Supporting Information
Experimental contents for characterization of MEL zeolites; the study of
catalytic and diffusion performance of synthesized MEL zeolites;
additional SEM, XPS, UV-vis, EPR, 27Al MAS NMR, FTIR,
TEM, N2 isotherm data, TGA and GC-MS analysis.
Acknowledgment
This work was supported by Natural Science Foundation of China (No.
21978055 and 21808040), the Science and Technology Program of Guangzhou,
China (201804010172) and “High-level Talents Program” of Pearl River
(2017GC010080). Y. Zhu acknowledges the financial support from the
National Natural Science Foundation of China (Grant No. 21771161) and
Thousand Talents Program for Distinguished Young Scholars.
Literature Cited
1. Li B, Leng K, Zhang Y, et al.
Metal–Organic Framework Based upon the Synergy of a Brønsted Acid
Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous
Catalyst for Fixed-Bed Reactions. J. Am. Chem. Soc.2015;137(12):4243-4248.
2. Huang J, Liu B, Liao Z, Chen H, Yan
K. Fabrication of Cu-Encapsulated Hierarchical MEL Zeolites for
Alkylation of Mesitylene with Benzyl Alcohol. Ind. Eng. Chem.
Res. 2019;58(36):16636-16644.
3. Jin H, Ansari MB, Jeong E-Y, Park
S-E. Effect of mesoporosity on selective benzylation of aromatics with
benzyl alcohol over mesoporous ZSM-5. J. Catal. 2012;291:55-62.
4. Hwang YK, Chang J-S, Park S-E, et
al. Microwave Fabrication of MFI Zeolite Crystals with a Fibrous
Morphology and Their Applications. Angew. Chem.Int. Ed.2005;44(4):556-560.
5. Yuan B, Li Y, Wang Z, Yu F, Xie C,
Yu S. A Novel Brønsted-Lewis acidic catalyst based on heteropoly
phosphotungstates: Synthesis and catalysis in benzylation of p-xylene
with benzyl alcohol. Mol. Catal. 2017;443:110-116.
6. Pérez-Ramírez J, Christensen CH,
Egeblad K, Christensen CH, Groen JC. Hierarchical zeolites: enhanced
utilisation of microporous crystals in catalysis by advances in
materials design. Chem. Soc. Rev. 2008;37(11):2530-2542.
7. Hartmann M, Machoke AG, Schwieger
W. Catalytic test reactions for the evaluation of hierarchical zeolites.Chem. Soc. Rev. 2016;45(12):3313-3330.
8. Wei Y, Parmentier TE, de Jong KP,
Zecevic J. Tailoring and visualizing the pore architecture of
hierarchical zeolites. Chem. Soc. Rev. Oct 21
2015;44(20):7234-7261.
9. Liu B, Ren Y, Duan Q, Chen F, Xi H,
Qian Y. Facile synthesis of mesoporous aluminosilicates constructed with
crystalline microporous frameworks. Appl. Surf. Sci.2013;279:55-61.
10. Dai C, Zhang A, Liu M, Gu L, Guo
X, Song C. Hollow Alveolus-Like Nanovesicle Assembly with
Metal-Encapsulated Hollow Zeolite Nanocrystals. ACS nano.2016;10(8):7401-7408.
11. Pagis C, Morgado Prates AR,
Farrusseng D, Bats N, Tuel A. Hollow Zeolite Structures: An Overview of
Synthesis Methods. Chem. Mater. 2016;28(15):5205-5223.
12. Zhang F, Yan Y, Yang H, et al.
Understanding Effect of Wall Structure on the Hydrothermal Stability of
Mesostructured Silica SBA-15. J. Phys. Chem. B.2005;109(18):8723-8732.
13. Zhu J, Zhu Y, Zhu L, et al.
Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a
Nonsurfactant Cationic Polymer as a Dual-Function Template. J. Am.
Chem. Soc. 2014;136(6):2503-2510.
14. Zhang Q, Mayoral A, Terasaki O,
et al. Amino Acid-Assisted Construction of Single-Crystalline
Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle
Ripening. J. Am. Chem. Soc. 2019;141(9):3772-3776.
