REFERENCES
Alekseychik, P. K., Mammarella, I., Launiainen, S., Rannik, Ü., &
Vesala, T. (2013). Evolution of the nocturnal decoupled layer in a pine
forest canopy. Agricultural and Forest Meteorology ,174–175 , 15–27. https://doi.org/10.1016/j.agrformet.2013.01.011
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M.,
& Laitat, E. (2001). Long term carbon dioxide exchange above a mixed
forest in the Belgian Ardennes. Agricultural and Forest
Meteorology , 108 (4), 293–315.
https://doi.org/10.1016/S0168-1923(01)00244-1
Baldocchi, D. D. (2003). Assessing the eddy covariance technique for
evaluating carbon dioxide exchange rates of ecosystems: Past, present
and future. Global Change Biology , 9 (4), 479–492.
https://doi.org/10.1046/j.1365-2486.2003.00629.x
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M.,
Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G.
B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M.,
Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., …
Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global
distribution and covariation with climate. Science ,329 (5993), 834–838. https://doi.org/10.1126/science.1184984
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr, A. R., &
Long, S. P. (2001). Improved temperature response functions for models
of Rubisco-limited photosynthesis. Plant, Cell & Environment ,24 (2), 253–259. https://doi.org/10.1111/j.1365-3040.2001.00668.x
Bickford, C. P., Hanson, D. T., & McDowell, N. G. (2010). Influence of
diurnal variation in mesophyll conductance on modelled13C discrimination: Results from a field study.Journal of Experimental Botany , 61 (12), 3223–3233.
https://doi.org/10.1093/jxb/erq137
Bowling, D. R., Pataki, D. E., & Randerson, J. T. (2008). Carbon
isotopes in terrestrial ecosystem pools and CO2 fluxes.New Phytologist , 178 (1), 24–40.
https://doi.org/10.1111/j.1469-8137.2007.02342.x
Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A.,
Launois, T., Belviso, S., Bopp, L., & Laine, M. (2017). Large
historical growth in global terrestrial gross primary production.Nature , 544 (7648), 84–87.
https://doi.org/10.1038/nature22030
Cano, F. J., López, R., & Warren, C. R. (2014). Implications of the
mesophyll conductance to CO2 for photosynthesis and
water-use efficiency during long-term water stress and recovery in two
contrasting Eucalyptus species. Plant, Cell & Environment ,37 (11), 2470–2490. https://doi.org/10.1111/pce.12325
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J.
D., & Farquhar, G. D. (2013). Environmental and physiological
determinants of carbon isotope discrimination in terrestrial plants.New Phytologist , 200 (4), 950–965.
https://doi.org/10.1111/nph.12423
Clark, J. (2007). Models for Ecological Data: An Introduction .
Princeton University Press.
Clearwater, M. J., Meinzer, F. C., Andrade, J. L., Goldstein, G., &
Holbrook, N. M. (1999). Potential errors in measurement of nonuniform
sap flow using heat dissipation probes. Tree Physiology ,19 (10), 681–687. https://doi.org/10.1093/treephys/19.10.681
Cleveland, W., Grosse, E., & Shyu, W. (1992). Local regression models.
Chapter 8 in Statistical models in S (eds J.M. Chambers & TJ Hastie),
608 p. Wadsworth & Brooks/Cole, Pacific Grove, CA .
Cohen, Y., Cohen, S., Cantuarias-Aviles, T., & Schiller, G. (2008).
Variations in the radial gradient of sap velocity in trunks of forest
and fruit trees. Plant and Soil , 305 (1), 49–59.
https://doi.org/10.1007/s11104-007-9351-0
Cornes, R. C., Schrier, G. van der, & Squintu, A. A. (2019). A
reappraisal of the thermal growing season length across Europe.International Journal of Climatology , 39 (3), 1787–1795.
https://doi.org/10.1002/joc.5913
Curtis, P. S., Hanson, P. J., Bolstad, P., Barford, C., Randolph, J. C.,
Schmid, H. P., & Wilson, K. B. (2002). Biometric and eddy-covariance
based estimates of annual carbon storage in five eastern North American
deciduous forests. Agricultural and Forest Meteorology ,113 (1), 3–19. https://doi.org/10.1016/S0168-1923(02)00099-0
Dietze, M. C. (2017). Ecological forecasting . Princeton
University Press.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., Lissa, C. J.
van, Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global
patterns of terrestrial nitrogen and phosphorus limitation. Nature
Geoscience , 1–6. https://doi.org/10.1038/s41561-019-0530-4
Dubbert, M., Rascher, K. G., & Werner, C. (2012). Species-specific
differences in temporal and spatial variation in δ13C of plant carbon
pools and dark-respired CO2 under changing environmental
conditions. Photosynthesis Research , 113 (1), 297–309.
https://doi.org/10.1007/s11120-012-9748-3
Duursma, R. A., & Marshall, J. D. (2006). Vertical canopy gradients in
δ13C correspond with leaf nitrogen content in a
mixed-species conifer forest. Trees , 20 (4), 496–506.
https://doi.org/10.1007/s00468-006-0065-3
Duursma, R. A., Kolari, P., Perämäki, M., Pulkkinen, M., Mäkelä, A.,
Nikinmaa, E., …, Vesala, T. (2009). Contributions of climate,
leaf area index and leaf physiology to variation in gross primary
production of six coniferous forests across Europe: A model-based
analysis. Tree Physiology , 29 (5), 621–639.
https://doi.org/10.1093/treephys/tpp010
Ehleringer, J., Hall, A., & Farquhar, G. (1993). Introduction: Water
use in relation to productivity. Stable Isotopes and Plant
Carbon-Water Relations. Academic Press, New York , 3–8.
Ehman, J. L., Schmid, H. P., Grimmond, C. S. B., Randolph, J. C.,
Hanson, P. J., Wayson, C. A., & Cropley, F. D. (2002). An initial
intercomparison of micrometeorological and ecological inventory
estimates of carbon exchange in a mid-latitude deciduous forest.Global Change Biology , 8 (6), 575–589.
https://doi.org/10.1046/j.1365-2486.2002.00492.x
Emberson, L. D., Wieser, G., & Ashmore, M. R. (2000). Modelling of
stomatal conductance and ozone flux of Norway spruce: Comparison with
field data. Environmental Pollution , 109 (3), 393–402.
https://doi.org/10.1016/S0269-7491(00)00042-7
Evans, J. R., & Caemmerer, S. V. (2013). Temperature response of carbon
isotope discrimination and mesophyll conductance in tobacco.Plant, Cell & Environment , 36 (4), 745–756.
https://doi.org/10.1111/j.1365-3040.2012.02591.x
Ewers, Brent E., & Oren, R. (2000). Analyses of assumptions and errors
in the calculation of stomatal conductance from sap flux measurements.Tree Physiology , 20 (9), 579–589.
https://doi.org/10.1093/treephys/20.9.579
Ewers, B E, Oren, R., Johnsen, K. H., & Landsberg, J. J. (2001).
Estimating maximum mean canopy stomatal conductance for use in models.Canadian Journal of Forest Research , 31 (2), 198–207.
https://doi.org/10.1139/x00-159
Farquhar, G. D., O’Leary, M., & Berry, J. (1982). On the relationship
between carbon isotope discrimination and the intercellular carbon
dioxide concentration in leaves. Functional Plant Biology ,9 (2), 121. https://doi.org/10.1071/PP9820121
Farquhar, G. D., & Wong, S. C. (1984). An empirical model of stomatal
conductance. Functional Plant Biology , 11 (3), 191–210.
https://doi.org/10.1071/pp9840191
Flexas, J., Ribas‐Carbó, M., Diaz‐Espejo, A., Galmés, J., & Medrano, H.
(2008). Mesophyll conductance to CO2: Current knowledge
and future prospects. Plant, Cell & Environment , 31 (5),
602–621. https://doi.org/10.1111/j.1365-3040.2007.01757.x
Flexas, J., Díaz-Espejo, A., Conesa, M. A., Coopman, R. E., Douthe, C.,
Gago, J., …, Niinemets, Ü. (2016). Mesophyll conductance to
CO2 and Rubisco as targets for improving intrinsic water
use efficiency in C3 plants. Plant, Cell & Environment ,39 (5), 965–982. https://doi.org/10.1111/pce.12622
Ford, C. R., McGuire, M. A., Mitchell, R. J., & Teskey, R. O. (2004).
Assessing variation in the radial profile of sap flux density inPinus species and its effect on daily water use. Tree
Physiology , 24 (3), 241–249.
https://doi.org/10.1093/treephys/24.3.241
From, F., Lundmark, T., Mörling, T., Pommerening, A., & Nordin, A.
