REFERENCES
Alekseychik, P. K., Mammarella, I., Launiainen, S., Rannik, Ü., & Vesala, T. (2013). Evolution of the nocturnal decoupled layer in a pine forest canopy. Agricultural and Forest Meteorology ,174–175 , 15–27. https://doi.org/10.1016/j.agrformet.2013.01.011
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., & Laitat, E. (2001). Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology , 108 (4), 293–315. https://doi.org/10.1016/S0168-1923(01)00244-1
Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology , 9 (4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., … Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science ,329 (5993), 834–838. https://doi.org/10.1126/science.1184984
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr, A. R., & Long, S. P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment ,24 (2), 253–259. https://doi.org/10.1111/j.1365-3040.2001.00668.x
Bickford, C. P., Hanson, D. T., & McDowell, N. G. (2010). Influence of diurnal variation in mesophyll conductance on modelled13C discrimination: Results from a field study.Journal of Experimental Botany , 61 (12), 3223–3233. https://doi.org/10.1093/jxb/erq137
Bowling, D. R., Pataki, D. E., & Randerson, J. T. (2008). Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes.New Phytologist , 178 (1), 24–40. https://doi.org/10.1111/j.1469-8137.2007.02342.x
Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., Belviso, S., Bopp, L., & Laine, M. (2017). Large historical growth in global terrestrial gross primary production.Nature , 544 (7648), 84–87. https://doi.org/10.1038/nature22030
Cano, F. J., López, R., & Warren, C. R. (2014). Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant, Cell & Environment ,37 (11), 2470–2490. https://doi.org/10.1111/pce.12325
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., & Farquhar, G. D. (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants.New Phytologist , 200 (4), 950–965. https://doi.org/10.1111/nph.12423
Clark, J. (2007). Models for Ecological Data: An Introduction . Princeton University Press.
Clearwater, M. J., Meinzer, F. C., Andrade, J. L., Goldstein, G., & Holbrook, N. M. (1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology ,19 (10), 681–687. https://doi.org/10.1093/treephys/19.10.681
Cleveland, W., Grosse, E., & Shyu, W. (1992). Local regression models. Chapter 8 in Statistical models in S (eds J.M. Chambers & TJ Hastie), 608 p. Wadsworth & Brooks/Cole, Pacific Grove, CA .
Cohen, Y., Cohen, S., Cantuarias-Aviles, T., & Schiller, G. (2008). Variations in the radial gradient of sap velocity in trunks of forest and fruit trees. Plant and Soil , 305 (1), 49–59. https://doi.org/10.1007/s11104-007-9351-0
Cornes, R. C., Schrier, G. van der, & Squintu, A. A. (2019). A reappraisal of the thermal growing season length across Europe.International Journal of Climatology , 39 (3), 1787–1795. https://doi.org/10.1002/joc.5913
Curtis, P. S., Hanson, P. J., Bolstad, P., Barford, C., Randolph, J. C., Schmid, H. P., & Wilson, K. B. (2002). Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology ,113 (1), 3–19. https://doi.org/10.1016/S0168-1923(02)00099-0
Dietze, M. C. (2017). Ecological forecasting . Princeton University Press.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., Lissa, C. J. van, Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience , 1–6. https://doi.org/10.1038/s41561-019-0530-4
Dubbert, M., Rascher, K. G., & Werner, C. (2012). Species-specific differences in temporal and spatial variation in δ13C of plant carbon pools and dark-respired CO2 under changing environmental conditions. Photosynthesis Research , 113 (1), 297–309. https://doi.org/10.1007/s11120-012-9748-3
Duursma, R. A., & Marshall, J. D. (2006). Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees , 20 (4), 496–506. https://doi.org/10.1007/s00468-006-0065-3
Duursma, R. A., Kolari, P., Perämäki, M., Pulkkinen, M., Mäkelä, A., Nikinmaa, E., …, Vesala, T. (2009). Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: A model-based analysis. Tree Physiology , 29 (5), 621–639. https://doi.org/10.1093/treephys/tpp010
Ehleringer, J., Hall, A., & Farquhar, G. (1993). Introduction: Water use in relation to productivity. Stable Isotopes and Plant Carbon-Water Relations. Academic Press, New York , 3–8.
