

=
�3
�

d

dt

Dbu;b�E+ 1

��
� 2
Dbu; b�E+ �3

�1�

D
k bv; i�b�E ;
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using (3:36)4, we obtain

hi�bu; byi =
�3
�

d

dt

Dbu;b�E+ 1

��
� 2
Dbu; b�E+ �3

�1
� 2
���b����2 � a�3

�1�
� 2
D bz;b�E

+
m�3
�1�

� 2
� Z 1

0

g (s)b� (s) ds; i�b��+ �2�3
�1�

d

dt

D by; i�b�E+ �2
�1�

D
i�by; �3b�tE ;

and �nally by using (3:36)5, we deduce

hi�bu; byi =
�3
�

d

dt

Dbu;b�E+ �2�3
�1�

d

dt

D by; i�b�E+ 1

��
� 2
Dbu; b�E

+
�3
�1
� 2
���b����2 � a�3

�1�
� 2
D bz;b�E+ m�3

�1�
� 2
� Z 1

0

g (s)b� (s) ds; i�b��
+

�2
��1�

� 2
D by; i� b�E� �2

�1
� 2 j byj2 :(3.43)

Using (3:11) and (3:43), we obtain

a�2 jbzj2 � �2
d

dt
Re hby; i� bzi � �1

d

dt
Re hbu; bzi

��1�3
�

d

dt
Re
Dbu;b�E� �2�3

�

d

dt
Re
D by; i�b�E

= �3�
2
���b����2 + �� � a�3

�

�
� 2Re

D bz;b�E
+
�1
��
� 2Re

Dbu; b�E+ �2
��
� 2Re

D by; i� b�E+m� 2Re

�
i�

Z 1

0

g (s)b� (s) ds; bz�
+
m�3
�
� 2Re

� Z 1

0

g (s)b� (s) ds; i�b�� :(3.44)

Multiplying (3:44) by
1�

1 + �2
� , using the fact that

�1
��

� 2�
1 + �2

� ���Dbu; b�E��� = � 2

�����
* p

�1�
1 + �2

�bu; p�1
��

b�+����� � C ("5) �3�
2
���b����2 + "5

�2�
1 + �2

�2�1 jbuj2
and applying Young�s inequality, to the terms on the right-hand side of (3:44), then (3:42)
holds. This �nishes the proof of Lemma 3.9. �
Lemma 3.10. Let the functionals(

G (�; t) = �2�2Re hby; bvi � 2a�1k Re hbu; bzi � 2m�1
k

Re


i�
R1
0
g (s)b� (s) ds; bu � ;

H (�; t) = 2�2Re hby; bvi :
� If � = 0 : Let the functional K2 (�; t) =

�2�
1 + �2

�G (�; t) , then we have the following
estimate

�2�
1 + �2

�k jbvj2 + d

dt
K2 (�; t) � C ("6)m�

2

Z 1

0

g (s) jb� (s)j2 ds(3.45)

+C�3�
2
���b����2 + C

�2�
2�

1 + �2
� jbyj2 + "6

�2�1�
1 + �2

� jbuj2 :
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� If � 6= 0 :Let the functional K2 (�; t) =
�2�

1 + �2
�2H (�; t) , then we have the following

estimate

�2�
1 + �2

�2k jbvj2 + d

dt
K2 (�; t) � C ("6)m�

2

Z 1

0

g (s) jb� (s)j2 ds+ C ("6)
�2�2�
1 + �2

� jbyj2(3.46)

+C�2�3

���b����2 + "6
�2�1�
1 + �2

�2 jbuj2 + C
a �2�
1 + �2

� jbzj2 ;
for any "6 > 0, C and C ("6) are positive constants.

