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Abstract: Cycads are an ancient group of tropical gymnosperms that are toxic to most
animals—including humans—though the larvae of many moths and butterflies (order: Lepidoptera)
feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees
of specialization and diverse feeding ecologies, presenting numerous opportunities for comparative
studies of chemically-mediated eco-evolutionary dynamics. This review presents an evolutionary
evaluation of cycad-feeding among Lepidoptera along with a comprehensive review of their ecology.
Our analysis suggests that multiple lineages have independently colonized cycads from angiosperm
hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive
traits are likely important for diversification, as many cycad specialists are warningly colored and
sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to
cycad-feeding and although aposematism is otherwise rare in this family, several cycad-feeding
lycaenids are warningly colored and chemically defended. Cycad-herbivore interactions provide a
promising but underutilized study system for investigating plant-insect coevolution, convergent and
divergent adaptations, and the multi-trophic significance of defensive traits, therefore the review
ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and
other cycad-feeding insects.
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Introduction1

Lepidoptera (butterflies and moths) have long been used to test theories about the evolutionary2

origins and consequences of ecological traits, and their larval associations with host plants have3

served as a scientific cornerstone of research into coevolution and chemical ecology. An extensive4

literature on the physiological, morphological, behavioral, genetic, and ecological mechanisms of5

plant-butterfly interactions has developed over the last half century, largely in response to Ehrlich’s &6

Raven’s seminal 1964 paper describing macroevolutionary patterns of host use among butterflies [1].7

These studies have elucidated the biological basis and ecological significance of acquired chemical8

defense in insects [2], identified key innovations underlying specialization [3], and described chemical9

communication among plants, herbivores, and higher trophic levels[4, 5]. They have identified10

phytochemical convergence among distantly related plant families [6] and documented molecular and11

behavioral convergence among insects in their counteradaptations to plant defenses [7, 8]. Much of12

the progress in this field has been borne from studies of agricultural systems and model interactions,13

such as monarch butterflies specialized on latex- and cardenolide-producing milkweeds [6, 9, 10],14

Zygaena moths that sequester and synthesize cyanogenic glucosides [11, 12], arctiid moths and their15

pyrrolizidine alkaloid producing hostplants [13, 14], caterpillars specialized on plants defended by16

furanocoumarins [15, 16], and pierid larvae feeding on glucosinolate-rich plants in the Brassicales17

[17, 18]. These systems and others have taught us a great deal about how phytochemicals shape18

plant-insect interactions over ecological and evolutionary timescales.19

But for all its richness and impact, the literature on chemically-mediated plant-herbivore20

interactions has a ’precariously narrow base’ [19]: the overwhelming majority of research is focused21

on insects that feed on a handful of angiosperm families, with comparatively little investigation into22

non-angiospermous diets (but see [20–24]). To achieve a more comprehensive understanding of the23

generalities and idiosyncrasies underlying plant-insect interactions, research needs to encompass a24

broader selection of the rich taxonomic and chemical diversity of plants and their herbivores. To this25

end, we present a fascinating study system comprised of cycads and their lepidopteran herbivores,26

which we believe holds great promise for advancing long-standing and new hypotheses in ecology27

and evolution.28

Cycads (order: Cycadales) are a basal, pantropical group of dioecious gymnosperms with a fossil29

record extending back over 265 million years [25]. With 75% of the 355 cycad species threatened with30

extinction, they are the most imperiled plant order in the world [26–28]. Cycads possess an arsenal of31

distinctive chemical defenses that are themselves deserving of review, and yet a number of insects use32

cycads as larval and adult food plants. The majority of cycad-feeding (cycadivorous) insects belong to33

a handful of lepidopteran families that exhibit varying degrees of host specialization and belong to34

multiple feeding guilds. Some of these species are widespread pests while others are conservation35

targets. They exhibit a remarkable diversity of defensive strategies and trophic ecologies, suggesting36

varied adaptations for coping with cycad-specific phytotoxins. However, the biology of cycadivorous37

Lepidoptera has never been reviewed, and the majority of relevant studies have concentrated on just38

a few focal species without examining broader ecological or evolutionary patterns. The aims of this39

review are therefore to 1) present an authoritative list of cycadivorous Lepidoptera and distinguish40

verified from unverified records, 2) discuss key ecological and evolutionary implications of cycad41

feeding in the context of broader plant-lepidoptera interactions, and 3) highlight important data gaps42

and areas for future study.43

Lepidopteran Cycad Herbivores44

Cycadivory occurs in seven Lepidopteran families (Table 1), including the butterfly families45

Nymphalidae and Lycaenidae. Among nymphalid butterflies, larvae of two species in the Australasian46

genus Taenaris—T. onolaus and T. butleri—have been reported to feed on Cycas (species unknown) in47