Ehman, J. L., Schmid, H. P., Grimmond, C. S. B., Randolph, J. C., Hanson, P. J., Wayson, C. A., & Cropley, F. D. (2002). An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest.Global Change Biology , 8 (6), 575–589. https://doi.org/10.1046/j.1365-2486.2002.00492.x
Emberson, L. D., Wieser, G., & Ashmore, M. R. (2000). Modelling of stomatal conductance and ozone flux of Norway spruce: Comparison with field data. Environmental Pollution , 109 (3), 393–402. https://doi.org/10.1016/S0269-7491(00)00042-7
Evans, J. R., & Caemmerer, S. V. (2013). Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco.Plant, Cell & Environment , 36 (4), 745–756. https://doi.org/10.1111/j.1365-3040.2012.02591.x
Ewers, Brent E., & Oren, R. (2000). Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements.Tree Physiology , 20 (9), 579–589. https://doi.org/10.1093/treephys/20.9.579
Ewers, B E, Oren, R., Johnsen, K. H., & Landsberg, J. J. (2001). Estimating maximum mean canopy stomatal conductance for use in models.Canadian Journal of Forest Research , 31 (2), 198–207. https://doi.org/10.1139/x00-159
Farquhar, G. D., O’Leary, M., & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology ,9 (2), 121. https://doi.org/10.1071/PP9820121
Farquhar, G. D., & Wong, S. C. (1984). An empirical model of stomatal conductance. Functional Plant Biology , 11 (3), 191–210. https://doi.org/10.1071/pp9840191
Flexas, J., Ribas‐Carbó, M., Diaz‐Espejo, A., Galmés, J., & Medrano, H. (2008). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell & Environment , 31 (5), 602–621. https://doi.org/10.1111/j.1365-3040.2007.01757.x
Flexas, J., Díaz-Espejo, A., Conesa, M. A., Coopman, R. E., Douthe, C., Gago, J., …, Niinemets, Ü. (2016). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant, Cell & Environment ,39 (5), 965–982. https://doi.org/10.1111/pce.12622
Ford, C. R., McGuire, M. A., Mitchell, R. J., & Teskey, R. O. (2004). Assessing variation in the radial profile of sap flux density inPinus species and its effect on daily water use. Tree Physiology , 24 (3), 241–249. https://doi.org/10.1093/treephys/24.3.241
From, F., Lundmark, T., Mörling, T., Pommerening, A., & Nordin, A. (2016). Effects of simulated long-term N deposition on Picea abies and Pinus sylvestris growth in boreal forest.Canadian Journal of Forest Research , 46 (11), 1396–1403. https://doi.org/10.1139/cjfr-2016-0201
Gessler, A., Rennenberg, H., & Keitel, C. (2004). Stable isotope composition of organic compounds transported in the phloem of european beech—Evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biology , 6 (6), 721–729. https://doi.org/10.1055/s-2004-830350
Granier, A. (1985). Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annales Des Sciences Forestieres ,42 (2), 193–200.
Granier, A. (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology , 3 (4), 309–320. https://doi.org/10.1093/treephys/3.4.309
Granier, A., Loustau, D., & Bréda, N. (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science , 57 (8), 755–765. https://doi.org/10.1051/forest:2000158
Han, J.-M., Meng, H.-F., Wang, S.-Y., Jiang, C.-D., Liu, F., Zhang, W.-F., & Zhang, Y.-L. (2016). Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment. Journal of Plant Physiology , 194 , 61–71. https://doi.org/10.1016/j.jplph.2016.03.014
Hänninen, H. (2016). Climatic adaptation of boreal and temperate tree species. In Biometeorology. Boreal and temperate trees in a changing climate: modelling the ecophysiology of seasonality (ed H. Hänninen), pp. 1–13. Springer Netherlands. https://doi.org/10.1007/978-94-017-7549-6_1
Hasselquist, Niles J., Metcalfe, D. B., & Högberg, P. (2012). Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Global Change Biology ,18 (12), 3596–3605. https://doi.org/10.1111/gcb.12001
Hasselquist, N. J., Metcalfe, D. B., Marshall, J. D., Lucas, R. W., & Högberg, P. (2016). Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest.Ecology , 97 (3), 671–683. https://doi.org/10.1890/15-0831
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika , 57 (1), 97-109.