Proof. Multiplying (3:36)4 by bv , and using (3:36)1, then we get
k jbvj2 = �2

d

dt
hby; bvi+ �2 hi�by; bui+ �2 jbyj2 � a hi� bz; bvi(3.47)

+m� 2
�Z 1

0

g (s)b� (s) ds; bv�+ �
D
i� b�; bvE :

Using the same steps as in (3:18), we have

k

�1
�2
�
i�

Z 1

0

g (s)b� (s) ds; bv� = �
�
i�

Z 1

0

g0 (s)b� (s) ds; bu�(3.48)

+b0 hby; i�bu i+ d

dt

�
i�

Z 1

0

g (s)b� (s) ds; bu� :
Using the same steps as in (3:10), we have

(3.49) �k hbv; i�bzi = �1
d

dt
hbu; bzi+ �1 hi�bu; byi :

Using (3:47), (3:48) and (3:49), we get

k jbvj2 � �2
d

dt
(Re hby; bvi)� a�1

k

d

dt
Re hbu; bzi � m�1

k

d

dt
Re

�
i�

Z 1

0

g (s)b� (s) ds; bu�(3.50)

= �2 jbyj2 � �b�1k � �2

�
Re hi�by; bui+ �Re

D
i� b�; bvE� m�1

k
Re

�
i�

Z 1

0

g0 (s)b� (s) ds; bu� :
Multiplying (3:50) by

�2�
1 + �2

� if � = 0 and (3:47) by
�2�

1 + �2
�2 if � 6= 0 and applying

Young�s inequality, to the terms on the right-hand side of (3:50) and (3:47), then (3:45) and
(3:46) holds. This �nishes the proof of Lemma 3.10. �

Lemma 3.11. Let the functional(
G (�; t) = �2�1 hbv ; i�bu i � 2�1�3�

Dbu;b�E� 2�2�3
�

D by; i�b�E ;
H (�; t) = �2�1 hbv ; i�bu i :
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� If � = 0 : Let the functional K3 (�; t) =
1�

1 + �2
�G (�; t) , then we have the following

estimate

�1
�2�

1 + �2
� jbuj2 + d

dt
K3 (�; t) � C

�2�
1 + �2

�k jbvj2 + C
�2�

1 + �2
��2 jbyj2(3.51)

+C�2�3

���b����2 + C
�2�

1 + �2
�a jbzj2

+Cm�2
Z 1

0

g (s) jb� (s)j2 ds:
� If � 6= 0 :Let the functional K3 (�; t) =

1�
1 + �2

�2H (�; t), then we have the following
estimate

(3.52) �1
�2�

1 + �2
�2 jbuj2 + d

dt
K3 (�; t) � C

�2�
1 + �2

�2k jbvj2 + C
�2�

1 + �2
��2 jbyj2 :

Here C is positive constant.

Proof. Multiplying (3:36)1 by i�bu and using (3:36)2, we get
(3.53) �1�

2 jbuj2 � �1
d

dt
hbv ; i�bu i = �1�

2 jbvj2 + �1 hby; i�bu i ;
using (3:43), we obtain

�1�
2 jbuj2 � �1

d

dt
hbv ; i�bu i � �1�3

�

d

dt

�Dbu;b�E�� �2�3
�

d

dt

�D by; i�b�E�
= �1�

2 jbvj2 � �2�
2 j byj2 + �3�

2
���b����2 + �1

��
� 2
Dbu; b�E

�a�3
�
� 2
D bz;b�E+ m�3

�
� 2
� Z 1

0

g (s)b� (s) ds; i�b�� :(3.54)

Multiplying (3:54) by
1�

1 + �2
� if � = 0 and (3:53) by

1�
1 + �2

�2 if � 6= 0 and applying

Young�s inequality, to the terms on the right-hand side of (3:54) and (3:53), then (3:51) and
(3:52) holds. This �nishes the proof of Lemma 3.11. �

Proof of Proposition 3.7. Here, we introduce the Lyapunov functional L (�; t) as follows

(3.55) L (�; t) = N bE (�; t) +N0K0 (�; t) +N5K1 (�; t) +N6K2 (�; t) +K3 (�; t) :

Here N , N0; N5 and N6 are positive constants that will be �xed later.
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� if (� = 0) : Taking the derivative of L (�; t) with respect to t and making use of (3:40),
(3:42), (3:45) and (3:51), we �nd

@

@t
L (�; t) + (N0 �N5C �N6C � C)

�2�
1 + �2

��2 jbyj2(3.56)

+(N5 �N0"0 � C)
�2�

1 + �2
�a jbzj2 + (N6 �N0"0 � C)