15. Tao S, Li X, Wang X, et al.
Facile Synthesis of Hierarchical Nanosized Single-Crystal
Aluminophosphate Molecular Sieves from Highly Homogeneous and
Concentrated Precursors. Angew. Chem. Int. Ed.2020;59(9):3455-3459.
16. Milina M, Mitchell S, Crivelli P,
Cooke D, Pérez-Ramírez J. Mesopore quality determines the lifetime of
hierarchically structured zeolite catalysts. Nat. Commun.2014;5(1):3922.
17. Zubiaga A, Warringham R, Boltz M,
et al. The assessment of pore connectivity in hierarchical zeolites
using positron annihilation lifetime spectroscopy: instrumental and
morphological aspects. Phys. Chem. Chem. Phys.2016;18(13):9211-9219.
18. Coq B, Gourves V, Figuéras F.
Benzylation of toluene by benzyl chloride over protonic zeolites.Appl. Catal., A. 1993;100(1):69-75.
19. Choudhary VR, Jana SK, Mamman AS.
Benzylation of benzene by benzyl chloride over Fe-modified ZSM-5 and H-β
zeolites and Fe2O3 or FeCl3 deposited on micro-, meso- and macro-porous
supports. Microporous Mesoporous Mater. 2002;56(1):65-71.
20. Salavati-Niasari M, Hasanalian J,
Najafian H. Alumina-supported FeCl3, MnCl2, CoCl2, NiCl2, CuCl2, and
ZnCl2 as catalysts for the benzylation of benzene by benzyl chloride.J. Mol. Catal. A: Chem. 2004;209(1):209-214.
21. Knapp C, Obuchi A, Uchisawa JO,
Kushiyama S, Avila P. Method for selective removal of supported platinum
particles from external zeolite surfaces: characterisation of and
application to a catalyst for the selective reduction of nitrogen oxide
by hydrocarbons. Microporous Mesoporous Mater. 1999;31(1):23-31.
22. Wu Z, Goel S, Choi M, Iglesia E.
Hydrothermal synthesis of LTA-encapsulated metal clusters and
consequences for catalyst stability, reactivity, and selectivity.J. Catal. 2014;311:458-468.
23. Zhao X, Wang X. Characterizations
and Catalytic Properties of Chromium Silicalite-2 Prepared by Direct
Hydrothermal Synthesis and Impregnation. Catal. Lett.2010;135(3-4):233-240.
24. Gomez S, Lerici L, Saux C, et al.
Fe/ZSM-11 as a novel and efficient photocatalyst to degrade Dichlorvos
on water solutions. Appl. Catal., B. 2017;202:580-586.
25. Tan P. Active phase, catalytic
activity, and induction period of Fe/zeolite material in nonoxidative
aromatization of methane. J. Catal. 2016;338:21-29.
26. Zhang D, Yang RT. N2O Formation
Pathways over Zeolite-Supported Cu and Fe Catalysts in NH3-SCR.Energy Fuels. 2018;32(2):2170-2182.
27. Yang Y, Zhang H, Yan Y. The
preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour
deposition method for catalytic wet peroxide oxidation of m-cresol.Roy. Soc. Open. Sci. 2018;5(3):171731.
28. Chen Y, Li C, Chen X, Liu Y,
Tsang C-W, Liang C. Synthesis and Characterization of Iron-Substituted
ZSM-23 Zeolite Catalysts with Highly Selective Hydroisomerization of
n-Hexadecane. Ind. Eng. Chem. Res. 2018;57(41):13721-13730.
29. Pérez Vélez R, Ellmers I, Huang
H, et al. Identifying active sites for fast NH3-SCR of NO/NO2 mixtures
over Fe-ZSM-5 by operando EPR and UV–vis spectroscopy. J. Catal.2014;316:103-111.
30. Alzeer MIM, MacKenzie KJD,
Keyzers RA. Facile synthesis of new hierarchical aluminosilicate
inorganic polymer solid acids and their catalytic performance in
alkylation reactions. Microporous Mesoporous Mater.2017;241:316-325.
31. Yutthalekha T, Wattanakit C,
Warakulwit C, et al. Hierarchical FAU-type zeolite nanosheets as green
and sustainable catalysts for benzylation of toluene. J. Clean.