Högberg, P. (2007). Environmental science: Nitrogen impacts on forest carbon. Nature , 447 (7146), 781–782. https://doi.org/10.1038/447781a
Hu, J., Moore, D. J. P., Riveros‐Iregui, D. A., Burns, S. P., & Monson, R. K. (2010). Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios.New Phytologist , 185 (4), 1000–1015. https://doi.org/10.1111/j.1469-8137.2009.03154.x
Hultine, K. R., Bush, S. E., West, A. G., Burtch, K. G., Pataki, D. E., & Ehleringer, J. R. (2008). Gender-specific patterns of aboveground allocation, canopy conductance and water use in a dominant riparian tree species: Acer negundo . Tree Physiology , 28 (9), 1383–1394. https://doi.org/10.1093/treephys/28.9.1383
Hyvönen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G. I., & Linder, S. (2008). Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry ,89 (1), 121–137. https://doi.org/10.1007/s10533-007-9121-3
Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., …, Peichl, M. (2017). Apparent winter CO2 uptake by a boreal forest due to decoupling.Agricultural and Forest Meteorology , 232 , 23–34. https://doi.org/10.1016/j.agrformet.2016.08.002
Jocher, G., Marshall, J., Nilsson, M. B., Linder, S., Simon, G. D., Hörnlund, T., …, Peichl, M. (2018). Impact of canopy decoupling and subcanopy advection on the annual carbon balance of a boreal Scots pine forest as derived from eddy covariance. Journal of Geophysical Research: Biogeosciences , 123 (2), 303–325. https://doi.org/10.1002/2017JG003988
Keenan, T., Sabate, S., & Gracia, C. (2010). Soil water stress and coupled photosynthesis–conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis.Agricultural and Forest Meteorology , 150 (3), 443–453. https://doi.org/10.1016/j.agrformet.2010.01.008
Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M., Torn, M., & Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration. Nature Ecology & Evolution , 3 (3), 407–415. https://doi.org/10.1038/s41559-019-0809-2
Kergoat, L., Lafont, S., Arneth, A., Le Dantec, V., & Saugier, B. (2008). Nitrogen controls plant canopy light‐use efficiency in temperate and boreal ecosystems. Journal of Geophysical Research: Biogeosciences , 113 , G04017, doi:10.1029/2007JG000676.
Kim, H.-S., Oren, R., & Hinckley, T. M. (2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation.Tree Physiology , 28 (4), 559–577. https://doi.org/10.1093/treephys/28.4.559
Klein, T., Rotenberg, E., Tatarinov, F., & Yakir, D. (2016). Association between sap flow-derived and eddy covariance-derived measurements of forest canopy CO2 uptake. New Phytologist , 209 (1), 436–446. https://doi.org/10.1111/nph.13597
Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., & Berninger, F. (2004). Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology , 10 (7), 1106–1119. https://doi.org/10.1111/j.1529-8817.2003.00797.x
Kulmala, L., Pumpanen, J., Kolari, P., Muukkonen, P., Hari, P., & Vesala, T. (2011). Photosynthetic production of ground vegetation in different-aged Scots pine (Pinus sylvestris ) forests.Canadian Journal of Forest Research , 41 (10), 2020–2030. https://doi.org/10.1139/x11-121
Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H., Launiainen, S., …, Vesala, T. (2008). Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data. Tellus B: Chemical and Physical Meteorology , 60 (2), 143–152. https://doi.org/10.1111/j.1600-0889.2007.00324.x
Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson‐Löfvenius, M., & Bishop, K. (2013). The Krycklan catchment study—A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. Water Resources Research , 49 (10), 7154–7158. https://doi.org/10.1002/wrcr.20520
Lim, H., Oren, R., Palmroth, S., Tor-ngern, P., Mörling, T., Näsholm, T., …, Linder, S. (2015). Inter-annual variability of precipitation constrains the production response of boreal Pinus sylvestris to nitrogen fertilization. Forest Ecology and Management , 348 , 31–45. https://doi.org/10.1016/j.foreco.2015.03.029
Linderholm, H. W. (2006). Growing season changes in the last century.Agricultural and Forest Meteorology , 137 (1), 1–14. https://doi.org/10.1016/j.agrformet.2006.03.006
Lundblad, M., Lagergren, F., & Lindroth, A. (2001). Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Annals of Forest Science , 58 (6), 625–638. https://doi.org/10.1051/forest:2001150
Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., … Grace, J. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature ,447 (7146), 849–851. https://doi.org/10.1038/nature05847
Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., & Nikinmaa, E. (2004). Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiology , 24 (4), 369–376. https://doi.org/10.1093/treephys/24.4.369
Mäkelä, A., Kolari, P., Karimäki, J., Nikinmaa, E., Perämäki, M., & Hari, P. (2006). Modelling five years of weather-driven variation of GPP in a boreal forest. Agricultural and Forest Meteorology ,139 (3), 382–398. https://doi.org/10.1016/j.agrformet.2006.08.017
Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Berbigier, P., Lindroth, A., …, Hari, P. (2008). Developing an empirical model of stand GPP with the LUE approach: Analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology ,14 (1), 92–108. https://doi.org/10.1111/j.1365-2486.2007.01463.x
Marshall, J. D., & Linder, S. (2013). Mineral nutrition and elevated CO2 interact to modify delta C-13, an index of gas exchange, in Norway spruce. Tree Physiology , 33 (11), 1132–1144. https://doi.org/10.1093/treephys/tpt004
Maseyk, K., Hemming, D., Angert, A., Leavitt, S. W., & Yakir, D. (2011). Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia , 167 (2), 573–585. https://doi.org/10.1007/s00442-011-2010-4
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., …, Loustau, D. (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell & Environment ,25 (9), 1167–1179. https://doi.org/10.1046/j.1365-3040.2002.00891.x
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., …, Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance.Global Change Biology , 17 (6), 2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics , 21 (6), 1087–1092.
