Supporting Information
Experimental contents for characterization of MEL zeolites; the study of catalytic and diffusion performance of synthesized MEL zeolites; additional SEM, XPS, UV-vis, EPR, 27Al MAS NMR, FTIR, TEM, N2 isotherm data, TGA and GC-MS analysis.
Acknowledgment
This work was supported by Natural Science Foundation of China (No. 21978055 and 21808040), the Science and Technology Program of Guangzhou, China (201804010172) and “High-level Talents Program” of Pearl River (2017GC010080). Y. Zhu acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 21771161) and Thousand Talents Program for Distinguished Young Scholars.
Literature Cited
1. Li B, Leng K, Zhang Y, et al. Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. J. Am. Chem. Soc.2015;137(12):4243-4248.
2. Huang J, Liu B, Liao Z, Chen H, Yan K. Fabrication of Cu-Encapsulated Hierarchical MEL Zeolites for Alkylation of Mesitylene with Benzyl Alcohol. Ind. Eng. Chem. Res. 2019;58(36):16636-16644.
3. Jin H, Ansari MB, Jeong E-Y, Park S-E. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. J. Catal. 2012;291:55-62.
4. Hwang YK, Chang J-S, Park S-E, et al. Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angew. Chem.Int. Ed.2005;44(4):556-560.
5. Yuan B, Li Y, Wang Z, Yu F, Xie C, Yu S. A Novel Brønsted-Lewis acidic catalyst based on heteropoly phosphotungstates: Synthesis and catalysis in benzylation of p-xylene with benzyl alcohol. Mol. Catal. 2017;443:110-116.
6. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008;37(11):2530-2542.
7. Hartmann M, Machoke AG, Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites.Chem. Soc. Rev. 2016;45(12):3313-3330.
8. Wei Y, Parmentier TE, de Jong KP, Zecevic J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. Oct 21 2015;44(20):7234-7261.
9. Liu B, Ren Y, Duan Q, Chen F, Xi H, Qian Y. Facile synthesis of mesoporous aluminosilicates constructed with crystalline microporous frameworks. Appl. Surf. Sci.2013;279:55-61.
10. Dai C, Zhang A, Liu M, Gu L, Guo X, Song C. Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals. ACS nano.2016;10(8):7401-7408.
11. Pagis C, Morgado Prates AR, Farrusseng D, Bats N, Tuel A. Hollow Zeolite Structures: An Overview of Synthesis Methods. Chem. Mater. 2016;28(15):5205-5223.
12. Zhang F, Yan Y, Yang H, et al. Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15. J. Phys. Chem. B.2005;109(18):8723-8732.
13. Zhu J, Zhu Y, Zhu L, et al. Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. J. Am. Chem. Soc. 2014;136(6):2503-2510.
14. Zhang Q, Mayoral A, Terasaki O, et al. Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. J. Am. Chem. Soc. 2019;141(9):3772-3776.
15. Tao S, Li X, Wang X, et al. Facile Synthesis of Hierarchical Nanosized Single-Crystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors. Angew. Chem. Int. Ed.2020;59(9):3455-3459.
16. Milina M, Mitchell S, Crivelli P, Cooke D, Pérez-Ramírez J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nat. Commun.2014;5(1):3922.
17. Zubiaga A, Warringham R, Boltz M, et al. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects. Phys. Chem. Chem. Phys.2016;18(13):9211-9219.
18. Coq B, Gourves V, Figuéras F. Benzylation of toluene by benzyl chloride over protonic zeolites.Appl. Catal., A. 1993;100(1):69-75.
19. Choudhary VR, Jana SK, Mamman AS. Benzylation of benzene by benzyl chloride over Fe-modified ZSM-5 and H-β zeolites and Fe2O3 or FeCl3 deposited on micro-, meso- and macro-porous supports. Microporous Mesoporous Mater. 2002;56(1):65-71.
20. Salavati-Niasari M, Hasanalian J, Najafian H. Alumina-supported FeCl3, MnCl2, CoCl2, NiCl2, CuCl2, and ZnCl2 as catalysts for the benzylation of benzene by benzyl chloride.J. Mol. Catal. A: Chem. 2004;209(1):209-214.
21. Knapp C, Obuchi A, Uchisawa JO, Kushiyama S, Avila P. Method for selective removal of supported platinum particles from external zeolite surfaces: characterisation of and application to a catalyst for the selective reduction of nitrogen oxide by hydrocarbons. Microporous Mesoporous Mater. 1999;31(1):23-31.