�2�
1 + �2

�k jbvj2
+(1�N5"5 �N6"6) �1

�2�
1 + �2

� jbuj2
� �

�
2

��3
N � (N0C +N5C ("5) +N6C + C)

�
�3�

2
���b����2

� (Nk1 � (N0C ("0) +N5C +N6C ("6) + C)) m�2
Z 1

0

g (s) jb� (s)j2 ds:
Here we have used

"5
�2�

1 + �2
�2�1 jbuj2 � "5

�2�
1 + �2

��1 jbuj2 ;
and

"0
�2�

1 + �2
�2k jbvj2 � "0

�2�
1 + �2

�k jbvj2 :
Now, we �x the constants in (3:56) as follows

"5 =
1

4N5
, "6 =

1

4N6
, "0 =

1

2N0
; N6 = 1 + C,

N5 = 1 + C and N0 =
1

2
+N5C +N6C + C:

Finally, we choose N large enough such that

N > max

�
��3
2
(N0C +N5C ("5) +N6C + C) ;

1

k1
(N0C ("0) +N5C +N6C ("6) + C)

�
:

With these choices, (3:56) takes the form

(3.57)
@

@t
L (�; t) + c0K (�; t) � 0;

where c0 is a positive constant, and

K (�; t) =
�2�

1 + �2
�k jbvj2 + �2�

1 + �2
��1 jbuj2 + �2�

1 + �2
��2 jbyj2(3.58)

+
�2�

1 + �2
�a jbzj2 + �2�3

���b����2 +m�2
Z 1

0

g (s) jb� (s)j2 ds:
Since N is large enough and using (3:55) then there exist two positive constants c1

and c2

(3.59) c1 bE (�; t) � L (�; t) � c2 bE (�; t) :
From (3:58), we deduce that

(3.60) K (�; t) � � (�) bE (�; t) ;
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where � (�) =
�2�

1 + �2
� : Consequently, from (3:57), (3:59) and (3:60), we can �nd C

and c such that bE (�; t) � C bE (�; 0) e�c �(�) t:
� If � 6= 0: Taking the derivative of L (�; t) with respect to t and making use of (3:40),
(3:42), (3:46) and (3:52), we obtain

@

@t
L (�; t) + (N0 �N5C �N6C ("6)� C)

�2�
1 + �2

��2 jbyj2(3.61)

+(N5 �N0"0 �N6C)
�2�

1 + �2
�a jbzj2 + (N6 �N0"0 � C)

�2�
1 + �2

�2k jbvj2
+(1�N5"5 �N6"6) �1

�2�
1 + �2

�2 jbuj2
� �

�
2

��3
N � (N0C +N5C ("5) +N6C)

�
�3�

2
���b����2

� (Nk1 � (N0C ("0) +N5C +N6C ("6))) m�
2

Z 1

0

g (s) jb� (s)j2 ds:
Now, we �x the constants in (3:61) as follows8><>:

"5 =
1

4N5
, "6 =

1

4N6
, "0 =

1

2N0
; N6 = 1 + C ,

N5 = 1 + C ; N0 =
1

2
+N5C +N6 ("6) + C :

Finally, we take N large enough such that

N > max

�
��3
2
(N0C +N5C ("5) +N6C) ;

1

k1
(N0C ("0) +N5C +N6C ("6))

�
:

With these choices, (3:61) takes the form

(3.62)
@

@t
L (�; t) + c0K (�; t) � 0;

where c0 is a positive constant, and

K (�; t) =
�2�

1 + �2
�2k jbvj2 + �2�

1 + �2
�2�1 jbuj2 + �2�

1 + �2
��2 jbyj2(3.63)

+
�2�

1 + �2
�a jbzj2 + �2�3

���b����2 +m�2
Z 1

0

g (s) jb� (s)j2 ds.
Since N is large enough and by using (3:55) then there exist two positive constants

c1 and c2

(3.64) c1 bE (�; t) � L (�; t) � c2 bE (�; t) :
From (3:63), we deduce that

(3.65) K (�; t) � � (�) bE (�; t) ;
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where � (�) =
�2�

1 + �2
�2 :Consequently, from(3:62), (3:64) and (3:65), we can �nd C; c

such that bE (�; t) � C bE (�; 0) e�c �(�) t:
This �nishes the proof of the Proposition

�

4. The decay estimates

In this section, using the previous estimates, we establish new decay rates of the solution
U(x; t) and V (x; t) of the systems (2:3) � (2:4) and (2:6) � (2:7), respectively. We need to
mention here that in the case of � = 0 we don�t have the regularity loss phenomena.
Our �rst main result is stated as follow:

Theorem 4.1. Let s be a nonnegative integer and

� =
b�1
k
� �2:

Suppose that U0 2 Hs\L1 (R). Then, the solution U of the system (2:3), satis�es the following
decay estimates:

� If (� = 0), then

@kxU (t)

L2 � C (1 + t)�
1
4
�k
2 kU0kL1 + Ce�ct



@kxU0

L2 ; t � 0:
� If (� 6= 0), then



@kxU (t)

L2 � C (1 + t)�
1
4
�k
2 kU0kL1 + C (1 + t)

�
l

2


@k+lx U0




L2
; t � 0;

where k + l � s, C and c are two positive constants.

Proof. Using the Fourier transform, the proof of Theorem 4.1 is reduced to the analysis of the
behavior of the spectral parameter in low- frequency and in the high-frequency regions. The
proof is based on the pointwise estimates in Proposition 3:1. Applying Plancherel theorem

and making use of the inequality in (3:3) and as c1
��� bU (�; t)���2 � bE (�; t) � c2

��� bU (�; t)���2, we
obtain

k@nxU (t)k
2
2 =

Z
R

�2n jU (�; t)j2 d�(4.1)

� C

Z
R

�2n e�c �(�) t
��� bU (�; 0)���2 d�

� C

Z
j�j�1

�2n e�c �(�) t
��� bU (�; 0)���2 d� + C

Z
j�j�1

�2n e�c �(�) t
��� bU (�; 0)���2 d�

= I1 + I2:

The integral is spitted into two parts: the low-frequency part (j�j � 1) and the high-
frequency part (j�j � 1).

� Estimation of I1 :
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�if (� = 0) or if (� 6= 0), with � (�) = �2

1 + �2
or � (�) =

�2�
1 + �2

�2 : Here, we see
that � (�) � �2

2
or � (�) � �2

4
, so that we have we infer that

I1 � C



bU0


2

L1

Z
j�j�1

j�j2n e�c �2td� � C (1 + t)�
1
2
(1+2n) kU0k2L1 ;

where, we have used the following inequality
1Z
0

j�j� e�c�2td� � C (1 + t)�
(1+�)
2 :

� Approximation of I2 :
�If (� = 0) : In high frequency region, we see that � (�) � C for j�j � 1.
Therefore I2 is estimated as follow:

I2 � Ce�c t
Z

j�j�1

�2n
��� bU (�; 0)���2 d�

� Ce�c t k@nxU0k
2
L2 :

�If (� 6= 0) : We have � (�) � ��2 for j�j � 1. Therefore we can estimate I2 as

I2 � C sup
j�j�1

n
j�j�2� e�c j�j

�2 t
o Z
j�j�1

�2(n+�)
��� bU (�; 0)���2 d�

� C (1 + t)��


@n+�x U0



2
L2
:

Substituting these estimates into (4:1) gives the desired estimate in Theorem.

�

Using a similar method of proof like in the previous theorem, we establish the decay
estimates of the solution V (x; t) solution of (2:6)� (2:7). The result is stated as follow:

Theorem 4.2. Let s be a nonnegative integer and

� =
b�1
k
� �2:

Suppose that V0 2 Hs\L1 (R). Then, the solution V of the system (2:6), satis�es the following
decay estimates:

� If (� = 0), then

@kxV (t)

L2 � C (1 + t)�
1
4
�k
2 kV0kL1 + Ce�ct



@kxV0

L2 ; t � 0:
� If (� 6= 0), then

@kxV (t)

L2 � C (1 + t)�

1
4
�k
2 kV0kL1 + C (1 + t)�

l
2


@k+lx V0




L2
; t � 0;

where k + l � s, C and c are two positive constants.
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