References
1. Hohn S, Acevedo-Trejos E, Abrams JF, Fulgencio de Moura J, Spranz R, Merico A. The long-term legacy of plastic mass production. Sci Total Environ . 2020;746. doi:10.1016/j.scitotenv.2020.141115
2. Shaw DG, Day RH. Colour- and form-dependent loss of plastic micro-debris from the North Pacific Ocean. Mar Pollut Bull . 1994;28(1):39-43. doi:10.1016/0025-326X(94)90184-8
3. Mohammadian M, Allen NS, Edge M, Jones K. Environmental Degradation of Poly (ethylene Terephthalate). Text Res J . 1991;61(11):690-696. doi:10.1177/004051759106101109
4. Day M, Wiles DM. Photochemical degradation of poly(ethylene terephthalate). II. Effect of wavelength and environment on the decomposition process. J Appl Polym Sci . 1972;16(1):191-202. doi:10.1002/app.1972.070160117
5. Sadler JC, Wallace S. Microbial synthesis of vanillin from waste poly(ethylene terephthalate). Green Chem . 2021;23(13):4665-4672. doi:10.1039/d1gc00931a
6. Webb HK, Arnott J, Crawford RJ, Ivanova EP. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) . 2013;5(1):1-18. doi:10.3390/polym5010001
7. Müller RJ, Kleeberg I, Deckwer WD. Biodegradation of polyesters containing aromatic constituents. J Biotechnol . 2001;86(2):87-95. doi:10.1016/S0168-1656(00)00407-7
8. Kirstein IV, Wichels A, Gullans E, Krohne G, Gerdts G. The plastisphere – Uncovering tightly attached plastic “specific” microorganisms. PLoS One . 2019;14(4). doi:10.1371/journal.pone.0215859
9. Yang Y, Liu W, Zhang Z, Grossart HP, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol . 2020;104(15):6501-6511. doi:10.1007/s00253-020-10704-x
10. Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol . 2020;18(3):139-151. doi:10.1038/s41579-019-0308-0
11. Danso D, Chow J, Streit WR. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol . 2019;85(19):e01095-19. doi:10.1128/AEM.01095-19
12. Zrimec J, Kokina M, Jonasson S, Zorrilla F, Zelezniak A. Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends. Kelly L, Newman DK, eds. MBio . 2021;12(5). doi:10.1128/MBIO.02155-21
13. Gambarini V, Pantos O, Kingsbury JM, Weaver L, Handley KM, Lear G. Phylogenetic Distribution of Plastic-Degrading Microorganisms.mSystems . 2021;6(1). doi:10.1128/MSYSTEMS.01112-20
14. Gan Z, Zhang H. PMBD: a Comprehensive Plastics Microbial Biodegradation Database. Database (Oxford) . 2019;2019. doi:10.1093/database/baz119
15. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics . 2006;22:1658-1659. doi:10.1093/bioinformatics/btl158
16. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-Hit: accelerated for clustering the next-generation sequencing data. Bioinformatics . 2012;28(23):3150-3152. doi:10.1093/bioinformatics/bts565
17. Notredame C, Higgins DG, Heringa J. T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol . 2000;302(1):205-217. doi:10.1006/jmbi.2000.4042
18. Agarwala R, Barrett T, Beck J, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res . 2018;46(D1):D8-D13. doi:10.1093/nar/gkx1095
19. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank.Nucleic Acids Res . 2000;28(1):235-242. doi:10.1093/nar/28.1.235
20. Bauer TL, Buchholz PCF, Pleiss J. The modular structure of $\upalpha$/$\upbeta$-hydrolases.{FEBS} J . 2019;287(5):1035-1053. doi:10.1111/febs.15071
21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol . 1990;215(3):403-410. doi:10.1016/S0022-2836(05)80360-2
22. Tange O. GNU parallel: the command-line power tool. ;login USENIX Mag . 2011;36(1):42-47.
23. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Mol Syst Biol . 2011;7(1):539. doi:10.1038/msb.2011.75
24. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol . 1970;48(3):443-453.
25. Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet . 2000;16(1):276-277. doi:10.1016/j.cocis.2008.07.002
26. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks.Genome Res . 2003;13(11):2498-2504. doi:10.1101/gr.1239303
27. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G, Vaught T, Millman J, eds. Proceedings of the 7th Python in Science Conference . ; 2008:11-15.