(2016). Effects of simulated long-term N deposition on Picea
abies and Pinus sylvestris growth in boreal forest.Canadian Journal of Forest Research , 46 (11), 1396–1403.
https://doi.org/10.1139/cjfr-2016-0201
Gessler, A., Rennenberg, H., & Keitel, C. (2004). Stable isotope
composition of organic compounds transported in the phloem of european
beech—Evaluation of different methods of phloem sap collection and
assessment of gradients in carbon isotope composition during
leaf-to-stem transport. Plant Biology , 6 (6), 721–729.
https://doi.org/10.1055/s-2004-830350
Granier, A. (1985). Une nouvelle méthode pour la mesure du flux de sève
brute dans le tronc des arbres. Annales Des Sciences Forestieres ,42 (2), 193–200.
Granier, A. (1987). Evaluation of transpiration in a Douglas-fir stand
by means of sap flow measurements. Tree Physiology , 3 (4),
309–320. https://doi.org/10.1093/treephys/3.4.309
Granier, A., Loustau, D., & Bréda, N. (2000). A generic model of forest
canopy conductance dependent on climate, soil water availability and
leaf area index. Annals of Forest Science , 57 (8),
755–765. https://doi.org/10.1051/forest:2000158
Han, J.-M., Meng, H.-F., Wang, S.-Y., Jiang, C.-D., Liu, F., Zhang,
W.-F., & Zhang, Y.-L. (2016). Variability of mesophyll conductance and
its relationship with water use efficiency in cotton leaves under
drought pretreatment. Journal of Plant Physiology , 194 ,
61–71. https://doi.org/10.1016/j.jplph.2016.03.014
Hänninen, H. (2016). Climatic adaptation of boreal and temperate tree
species. In Biometeorology. Boreal and temperate trees in a changing
climate: modelling the ecophysiology of seasonality (ed H. Hänninen),
pp. 1–13. Springer Netherlands.
https://doi.org/10.1007/978-94-017-7549-6_1
Hasselquist, Niles J., Metcalfe, D. B., & Högberg, P. (2012).
Contrasting effects of low and high nitrogen additions on soil
CO2 flux components and ectomycorrhizal fungal sporocarp
production in a boreal forest. Global Change Biology ,18 (12), 3596–3605. https://doi.org/10.1111/gcb.12001
Hasselquist, N. J., Metcalfe, D. B., Marshall, J. D., Lucas, R. W., &
Högberg, P. (2016). Seasonality and nitrogen supply modify carbon
partitioning in understory vegetation of a boreal coniferous forest.Ecology , 97 (3), 671–683. https://doi.org/10.1890/15-0831
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains
and their applications. Biometrika , 57 (1), 97-109.
Högberg, P. (2007). Environmental science: Nitrogen impacts on forest
carbon. Nature , 447 (7146), 781–782.
https://doi.org/10.1038/447781a
Hu, J., Moore, D. J. P., Riveros‐Iregui, D. A., Burns, S. P., & Monson,
R. K. (2010). Modeling whole-tree carbon assimilation rate using
observed transpiration rates and needle sugar carbon isotope ratios.New Phytologist , 185 (4), 1000–1015.
https://doi.org/10.1111/j.1469-8137.2009.03154.x
Hultine, K. R., Bush, S. E., West, A. G., Burtch, K. G., Pataki, D. E.,
& Ehleringer, J. R. (2008). Gender-specific patterns of aboveground
allocation, canopy conductance and water use in a dominant riparian tree
species: Acer negundo . Tree Physiology , 28 (9),
1383–1394. https://doi.org/10.1093/treephys/28.9.1383
Hyvönen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G. I., &
Linder, S. (2008). Impact of long-term nitrogen addition on carbon
stocks in trees and soils in northern Europe. Biogeochemistry ,89 (1), 121–137. https://doi.org/10.1007/s10533-007-9121-3
Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder,
S., Lundmark, T., …, Peichl, M. (2017). Apparent winter
CO2 uptake by a boreal forest due to decoupling.Agricultural and Forest Meteorology , 232 , 23–34.