Prod. 2017;142:1244-1251.
32. Abelló S, Bonilla A,
Pérez-Ramírez J. Mesoporous ZSM-5 zeolite catalysts prepared by
desilication with organic hydroxides and comparison with NaOH leaching.Appl. Catal., A. 2009;364(1):191-198.
33. Wang S, Wang P, Qin Z, et al.
Relation of Catalytic Performance to the Aluminum Siting of Acidic
Zeolites in the Conversion of Methanol to Olefins, Viewed via a
Comparison between ZSM-5 and ZSM-11. ACS Catal.2018;8(6):5485-5505.
34. Bleken F, Skistad W, Barbera K,
et al. Conversion of methanol over 10-ring zeolites with differing
volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and
ZSM-5. Phys. Chem. Chem. Phys. 2011;13(7):2539-2549.
35. Lyu J-H, Hu H-L, Rui J-Y, et al.
Nitridation: A simple way to improve the catalytic performance of
hierarchical porous ZSM-5 in benzene alkylation with methanol.Chin. Chem. Lett. 2017;28(2):482-486.
36. Candu N, Florea M, Coman SM,
Parvulescu VI. Benzylation of benzene with benzyl alcohol on zeolite
catalysts. Appl. Catal., A. 2011;393(1-2):206-214.
37. Seo Y, Cho K, Jung Y, Ryoo R.
Characterization of the Surface Acidity of MFI Zeolite Nanosheets by 31P
NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin.ACS Catal. 2013;3(4):713-720.
38. Zhao Z, Li Z, Lin YS. Adsorption
and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5).Ind. Eng. Chem. Res. 2009;48(22):10015-10020.
39. Li C, Ren YQ, Gou JS, Liu BY, Xi
HX. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass
transport and catalytic performances. Appl. Surf. Sci.2017;392:785-794.
40. Qi X, Vattipalli V, Dauenhauer
PJ, Fan W. Silica Nanoparticle Mass Transfer Fins for MFI Composite
Materials. Chem. Mater. 2018;30(7):2353-2361.
41. Emdadi L, Wu Y, Zhu G, et al.
Dual Template Synthesis of Meso- and Microporous MFI Zeolite Nanosheet
Assemblies with Tailored Activity in Catalytic Reactions. Chem.
Mater. 2014;26(3):1345-1355.
42. Emdadi L, Oh SC, Wu Y, et al. The
role of external acidity of meso-/microporous zeolites in determining
selectivity for acid-catalyzed reactions of benzyl alcohol. J.
Catal. 2016;335:165-174.
43. Mantri K, Komura K, Kubota Y,
Sugi Y. Friedel–Crafts alkylation of aromatics with benzyl alcohols
catalyzed by rare earth metal triflates supported on MCM-41 mesoporous
silica. J. Mol. Catal. A: Chem. 2005;236(1):168-175.
44. Choudhary V, Jana S, Mamman A.
Benzylation of benzene by benzyl chloride over Fe-modified ZSM-5 and H-β
zeolites and Fe2O3 or FeC13 deposited on micro-, meso- and macro-porous
supports. Microporous Mesoporous Mater. 2002;56:65–71.
45. Trnik A, Scheinherrova L, Medved
I, Cerny R. Simultaneous DSC and TG analysis of high-performance
concrete containing natural zeolite as a supplementary cementitious
material. J Therm Anal Calorim. 2015;121(1):67-73.
46. Gou J, Wang Z, Li C, et al. The
effects of ZSM-5 mesoporosity and morphology on the catalytic fast
pyrolysis of furan. Green Chem. 2017;19(15):3549-3557.
47. Li J, Xiang H, Liu M, Wang Q, Zhu
Z, Hu Z. The deactivation mechanism of two typical shape-selective
HZSM-5 catalysts for alkylation of toluene with methanol. Catal.
Sci. Technol. 2014;4(8):2639-2649.
48. Liu Y, Zou Y, Jiang H, Gao H,
Chen R. Deactivation mechanism of beta-zeolite catalyst for synthesis of
cumene by benzene alkylation with isopropanol. Chin. J. Chem.
Eng. 2017;25(9):1195-1201.