Michelot, A., Eglin, T., Dufrêne, E., Lelarge‐Trouverie, C., & Damesin, C. (2011). Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest. Plant, Cell & Environment ,34 (2), 230–244. https://doi.org/10.1111/j.1365-3040.2010.02238.x
Minunno, F., Peltoniemi, M., Launiainen, S., Aurela, M., Lindroth, A., Lohila, A., …, Mäkelä, A. (2016). Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region. Ecological Modelling , 341 , 37–52. https://doi.org/10.1016/j.ecolmodel.2016.09.020
Montpied, P., Granier, A., & Dreyer, E. (2009). Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy.Journal of Experimental Botany , 60 (8), 2407–2418. https://doi.org/10.1093/jxb/erp093
Murray, F. (1967). On the computation of saturation vapor pressure.Journal of Applied Meteorology , 6 (1), 203–204.
Ngao, J., Adam, B., & Saudreau, M. (2017). Intra-crown spatial variability of leaf temperature and stomatal conductance enhanced by drought in apple tree as assessed by the RATP model. Agricultural and Forest Meteorology , 237–238 , 340–354. https://doi.org/10.1016/j.agrformet.2017.02.036
Nohrstedt, H.-Ö. (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences.Scandinavian Journal of Forest Research , 16 (6), 555–573. https://doi.org/10.1080/02827580152699385
Oren, R., Zimmermann, R., & Terbough, J. (1996). Transpiration in upper amazonia floodplain and upland forests in response to drought-breaking rains. Ecology , 77 (3), 968–973. https://doi.org/10.2307/2265517
Oren, R., Phillips, N., Katul, G., Ewers, B. E., & Pataki, D. E. (1998). Scaling xylem sap flux and soil water balance and calculating variance: A method for partitioning water flux in forests. Annales Des Sciences Forestières , 55 (1–2), 191–216. https://doi.org/10.1051/forest:19980112
Oren, R., Phillips, N., Ewers, B. E., Pataki, D. E., & Megonigal, J. P. (1999). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichumforest. Tree Physiology , 19 (6), 337–347. https://doi.org/10.1093/treephys/19.6.337
Palmroth, S., Bach, L. H., Lindh, M., Kolari, P., Nordin, A., & Palmqvist, K. (2019). Nitrogen supply and other controls of carbon uptake of understory vegetation in a boreal Picea abies forest.Agricultural and Forest Meteorology , 276–277 , 107620. https://doi.org/10.1016/j.agrformet.2019.107620
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., …, Yakir, D. (2006). Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences ,3 (4), 571–583.
Peguero-Pina, J. J., Aranda, I., Cano, F. J., Galmés, J., Gil-Pelegrín, E., Niinemets, Ü., …, & Flexas, J. (2017). The role of mesophyll conductance in oak photosynthesis: Among- and within-species variability. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Cham. (eds E. Gil-Pelegrín J.J. Peguero-Pina, & D. Sancho-Knapik), pp. 303–325. Springer International Publishing. https://doi.org/10.1007/978-3-319-69099-5_9
Peichl, M., Brodeur, J. J., Khomik, M., & Arain, M. A. (2010). Biometric and eddy-covariance based estimates of carbon fluxes in an age-sequence of temperate pine forests. Agricultural and Forest Meteorology , 150 (7), 952–965. https://doi.org/10.1016/j.agrformet.2010.03.002
Peltoniemi, M., Pulkkinen, M., Aurela, M., Pumpanen, J., Kolari, P., & Mäkelä, A. (2015). A semi-empirical model of boreal-forest gross primary production, evapotranspiration, and soil water-calibration and sensitivity analysis. Boreal Environment Research , 20 , 151–171.