https://doi.org/10.1016/j.agrformet.2016.08.002
Jocher, G., Marshall, J., Nilsson, M. B., Linder, S., Simon, G. D.,
Hörnlund, T., …, Peichl, M. (2018). Impact of canopy decoupling
and subcanopy advection on the annual carbon balance of a boreal Scots
pine forest as derived from eddy covariance. Journal of
Geophysical Research: Biogeosciences , 123 (2), 303–325.
https://doi.org/10.1002/2017JG003988
Keenan, T., Sabate, S., & Gracia, C. (2010). Soil water stress and
coupled photosynthesis–conductance models: Bridging the gap between
conflicting reports on the relative roles of stomatal, mesophyll
conductance and biochemical limitations to photosynthesis.Agricultural and Forest Meteorology , 150 (3), 443–453.
https://doi.org/10.1016/j.agrformet.2010.01.008
Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein,
M., Torn, M., & Wutzler, T. (2019). Widespread inhibition of daytime
ecosystem respiration. Nature Ecology & Evolution , 3 (3),
407–415. https://doi.org/10.1038/s41559-019-0809-2
Kergoat, L., Lafont, S., Arneth, A., Le Dantec, V., & Saugier, B.
(2008). Nitrogen controls plant canopy light‐use efficiency in temperate
and boreal ecosystems. Journal of Geophysical Research:
Biogeosciences , 113 , G04017, doi:10.1029/2007JG000676.
Kim, H.-S., Oren, R., & Hinckley, T. M. (2008). Actual and potential
transpiration and carbon assimilation in an irrigated poplar plantation.Tree Physiology , 28 (4), 559–577.
https://doi.org/10.1093/treephys/28.4.559
Klein, T., Rotenberg, E., Tatarinov, F., & Yakir, D. (2016).
Association between sap flow-derived and eddy covariance-derived
measurements of forest canopy CO2 uptake. New
Phytologist , 209 (1), 436–446. https://doi.org/10.1111/nph.13597
Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., &
Berninger, F. (2004). Carbon balance of different aged Scots pine
forests in Southern Finland. Global Change Biology , 10 (7),
1106–1119. https://doi.org/10.1111/j.1529-8817.2003.00797.x
Kulmala, L., Pumpanen, J., Kolari, P., Muukkonen, P., Hari, P., &
Vesala, T. (2011). Photosynthetic production of ground vegetation in
different-aged Scots pine (Pinus sylvestris ) forests.Canadian Journal of Forest Research , 41 (10), 2020–2030.
https://doi.org/10.1139/x11-121
Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H.,
Launiainen, S., …, Vesala, T. (2008). Biophysical controls on
CO2 fluxes of three Northern forests based on long-term
eddy covariance data. Tellus B: Chemical and Physical
Meteorology , 60 (2), 143–152.
https://doi.org/10.1111/j.1600-0889.2007.00324.x
Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson‐Löfvenius, M.,
& Bishop, K. (2013). The Krycklan catchment study—A flagship
infrastructure for hydrology, biogeochemistry, and climate research in
the boreal landscape. Water Resources Research , 49 (10),
7154–7158. https://doi.org/10.1002/wrcr.20520
Lim, H., Oren, R., Palmroth, S., Tor-ngern, P., Mörling, T., Näsholm,
T., …, Linder, S. (2015). Inter-annual variability of
precipitation constrains the production response of boreal Pinus
sylvestris to nitrogen fertilization. Forest Ecology and
Management , 348 , 31–45.
https://doi.org/10.1016/j.foreco.2015.03.029
Linderholm, H. W. (2006). Growing season changes in the last century.Agricultural and Forest Meteorology , 137 (1), 1–14.
https://doi.org/10.1016/j.agrformet.2006.03.006
Lundblad, M., Lagergren, F., & Lindroth, A. (2001). Evaluation of heat
balance and heat dissipation methods for sapflow measurements in pine
and spruce. Annals of Forest Science , 58 (6), 625–638.
https://doi.org/10.1051/forest:2001150
Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger,
F., Delzon, S., … Grace, J. (2007). The human footprint in the
carbon cycle of temperate and boreal forests. Nature ,447 (7146), 849–851. https://doi.org/10.1038/nature05847
Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., & Nikinmaa, E.