22. Wu Z, Goel S, Choi M, Iglesia E. Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity.J. Catal. 2014;311:458-468.
23. Zhao X, Wang X. Characterizations and Catalytic Properties of Chromium Silicalite-2 Prepared by Direct Hydrothermal Synthesis and Impregnation. Catal. Lett.2010;135(3-4):233-240.
24. Gomez S, Lerici L, Saux C, et al. Fe/ZSM-11 as a novel and efficient photocatalyst to degrade Dichlorvos on water solutions. Appl. Catal., B. 2017;202:580-586.
25. Tan P. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J. Catal. 2016;338:21-29.
26. Zhang D, Yang RT. N2O Formation Pathways over Zeolite-Supported Cu and Fe Catalysts in NH3-SCR.Energy Fuels. 2018;32(2):2170-2182.
27. Yang Y, Zhang H, Yan Y. The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol.Roy. Soc. Open. Sci. 2018;5(3):171731.
28. Chen Y, Li C, Chen X, Liu Y, Tsang C-W, Liang C. Synthesis and Characterization of Iron-Substituted ZSM-23 Zeolite Catalysts with Highly Selective Hydroisomerization of n-Hexadecane. Ind. Eng. Chem. Res. 2018;57(41):13721-13730.
29. Pérez Vélez R, Ellmers I, Huang H, et al. Identifying active sites for fast NH3-SCR of NO/NO2 mixtures over Fe-ZSM-5 by operando EPR and UV–vis spectroscopy. J. Catal.2014;316:103-111.
30. Alzeer MIM, MacKenzie KJD, Keyzers RA. Facile synthesis of new hierarchical aluminosilicate inorganic polymer solid acids and their catalytic performance in alkylation reactions. Microporous Mesoporous Mater.2017;241:316-325.
31. Yutthalekha T, Wattanakit C, Warakulwit C, et al. Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for benzylation of toluene. J. Clean. Prod. 2017;142:1244-1251.
32. Abelló S, Bonilla A, Pérez-Ramírez J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching.Appl. Catal., A. 2009;364(1):191-198.
33. Wang S, Wang P, Qin Z, et al. Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catal.2018;8(6):5485-5505.
34. Bleken F, Skistad W, Barbera K, et al. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Phys. Chem. Chem. Phys. 2011;13(7):2539-2549.
35. Lyu J-H, Hu H-L, Rui J-Y, et al. Nitridation: A simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol.Chin. Chem. Lett. 2017;28(2):482-486.
36. Candu N, Florea M, Coman SM, Parvulescu VI. Benzylation of benzene with benzyl alcohol on zeolite catalysts. Appl. Catal., A. 2011;393(1-2):206-214.
37. Seo Y, Cho K, Jung Y, Ryoo R. Characterization of the Surface Acidity of MFI Zeolite Nanosheets by 31P NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin.ACS Catal. 2013;3(4):713-720.
38. Zhao Z, Li Z, Lin YS. Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5).Ind. Eng. Chem. Res. 2009;48(22):10015-10020.
39. Li C, Ren YQ, Gou JS, Liu BY, Xi HX. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances. Appl. Surf. Sci.2017;392:785-794.
40. Qi X, Vattipalli V, Dauenhauer PJ, Fan W. Silica Nanoparticle Mass Transfer Fins for MFI Composite Materials. Chem. Mater. 2018;30(7):2353-2361.
41. Emdadi L, Wu Y, Zhu G, et al. Dual Template Synthesis of Meso- and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions. Chem. Mater. 2014;26(3):1345-1355.
42. Emdadi L, Oh SC, Wu Y, et al. The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol. J. Catal. 2016;335:165-174.
43. Mantri K, Komura K, Kubota Y, Sugi Y. Friedel–Crafts alkylation of aromatics with benzyl alcohols catalyzed by rare earth metal triflates supported on MCM-41 mesoporous silica. J. Mol. Catal. A: Chem. 2005;236(1):168-175.
44. Choudhary V, Jana S, Mamman A. Benzylation of benzene by benzyl chloride over Fe-modified ZSM-5 and H-β zeolites and Fe2O3 or FeC13 deposited on micro-, meso- and macro-porous supports. Microporous Mesoporous Mater. 2002;56:65–71.
45. Trnik A, Scheinherrova L, Medved I, Cerny R. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim. 2015;121(1):67-73.
46. Gou J, Wang Z, Li C, et al. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chem. 2017;19(15):3549-3557.
47. Li J, Xiang H, Liu M, Wang Q, Zhu Z, Hu Z. The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catal. Sci. Technol. 2014;4(8):2639-2649.
48. Liu Y, Zou Y, Jiang H, Gao H, Chen R. Deactivation mechanism of beta-zeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol. Chin. J. Chem. Eng. 2017;25(9):1195-1201.