Peters, R. L., Fonti, P., Frank, D. C., Poyatos, R., Pappas, C., Kahmen, A., …, Steppe, K. (2018). Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytologist , 219 (4), 1283–1299. https://doi.org/10.1111/nph.15241
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species.Plant, Cell & Environment , 19 (8), 983–990. https://doi.org/10.1111/j.1365-3040.1996.tb00463.x
Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2016). R Core Team (2016) nlme: Linear and nonlinear mixed effects models. R Package Version 3.1-128. Available at ht tps. Cran. r-Project. Org/Web/Packages/Nlme/Index. Html. Accessed July , 7 .
Pons, T. L., Flexas, J., von Caemmerer, S., Evans, J. R., Genty, B., Ribas-Carbo, M., & Brugnoli, E. (2009). Estimating mesophyll conductance to CO2: Methodology, potential errors, and recommendations. Journal of Experimental Botany , 60 (8), 2217–2234. https://doi.org/10.1093/jxb/erp081
Poyatos, R., Martínez-Vilalta, J., Čermák, J., Ceulemans, R., Granier, A., Irvine, J., …, Mencuccini, M. (2007). Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia ,153 (2), 245–259. https://doi.org/10.1007/s00442-007-0740-0
R Core Team. (2016). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing. https://www.R-project.org/
Renninger, H. J., & Schäfer, K. V. R. (2012). Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine. Frontiers in Plant Science ,3 , 103. https://doi.org/10.3389/fpls.2012.00103
Rogers, A., Medlyn, B. E., & Dukes, J. S. (2014). Improving representation of photosynthesis in Earth System Models. New Phytologist , 204 (1), 12–14. https://doi.org/10.1111/nph.12972
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., Caemmerer, S. von, Dietze, M. C., …, Zaehle, S. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist , 213 (1), 22–42. https://doi.org/10.1111/nph.14283
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global Sensitivity Analysis: The Primer . John Wiley & Sons.
Saurer, M., Spahni, R., Frank, D. C., Joos, F., Leuenberger, M., Loader, N. J., … Young, G. H. F. (2014). Spatial variability and temporal trends in water-use efficiency of European forests. Global Change Biology , 20 (12), 3700–3712. https://doi.org/10.1111/gcb.12717
Schäfer, K. V. R., Oren, R., & Tenhunen, J. D. (2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment , 23 (4), 365–375. https://doi.org/10.1046/j.1365-3040.2000.00553.x
Schäfer, K. V. R., Oren, R., Ellsworth, D. S., Lai, C.-T., Herrick, J. D., Finzi, A. C., …, Katul, G. G. (2003). Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology , 9 (10), 1378–1400. https://doi.org/10.1046/j.1365-2486.2003.00662.x
Seibt, U., Rajabi, A., Griffiths, H., & Berry, J. A. (2008). Carbon isotopes and water use efficiency: Sense and sensitivity.Oecologia , 155 (3), 441–454. https://doi.org/10.1007/s00442-007-0932-7
Stangl, Z. R., Tarvainen, L., Wallin, G., Ubierna, N., Räntfors, M., & Marshall, J. D. (2019). Diurnal variation in mesophyll conductance and its influence on modelled water-use efficiency in a mature borealPinus sylvestris stand. Photosynthesis Research ,141 (1), 53–63. https://doi.org/10.1007/s11120-019-00645-6
Steppe, K., De Pauw, D. J. W., Doody, T. M., & Teskey, R. O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology , 150 (7), 1046–1056. https://doi.org/10.1016/j.agrformet.2010.04.004
Sun, H., Aubrey, D. P., & Teskey, R. O. (2012). A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species. Trees ,26 (2), 631–640. https://doi.org/10.1007/s00468-011-0631-1
Tamm, C. (1991). Nitrogen in terrestrial ecosystems: Questions of productivity, vegetational changes, and ecosystem stability. (Vol. 81). Springer Berlin Heidelberg.