Papua New Guinea [29, 30]. In addition to larval cycad feeding, some adult Taenaris butterflies imbibe48

cycad juices: T. onolaus and T. catops have been observed visiting fermenting cycad seeds, feeding on49
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exudates from wounded cycad leaves, and even probing the fresh frass of cycadivorous beetle larvae50

with their probosces [29]. This behavior is particularly remarkable in T. catops, the larvae of which feed51

on palms (Arecaceae) and are not known to be cycadivorous.52

Three genera of lycaenid butterflies—Luthrodes, Eumaeus, and Theclinesthes—include species that53

are obligate cycad herbivores. The Luthrodes - Chilades clade is comprised of two sister genera that54

have historically been lumped together (typically under name Chilades). Here we follow Talavera et al.55

(2013) and treat them as separate genera [31]. Thus, we consider the cycadivorous lycaenid species56

that are typically referred to in the literature as Chilades to be properly placed in Luthrodes: L. pandava,57

L. peripatria, and L. cleotas. Luthrodes pandava is widespread across southern and southeast Asia and the58

larvae are often serious pests of Cycas [32]. Luthrodes cleotas also occurs in southeast Asia and feeds59

on Cycas [30], but less is known about its life history. The third species, L. peripatria, is endemic to60

Taiwan and its taxonomic status is unclear: some authors treat it as a full species ([31, 33]) while others61

consider it a subspecies of L. pandava ([34, 35]). The larvae of L. peripatria historically fed only on Cycas62

taitungensis, also endemic to Taiwan, though it now accepts the ornamental species Cycas revoluta [35]63

which has been introduced to Taiwan in large numbers since the 1990s [34].64

The neotropical lycaenid genus Eumaeus is comprised of six species distributed from Peru to the65

Caribbean [36], with E. atala extending into southeastern Florida and some (perhaps dubious) records66

of rare strays of E. toxea into southern Texas [37]. All six Eumaeus species are obligate cycad herbivores,67

utilizing cycads in the neotropical genera Zamia, Dioon, and Ceratozamia [38–43]. Larvae of several68

Eumaeus species have been observed feeding on plants’ fresh male and female reproductive cones in69

addition to stem and leaf tissue [43–48], and we know of a single report of E. childrenae adults feeding70

on cycad exudates [49]. Finally, Theclinesthes is a mostly Australian genus of six species, of which one71

species, T. onycha, feeds on cycads in the genera Cycas and Macrozamia in eastern Australia [20].72

Among moths, 23 species from 8 genera have been recorded on cycads but this is likely an73

underestimation, as many cycad-feeding moths remain poorly collected and understudied. An74

entire tribe of Geometrid moths, the Diptychini, consists of 17 cycadivorous species in 3 genera [50].75

Colloquially called "the cycad moths," these are the best studied of the cycadivorous moths and are76

the only cycadivorous Lepidoptera known from Africa. The hostplants of all Diptychini larvae are77

Encephalartos and Stangeria cycads for the first 3 instars, but larvae in later instars often switch to78

angiospermous host plants [51–53]. Hostplant species for Diptychini moths are therefore separated79

into primary (cycad) and secondary (non-cycad) hosts in Table 1.80

In addition to these obligate cycad herbivores, a number of facultative cycadivores exist.81

Seirarctia echo (Erebidae) occurs in the southeastern United States where the larvae are highly82

polyphagous, feeding on leaves of the cycad Zamia integrifolia as well as plants in the families Arecaceae,83

Euphorbiaceae, Fabaceae, Fagaceae, and Ebenaceae. In captivity, they have even been reared on lettuce84

(Asteraceae) [54]. One undetermined leaf-mining Erechthias moth (Tineidae) has been found feeding85

and pupating in the leaves of Cycas micronesica in Guam [55]. Larvae of Dasyses rugosella (Tineidae) have86

been observed feeding on dead Cycas stems in India, Sri Lanka, Thailand, Indonesia, and Guam [55, 56].87

Colloquially called "yam moths," D. rugosella are best known as pests of stored yams in West Africa88

[57, 58], and are broad generalists on decaying vegetable matter [59]. Larvae of Anatrachyntis badia89

(Cosmopterigidae), another highly polyphagous and cosmopolitan moth species, have been found in90

pollen cones of Zamia integrifolia in Florida, USA [60] and feeding on leaves of Cycas revoluta and C.91

circinalis in Italy [61]. An undetermined Anatrachyntis species pollinates Cycas micronesica in Guam and92

feeds on pollen cones as larvae [62, 63]. Finally, larvae of an undetermined microlepidopteran in the93

family Blastobasidae have been found feeding in copious numbers on pollen cones of Zamia pumila in94

the Caribbean [64].95

Many records exist for lepidopteran species feeding on cycads which are likely to be erroneous or96

require further confirmation. We discuss these in the Supporting Information. The species listed in97

Table 1 have been identified by experts, confirmed by multiple sources, supported with photographic98

evidence, and in many cases their larvae have been reared in captivity on cycads. However, while99
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we feel that this paper serves as an authoritative list of cycadivory among Lepidoptera, it is likely100

not an exhaustive account of all cycadivorous species considering that new records of cycad-insect101

associations are still being reported (e.g., [60]), particularly among cone-feeding microlepidoptera.102