28. Alves NM, Mano JF, Balaguer E, Meseguer Dueñas JM, Gómez Ribelles JL. Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): A DSC study. Polymer (Guildf) . 2002;43(15):4111-4122. doi:10.1016/S0032-3861(02)00236-7
29. Zhang H, Dierkes R, Pérez-García P, et al. The abundance of mRNA transcripts of bacteroidetal polyethylene terephthalate (PET) esterase genes may indicate a role in marine plastic degradation. Published online August 11, 2021. doi:10.21203/RS.3.RS-567691/V2
30. Kitadokoro K, Thumarat U, Nakamura R, et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab . 2012;97(5):771-775. doi:10.1016/j.polymdegradstab.2012.02.003
31. David L, Cheah E, Cygler M, et al. The α/β hydrolase fold.Protein Eng Des Sel . 1992;5(3):197-211. doi:10.1093/protein/5.3.197
32. Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol . 2017;7(MAY). doi:10.3389/fcimb.2017.00215
33. Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Sci Rep . 2019;9(1). doi:10.1038/s41598-019-52675-8
34. Suen G, Weimer PJ, Stevenson DM, et al. The complete genome sequence of fibrobacter succinogenes s85 reveals a cellulolytic and metabolic specialist. PLoS One . 2011;6(4). doi:10.1371/journal.pone.0018814
35. Arntzen M, Várnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol . 2017;19(7):2701-2714. doi:10.1111/1462-2920.13770
36. Brumm P, Mead D, Boyum J, et al. Functional annotation of Fibrobacter succinogenes S85 carbohydrate active enzymes. Appl Biochem Biotechnol . 2011;163(5):649-657. doi:10.1007/s12010-010-9070-5
37. Pleiss J, Fischer M, Peiker M, Thiele C, Schmid RD. Lipase engineering database: Understanding and exploiting sequence-structure-function relationships. J Mol Catal - B Enzym . 2000;10(5):491-508. doi:10.1016/S1381-1177(00)00092-8
38. Fecker T, Galaz-Davison P, Engelberger F, et al. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase. Biophys J . 2018;114(6):1302-1312. doi:10.1016/j.bpj.2018.02.005
39. Joo S, Cho IJ, Seo H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun . 2018;9(1). doi:10.1038/s41467-018-02881-1
40. Tournier V, Topham CM, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature . 2020;580(7802):216-219. doi:10.1038/s41586-020-2149-4
41. Magnin A, Pollet E, Phalip V, Avérous L. Evaluation of biological degradation of polyurethanes. Biotechnol Adv . 2020;39. doi:10.1016/j.biotechadv.2019.107457
42. Schmidt J, Wei R, Oeser T, et al. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases. Polymers (Basel) . 2017;9(2):65. doi:10.3390/POLYM9020065
43. Phua SK, Castillo E, Anderson JM, Hiltner A. Biodegradation of a polyurethane in vitro. J Biomed Mater Res . 1987;21(2):231-246. doi:10.1002/jbm.820210207
44. do Canto VP, Thompson CE, Netz PA. Polyurethanases: Three-dimensional structures and molecular dynamics simulations of enzymes that degrade polyurethane. J Mol Graph Model . 2019;89:82-95. doi:10.1016/j.jmgm.2019.03.001
45. do Canto VP, Thompson CE, Netz PA. Computational studies of polyurethanases from Pseudomonas. J Mol Model . 2021;27(2). doi:10.1007/s00894-021-04671-x
46. Howard GT, Crother B, Vicknair J. Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. Int Biodeterior Biodegrad . 2001;47(3):141-149. doi:10.1016/S0964-8305(01)00042-7
47. Bumba L, Masin J, Macek P, et al. Calcium-Driven Folding of RTX Domain β-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell . 2016;62(1):47-62. doi:10.1016/j.molcel.2016.03.018
48. Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T. Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. J Ferment Bioeng . 1998;86(4):339-345. doi:10.1016/S0922-338X(99)89001-1
49. Ignat L, Ignat M, Ciobanu C, Doroftei F, Popa VI. Effects of flax lignin addition on enzymatic oxidation of poly(ethylene adipate) urethanes. Ind Crops Prod . 2011;34(1):1017-1028. doi:10.1016/j.indcrop.2011.03.010
50. Danso D, Schmeisser C, Chow J, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol . 2018;84(8). doi:10.1128/AEM.02773-17
51. Salgado CA, Almeida FA de, Barros E, Baracat-Pereira MC, Baglinière F, Vanetti MCD. Identification and characterization of a polyurethanase with lipase activity from Serratia liquefaciens isolated from cold raw cow’s milk. Food Chem . 2021;337. doi:10.1016/j.foodchem.2020.127954
52. Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol . 2017;10(6):1308-1322. doi:10.1111/1751-7915.12710
53. Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science (80- ) . 2016;351(6278):1196-1199. doi:10.1126/science.aad6359
54. Han X, Liu W, Huang JW, et al. Structural insight into catalytic mechanism of PET hydrolase. Nat Commun . 2017;8(1). doi:10.1038/s41467-017-02255-z
55. Austin HP, Allen MD, Donohoe BS, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A . 2018;115(19):E4350-E4357. doi:10.1073/pnas.1718804115
56. Wei R, Song C, Gräsing D, et al. Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nat Commun 2019 101 . 2019;10(1):1-4. doi:10.1038/s41467-019-13492-9
57. Son HF, Cho IJ, Joo S, et al. Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation. ACS Catal . 2019;9(4):3519-3526. doi:10.1021/ACSCATAL.9B00568