(2004). Acclimation of photosynthetic capacity in Scots pine to the
annual cycle of temperature. Tree Physiology , 24 (4),
369–376. https://doi.org/10.1093/treephys/24.4.369
Mäkelä, A., Kolari, P., Karimäki, J., Nikinmaa, E., Perämäki, M., &
Hari, P. (2006). Modelling five years of weather-driven variation of GPP
in a boreal forest. Agricultural and Forest Meteorology ,139 (3), 382–398. https://doi.org/10.1016/j.agrformet.2006.08.017
Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Berbigier, P.,
Lindroth, A., …, Hari, P. (2008). Developing an empirical model
of stand GPP with the LUE approach: Analysis of eddy covariance data at
five contrasting conifer sites in Europe. Global Change Biology ,14 (1), 92–108. https://doi.org/10.1111/j.1365-2486.2007.01463.x
Marshall, J. D., & Linder, S. (2013). Mineral nutrition and elevated
CO2 interact to modify delta C-13, an index of gas
exchange, in Norway spruce. Tree Physiology , 33 (11),
1132–1144. https://doi.org/10.1093/treephys/tpt004
Maseyk, K., Hemming, D., Angert, A., Leavitt, S. W., & Yakir, D.
(2011). Increase in water-use efficiency and underlying processes in
pine forests across a precipitation gradient in the dry Mediterranean
region over the past 30 years. Oecologia , 167 (2),
573–585. https://doi.org/10.1007/s00442-011-2010-4
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P.
C., Kirschbaum, M. U. F., …, Loustau, D. (2002). Temperature
response of parameters of a biochemically based model of photosynthesis.
II. A review of experimental data. Plant, Cell & Environment ,25 (9), 1167–1179.
https://doi.org/10.1046/j.1365-3040.2002.00891.x
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I.
C., Barton, C. V. M., …, Wingate, L. (2011). Reconciling the
optimal and empirical approaches to modelling stomatal conductance.Global Change Biology , 17 (6), 2134–2144.
https://doi.org/10.1111/j.1365-2486.2010.02375.x
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equation of state calculations by fast computing
machines. The Journal of Chemical Physics , 21 (6),
1087–1092.
Michelot, A., Eglin, T., Dufrêne, E., Lelarge‐Trouverie, C., & Damesin,
C. (2011). Comparison of seasonal variations in water-use efficiency
calculated from the carbon isotope composition of tree rings and flux
data in a temperate forest. Plant, Cell & Environment ,34 (2), 230–244. https://doi.org/10.1111/j.1365-3040.2010.02238.x
Minunno, F., Peltoniemi, M., Launiainen, S., Aurela, M., Lindroth, A.,
Lohila, A., …, Mäkelä, A. (2016). Calibration and validation of a
semi-empirical flux ecosystem model for coniferous forests in the Boreal
region. Ecological Modelling , 341 , 37–52.
https://doi.org/10.1016/j.ecolmodel.2016.09.020
Montpied, P., Granier, A., & Dreyer, E. (2009). Seasonal time-course of
gradients of photosynthetic capacity and mesophyll conductance to
CO2 across a beech (Fagus sylvatica L.) canopy.Journal of Experimental Botany , 60 (8), 2407–2418.
https://doi.org/10.1093/jxb/erp093
Murray, F. (1967). On the computation of saturation vapor pressure.Journal of Applied Meteorology , 6 (1), 203–204.
Ngao, J., Adam, B., & Saudreau, M. (2017). Intra-crown spatial
variability of leaf temperature and stomatal conductance enhanced by
drought in apple tree as assessed by the RATP model. Agricultural
and Forest Meteorology , 237–238 , 340–354.
https://doi.org/10.1016/j.agrformet.2017.02.036
Nohrstedt, H.-Ö. (2001). Response of coniferous forest ecosystems on
mineral soils to nutrient additions: A review of Swedish experiences.Scandinavian Journal of Forest Research , 16 (6), 555–573.
https://doi.org/10.1080/02827580152699385
Oren, R., Zimmermann, R., & Terbough, J. (1996). Transpiration in upper
amazonia floodplain and upland forests in response to drought-breaking
rains. Ecology , 77 (3), 968–973.
https://doi.org/10.2307/2265517
Oren, R., Phillips, N., Katul, G., Ewers, B. E., & Pataki, D. E.
(1998). Scaling xylem sap flux and soil water balance and calculating
variance: A method for partitioning water flux in forests. Annales
Des Sciences Forestières , 55 (1–2), 191–216.
https://doi.org/10.1051/forest:19980112
Oren, R., Phillips, N., Ewers, B. E., Pataki, D. E., & Megonigal, J. P.