Tang, X., Li, H., Desai, A. R., Nagy, Z., Luo, J., Kolb, …, Ammann, C. (2014). How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Scientific Reports ,4 (1), 1–11. https://doi.org/10.1038/srep07483
Tarvainen, L., Räntfors, M., & Wallin, G. (2015). Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand. Plant, Cell & Environment ,38 (11), 2487–2496. https://doi.org/10.1111/pce.12565
Tarvainen, L., Lutz, M., Räntfors, M., Näsholm, T., & Wallin, G. (2016). Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees.Frontiers in Plant Science , 7 ,1051 https://doi.org/10.3389/fpls.2016.01051
Thomas, C. K., Martin, J. G., Law, B. E., & Davis, K. (2013). Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: Multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. Agricultural and Forest Meteorology , 173 , 14–27. https://doi.org/10.1016/j.agrformet.2013.01.001
Tian, X., Minunno, F., Cao, T., Peltoniemi, M., Kalliokoski, T., & Mäkelä, A. (2020). Extending the range of applicability of the semi-empirical ecosystem flux model PRELES for varying forest types and climate. Global Change Biology , n/a (n/a), 1–21. https://doi.org/10.1111/gcb.14992
Tor‐Ngern, P., Oren, R., Oishi, A. C., Uebelherr, J. M., Palmroth, S., Tarvainen, L., Ottosson‐Löfvenius, M., Linder, S., Domec, J.-C., & Näsholm, T. (2017). Ecophysiological variation of transpiration of pine forests: Synthesis of new and published results. Ecological Applications , 27 (1), 118–133. https://doi.org/10.1002/eap.1423
Tuzet, A., Perrier, A., & Leuning, R. (2003). A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment , 26 (7), 1097–1116. https://doi.org/10.1046/j.1365-3040.2003.01035.x
Ubierna, N., & Marshall, J. D. (2011). Estimation of canopy average mesophyll conductance using δ13C of phloem contents.Plant, Cell & Environment , 34 (9), 1521–1535. https://doi.org/10.1111/j.1365-3040.2011.02350.x
Warren, C. R., & Adams, M. A. (2006). Internal conductance does not scale with photosynthetic capacity: Implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant, Cell & Environment , 29 (2), 192–201. https://doi.org/10.1111/j.1365-3040.2005.01412.x
Warren, C. R. (2008). Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO2 transfer. Journal of Experimental Botany ,59 (7), 1475–1487. https://doi.org/10.1093/jxb/erm245
Wehr, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Davidson, E. A., …, & Saleska, S. R. (2016). Seasonality of temperate forest photosynthesis and daytime respiration. Nature ,534 (7609), 680–683. https://doi.org/10.1038/nature17966
Werner, C., Schnyder, H., Cuntz, M., Keitel, C., Zeeman, M. J., Dawson, T. E., … Gessler, A. (2012). Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales.Biogeosciences, 9 (8), 3083. https://doi:10.5194/bgd-8-2659-2011White, J. W. C., Vaughn, B. H., & Michel, S. E. (2015). Stable isotopic composition of atmospheric carbon dioxide (13C and 18O) from the NOAA ESRL carbon cycle cooperative global air sampling network, , 1990-2014, Version: 2015-10-26 . University of Colorado, Institute of Arctic and Alpine Research (INSTAAR). ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/
Wingate, L., Seibt, U., Moncrieff, J. B., Jarvis, P. G., & Lloyd, J. (2007). Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant, Cell & Environment , 30 (5), 600–616. https://doi.org/10.1111/j.1365-3040.2007.01647.x
Xiong, W., Oren, R., Wang, Y., Yu, P., Liu, H., Cao, G., Xu, L., Wang, Y., & Zuo, H. (2015). Heterogeneity of competition at decameter scale: Patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought. Tree Physiology , 35 (5), 470–484. https://doi.org/10.1093/treephys/tpv022
Xiong, D., Douthe, C., & Flexas, J. (2018). Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant, Cell & Environment , 41 (2), 436–450. https://doi.org/10.1111/pce.13111
Zha, T., Xing, Z., Wang, K.-Y., Kellomäki, S., & Barr, A. G. (2007). Total and component carbon fluxes of a Scots pine ecosystem from chamber measurements and eddy covariance. Annals of Botany , 99 (2), 345–353. https://doi.org/10.1093/aob/mcl266
Zhao, P., Lu, P., Ma, L., Sun, G., Rao, X., Cai, X., & Zeng, X. (2005). Combining sap flow measurement-based canopy stomatal conductance and13C discrimination to estimate forest carbon assimilation. Chinese Science Bulletin , 50 (18), 2021–2027. https://doi.org/10.1007/BF03322795