58. C L, C S, S Z, R W, CC Y. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis.Biochem Biophys Res Commun . 2019;508(1):289-294. doi:10.1016/J.BBRC.2018.11.148
59. Haernvall K, Zitzenbacher S, Yamamoto M, Schick MB, Ribitsch D, Guebitz GM. A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters. J Biotechnol . 2017;257:70-77. doi:10.1016/j.jbiotec.2017.01.012
60. A B, S T, E K-G, et al. A Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestusnigri - Structural and Functional Insights.Front Microbiol . 2020;11. doi:10.3389/FMICB.2020.00114
61. Ronkvist ÅM, Xie W, Lu W, Gross RA. Cutinase-Catalyzed Hydrolysis of Poly(ethylene terephthalate). Macromolecules . 2009;42(14):5128-5138. doi:10.1021/MA9005318
62. Sulaiman S, Yamato S, Kanaya E, et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol . 2012;78(5):1556-1562. doi:10.1128/AEM.06725-11
63. S S, DJ Y, E K, Y K, S K. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase.Biochemistry . 2014;53(11):1858-1869. doi:10.1021/BI401561P
64. Shirke AN, White C, Englaender JA, et al. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis. Biochemistry . 2018;57(7):1190-1200. doi:10.1021/acs.biochem.7b01189
65. Dresler K, Van Den Heuvel J, Müller RJ, Deckwer WD. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst Eng . 2006;29(3):169-183. doi:10.1007/s00449-006-0069-9
66. Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D. Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca. Macromol Rapid Commun . 2005;26(17):1400-1405. doi:10.1002/MARC.200500410
67. Kleeberg I, Hetz C, Kroppenstedt RM, Müller RJ, Deckwer WD. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl Environ Microbiol . 1998;64(5):1731-1735. doi:10.1128/aem.64.5.1731-1735.1998
68. Kleeberg I, Welzel K, VandenHeuvel J, Müller RJ, Deckwer WD. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters.Biomacromolecules . 2005;6(1):262-270. doi:10.1021/bm049582t
69. Acero EH, Ribitsch D, Steinkellner G, et al. Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules . 2011;44(12):4632-4640. doi:10.1021/MA200949P
70. Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. Identification and characterization of bacterial cutinase. J Biol Chem . 2008;283(38):25854-25862. doi:10.1074/jbc.M800848200
71. Su L, Woodard RW, Chen J, Wu J. Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol . 2013;79(14):4192-4198. doi:10.1128/AEM.00239-13
72. Lykidis A, Mavromatis K, Ivanova N, et al. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX.J Bacteriol . 2007;189(6):2477-2486. doi:10.1128/JB.01899-06
73. Furukawa M, Kawakami N, Tomizawa A, Miyamoto K. Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Sci Rep . 2019;9(1). doi:10.1038/s41598-019-52379-z
74. Roth C, Wei R, Oeser T, et al. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol . 2014;98(18):7815-7823. doi:10.1007/s00253-014-5672-0
75. Wei R, Oeser T, Schmidt J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng . 2016;113(8):1658-1665. doi:10.1002/bit.25941
76. Huang YC, Chen GH, Chen YF, Chen WL, Yang CH. Heterologous expression of thermostable acetylxylan esterase gene from Thermobifida fusca and its synergistic action with xylanase for the production of xylooligosaccharides. Biochem Biophys Res Commun . 2010;400(4):718-723. doi:10.1016/j.bbrc.2010.08.136
77. Hegde K, Veeranki VD. Production optimization and characterization of recombinant cutinases from thermobifida fusca sp. NRRL B-8184.Appl Biochem Biotechnol . 2013;170(3):654-675. doi:10.1007/s12010-013-0219-x
78. Ribitsch D, Hromic A, Zitzenbacher S, et al. Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnol Bioeng . 2017;114(11):2481-2488. doi:10.1002/bit.26372
79. Kitadokoro K, Kakara M, Matsui S, et al. Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase. FEBS J . 2019;286(11):2087-2098. doi:10.1111/febs.14781
80. Wei R, Oeser T, Then J, et al. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express . 2014;4(1):1-10. doi:10.1186/s13568-014-0044-9
81. Ribitsch D, Acero EH, Greimel K, et al. A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA). Polym 2012, Vol 4, Pages 617-629 . 2012;4(1):617-629. doi:10.3390/POLYM4010617
82. Hu X, Thumarat U, Zhang X, Tang M, Kawai F. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol . 2010;87(2):771-779. doi:10.1007/s00253-010-2555-x
83. Kawai F, Oda M, Tamashiro T, et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol . 2014;98(24):10053-10064. doi:10.1007/s00253-014-5860-y
84. Oda M, Yamagami Y, Inaba S, et al. Enzymatic hydrolysis of PET: functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity. Appl Microbiol Biotechnol . 2018;102(23):10067-10077. doi:10.1007/s00253-018-9374-x
85. Ribitsch D, Heumann S, Trotscha E, et al. Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog . 2011;27(4):951-960. doi:10.1002/BTPR.610
86. Carniel A, Valoni É, Nicomedes J, Gomes A da C, Castro AM de. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem . 2017;59:84-90. doi:10.1016/J.PROCBIO.2016.07.023