(1999). Sap-flux-scaled transpiration responses to light, vapor pressure
deficit, and leaf area reduction in a flooded Taxodium distichumforest. Tree Physiology , 19 (6), 337–347.
https://doi.org/10.1093/treephys/19.6.337
Palmroth, S., Bach, L. H., Lindh, M., Kolari, P., Nordin, A., &
Palmqvist, K. (2019). Nitrogen supply and other controls of carbon
uptake of understory vegetation in a boreal Picea abies forest.Agricultural and Forest Meteorology , 276–277 , 107620.
https://doi.org/10.1016/j.agrformet.2019.107620
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C.,
Kutsch, W., …, Yakir, D. (2006). Towards a standardized
processing of net ecosystem exchange measured with eddy covariance
technique: Algorithms and uncertainty estimation. Biogeosciences ,3 (4), 571–583.
Peguero-Pina, J. J., Aranda, I., Cano, F. J., Galmés, J., Gil-Pelegrín,
E., Niinemets, Ü., …, & Flexas, J. (2017). The role of mesophyll
conductance in oak photosynthesis: Among- and within-species
variability. In Oaks Physiological Ecology. Exploring the
Functional Diversity of Genus Quercus L. Cham. (eds E. Gil-Pelegrín
J.J. Peguero-Pina, & D. Sancho-Knapik), pp. 303–325. Springer
International Publishing. https://doi.org/10.1007/978-3-319-69099-5_9
Peichl, M., Brodeur, J. J., Khomik, M., & Arain, M. A. (2010).
Biometric and eddy-covariance based estimates of carbon fluxes in an
age-sequence of temperate pine forests. Agricultural and Forest
Meteorology , 150 (7), 952–965.
https://doi.org/10.1016/j.agrformet.2010.03.002
Peltoniemi, M., Pulkkinen, M., Aurela, M., Pumpanen, J., Kolari, P., &
Mäkelä, A. (2015). A semi-empirical model of boreal-forest gross primary
production, evapotranspiration, and soil water-calibration and
sensitivity analysis. Boreal Environment Research , 20 ,
151–171.
Peters, R. L., Fonti, P., Frank, D. C., Poyatos, R., Pappas, C., Kahmen,
A., …, Steppe, K. (2018). Quantification of uncertainties in
conifer sap flow measured with the thermal dissipation method. New
Phytologist , 219 (4), 1283–1299.
https://doi.org/10.1111/nph.15241
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of
xylem sap flow in non-, diffuse- and ring-porous tree species.Plant, Cell & Environment , 19 (8), 983–990.
https://doi.org/10.1111/j.1365-3040.1996.tb00463.x
Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2016). R Core Team
(2016) nlme: Linear and nonlinear mixed effects models. R Package
Version 3.1-128. Available at ht tps. Cran. r-Project.
Org/Web/Packages/Nlme/Index. Html. Accessed July , 7 .
Pons, T. L., Flexas, J., von Caemmerer, S., Evans, J. R., Genty, B.,
Ribas-Carbo, M., & Brugnoli, E. (2009). Estimating mesophyll
conductance to CO2: Methodology, potential errors, and
recommendations. Journal of Experimental Botany , 60 (8),
2217–2234. https://doi.org/10.1093/jxb/erp081
Poyatos, R., Martínez-Vilalta, J., Čermák, J., Ceulemans, R., Granier,
A., Irvine, J., …, Mencuccini, M. (2007). Plasticity in hydraulic
architecture of Scots pine across Eurasia. Oecologia ,153 (2), 245–259. https://doi.org/10.1007/s00442-007-0740-0
R Core Team. (2016). R: A Language and Environment for Statistical
Computing . R Foundation for Statistical Computing.
https://www.R-project.org/
Renninger, H. J., & Schäfer, K. V. R. (2012). Comparison of tissue heat
balance- and thermal dissipation-derived sap flow measurements in
ring-porous oaks and a pine. Frontiers in Plant Science ,3 , 103. https://doi.org/10.3389/fpls.2012.00103
Rogers, A., Medlyn, B. E., & Dukes, J. S. (2014). Improving
representation of photosynthesis in Earth System Models. New
Phytologist , 204 (1), 12–14. https://doi.org/10.1111/nph.12972
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., Caemmerer, S. von,
Dietze, M. C., …, Zaehle, S. (2017). A roadmap for improving the
representation of photosynthesis in Earth system models. New
Phytologist , 213 (1), 22–42. https://doi.org/10.1111/nph.14283
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global
Sensitivity Analysis: The Primer . John Wiley & Sons.
Saurer, M., Spahni, R., Frank, D. C., Joos, F., Leuenberger, M., Loader,
N. J., … Young, G. H. F. (2014). Spatial variability and temporal
trends in water-use efficiency of European forests. Global Change
Biology , 20 (12), 3700–3712. https://doi.org/10.1111/gcb.12717
Schäfer, K. V. R., Oren, R., & Tenhunen, J. D. (2000). The effect of
tree height on crown level stomatal conductance. Plant, Cell &
Environment , 23 (4), 365–375.
https://doi.org/10.1046/j.1365-3040.2000.00553.x
Schäfer, K. V. R., Oren, R., Ellsworth, D. S., Lai, C.-T., Herrick, J.
D., Finzi, A. C., …, Katul, G. G. (2003). Exposure to an enriched
CO2 atmosphere alters carbon assimilation and allocation
in a pine forest ecosystem. Global Change Biology , 9 (10),
1378–1400. https://doi.org/10.1046/j.1365-2486.2003.00662.x
Seibt, U., Rajabi, A., Griffiths, H., & Berry, J. A. (2008). Carbon
isotopes and water use efficiency: Sense and sensitivity.Oecologia , 155 (3), 441–454.
https://doi.org/10.1007/s00442-007-0932-7
Stangl, Z. R., Tarvainen, L., Wallin, G., Ubierna, N., Räntfors, M., &
Marshall, J. D. (2019). Diurnal variation in mesophyll conductance and
its influence on modelled water-use efficiency in a mature borealPinus sylvestris stand. Photosynthesis Research ,141 (1), 53–63. https://doi.org/10.1007/s11120-019-00645-6
Steppe, K., De Pauw, D. J. W., Doody, T. M., & Teskey, R. O. (2010). A
comparison of sap flux density using thermal dissipation, heat pulse
velocity and heat field deformation methods. Agricultural and
Forest Meteorology , 150 (7), 1046–1056.
https://doi.org/10.1016/j.agrformet.2010.04.004
Sun, H., Aubrey, D. P., & Teskey, R. O. (2012). A simple calibration
improved the accuracy of the thermal dissipation technique for sap flow
measurements in juvenile trees of six species. Trees ,26 (2), 631–640. https://doi.org/10.1007/s00468-011-0631-1
Tamm, C. (1991). Nitrogen in terrestrial ecosystems: Questions of
productivity, vegetational changes, and ecosystem stability. (Vol. 81).
Springer Berlin Heidelberg.
Tang, X., Li, H., Desai, A. R., Nagy, Z., Luo, J., Kolb, …,
Ammann, C. (2014). How is water-use efficiency of terrestrial ecosystems
distributed and changing on Earth? Scientific Reports ,4 (1), 1–11. https://doi.org/10.1038/srep07483
Tarvainen, L., Räntfors, M., & Wallin, G. (2015). Seasonal and
within-canopy variation in shoot-scale resource-use efficiency
trade-offs in a Norway spruce stand. Plant, Cell & Environment ,38 (11), 2487–2496. https://doi.org/10.1111/pce.12565
Tarvainen, L., Lutz, M., Räntfors, M., Näsholm, T., & Wallin, G.
(2016). Increased needle nitrogen contents did not improve shoot
photosynthetic performance of mature nitrogen-poor Scots pine trees.Frontiers in Plant Science , 7 ,1051
https://doi.org/10.3389/fpls.2016.01051
Thomas, C. K., Martin, J. G., Law, B. E., & Davis, K. (2013). Toward
biologically meaningful net carbon exchange estimates for tall, dense
canopies: Multi-level eddy covariance observations and canopy coupling
regimes in a mature Douglas-fir forest in Oregon. Agricultural and
Forest Meteorology , 173 , 14–27.
https://doi.org/10.1016/j.agrformet.2013.01.001
Tian, X., Minunno, F., Cao, T., Peltoniemi, M., Kalliokoski, T., &
Mäkelä, A. (2020). Extending the range of applicability of the
semi-empirical ecosystem flux model PRELES for varying forest types and
climate. Global Change Biology , n/a (n/a), 1–21.
https://doi.org/10.1111/gcb.14992
Tor‐Ngern, P., Oren, R., Oishi, A. C., Uebelherr, J. M., Palmroth, S.,
Tarvainen, L., Ottosson‐Löfvenius, M., Linder, S., Domec, J.-C., &
Näsholm, T. (2017). Ecophysiological variation of transpiration of pine
forests: Synthesis of new and published results. Ecological
Applications , 27 (1), 118–133. https://doi.org/10.1002/eap.1423
Tuzet, A., Perrier, A., & Leuning, R. (2003). A coupled model of
stomatal conductance, photosynthesis and transpiration. Plant,
Cell & Environment , 26 (7), 1097–1116.
https://doi.org/10.1046/j.1365-3040.2003.01035.x
Ubierna, N., & Marshall, J. D. (2011). Estimation of canopy average
mesophyll conductance using δ13C of phloem contents.Plant, Cell & Environment , 34 (9), 1521–1535.
https://doi.org/10.1111/j.1365-3040.2011.02350.x
Warren, C. R., & Adams, M. A. (2006). Internal conductance does not
scale with photosynthetic capacity: Implications for carbon isotope
discrimination and the economics of water and nitrogen use in
photosynthesis. Plant, Cell & Environment , 29 (2),
192–201. https://doi.org/10.1111/j.1365-3040.2005.01412.x
Warren, C. R. (2008). Stand aside stomata, another actor deserves centre
stage: The forgotten role of the internal conductance to
CO2 transfer. Journal of Experimental Botany ,59 (7), 1475–1487. https://doi.org/10.1093/jxb/erm245
Wehr, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S.,
Davidson, E. A., …, & Saleska, S. R. (2016). Seasonality of temperate
forest photosynthesis and daytime respiration. Nature ,534 (7609), 680–683. https://doi.org/10.1038/nature17966
Werner, C., Schnyder, H., Cuntz, M., Keitel, C., Zeeman, M. J., Dawson,
T. E., … Gessler, A. (2012). Progress and challenges in using
stable isotopes to trace plant carbon and water relations across scales.Biogeosciences, 9 (8), 3083.
https://doi:10.5194/bgd-8-2659-2011White, J. W. C., Vaughn, B. H., &
Michel, S. E. (2015). Stable isotopic composition of atmospheric
carbon dioxide (13C and 18O) from the NOAA ESRL carbon cycle cooperative
global air sampling network, , 1990-2014, Version: 2015-10-26 .
University of Colorado, Institute of Arctic and Alpine Research
(INSTAAR). ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/
Wingate, L., Seibt, U., Moncrieff, J. B., Jarvis, P. G., & Lloyd, J.
(2007). Variations in 13C discrimination during
CO2 exchange by Picea sitchensis branches in the
field. Plant, Cell & Environment , 30 (5), 600–616.
https://doi.org/10.1111/j.1365-3040.2007.01647.x
Xiong, W., Oren, R., Wang, Y., Yu, P., Liu, H., Cao, G., Xu, L., Wang,
Y., & Zuo, H. (2015). Heterogeneity of competition at decameter scale:
Patches of high canopy leaf area in a shade-intolerant larch stand
transpire less yet are more sensitive to drought. Tree
Physiology , 35 (5), 470–484.
https://doi.org/10.1093/treephys/tpv022
Xiong, D., Douthe, C., & Flexas, J. (2018). Differential coordination
of stomatal conductance, mesophyll conductance, and leaf hydraulic
conductance in response to changing light across species. Plant,
Cell & Environment , 41 (2), 436–450.
https://doi.org/10.1111/pce.13111
Zha, T., Xing, Z., Wang, K.-Y., Kellomäki, S., & Barr, A. G. (2007).
Total and component carbon fluxes of a Scots pine ecosystem from chamber
measurements and eddy covariance. Annals of Botany , 99 (2),
345–353. https://doi.org/10.1093/aob/mcl266
Zhao, P., Lu, P., Ma, L., Sun, G., Rao, X., Cai, X., & Zeng, X. (2005).
Combining sap flow measurement-based canopy stomatal conductance and13C discrimination to estimate forest carbon
assimilation. Chinese Science Bulletin , 50 (18),
2021–2027. https://doi.org/10.1007/BF03322795