Defensive Ecology103

Cycad secondary chemistry104

Cycads produce several toxic compounds in their leaves and other tissues, including steryl105

glycosides, β-Methylamino-L-alanine (BMAA), and methylazoxymethanol acetate (MAM) [65–69].106

These compounds are toxic to most animals [70] and are therefore presumed to function as107

anti-herbivore defenses, though MAM is the only compound for which experimental evidence exists108

for insect deterrence [71–73]. MAM occurs in cycad tissues in a non-toxic glycosylated form and109

is known by different names (e.g., cycasin, macrozamin) depending on its sugar moiety. Defensive110

glycosides are widespread in several angiospermous plant families and include cyanogenic glycosides,111

cardiac glycosides, iridoid glycosides, salicinoids, glucosinolates, and others [74]. Many of these112

compounds have convergently evolved in distantly related plant families, whereas cycads are the only113

plants known to produce MAM. As a two-component chemical defense, MAM’s toxicity is activated by114

β-glucosidase enzymes that cleave the protective sugar moiety from the toxic aglycone [65, 75]. MAM115

then spontaneously degrades into formaldehyde and methyldiazonium, with mutagenic, carcinogenic,116

and neurotoxic effects [65, 66]. Numerous non-cycadivorous Lepidoptera ingest and even sequester117

plant-derived two-component defensive chemicals for their own protection from natural enemies: for118

example milkweed-feeding butterflies and moths (subfamilies Daninae and Arctiinae, respectively)119

sequester cardenolides; some species in the Nymphalidae, Geometridae, Sphingidae and Arctiinae120

sequester iridoid glycosides; cyanogenic glycosides are sequestered by species in the Heliconiinae,121

Acraeinae, and Zygaenidae; and some Pieridae larvae sequester glucosinolates [76, 77]. Early work122

by Teas showed that larvae of the cycadivorous moth, Seirarctia echo (subfamily Arctiinae), are able123

to chemically modify MAM into its glycosylated form and accumulate non-toxic MAM-glycosides124

in their tissues after feeding on cycad leaves [78, 79], but the molecular mechanism(s) by which they125

do so is unknown. It is possible that other cycadivorous Lepidoptera are capable of similar chemical126

modifications though this has never been tested.127

β-Methylamino-L-alanine is a non-protein amino acid found in cycad tissues, but is also produced128

by cyanobacteria in aquatic, marine, and terrestrial environments [80, 81]. All cycads engage in129

endosymbioses with cyanobacteria, which are housed in specialized corraloid roots and are thought to130

provision plants with fixed nitrogen (and potentially other specialized metabolites) in exchange for131

carbon and physical protection [82, 83]. Given that BMAA is produced by free-living cyanobacteria132

in other habitats, its biosynthetic source in cycads has been debated [84, 85]. As a potent excitotoxin,133

BMAA interferes with glutamate receptor function and can misincorporate into proteins, and the134

ingestion of foods containing BMAA has been implicated as a possible cause of amyotrophic lateral135

sclerosis, Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative diseases in humans136

[67, 84, 86, 87]. Toxic effects of BMAA have been demonstrated in mammals [70, 88, 89], insects [90–92]137

and crustaceans [81], fish [93, 94], microbes [93], and plants [95]. Hundreds of non-protein amino138

acids have been identified in other plant families, especially legumes and grasses, and while the139

functions of these compounds are highly variable and often uncharacterized, many are believed to140

serve as anti-herbivore defenses [96–98]. The possible function(s) of BMAA in cycads—defensive141

and otherwise—have never been experimentally demonstrated, though based on its demonstrated142

toxicity to diverse organisms most researchers presume that BMAA serves as a defense against143

herbivores. Mechanisms of resistance to BMAA have not been investigated for any lepidopteran,144

though there is evidence that cycadivorous weevils are able to avoid BMAA by consuming only pollen145

cone parenchyma tissue where BMAA is thought to be sequestered in specialized cells that the weevils146

excrete in their frass [99, 100]. In addition to MAM and BMAA, cycads produce steryl glucosides147
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and numerous other chemicals whose roles in plant-herbivore interactions have yet to be sufficiently148

characterized.149

Insect defensive ecology150

Cycadivorous Lepidoptera appear to tolerate all cycad toxins and several species are brightly151

colored, diurnal, and gregarious—traits commonly associated with chemically defended Lepidoptera152

(Figure 1) [101]. Indeed, previous studies have shown that some cycadivorous species sequester153

MAM-glycosides into their larval and adult tissues. Rothschild, Nash, & Bell (1986) found that154

Eumaeus atala larvae, pupae, and adults contained MAM-glycosides in surprisingly high amounts155

relative to their hostplants [75], and Castillo-Guevara & Rico-Gray (2003) detected MAM-glycosides156

in the eggs, larvae, pupae and adults of Eumaeus sp. (probably toxea) in Mexico [102]. Nash et al.157

(1992) quantified MAM-glycosides in dried museum specimens of adult butterflies, including some158

specimens that were over 70 years old [103]. The authors detected MAM-glycosides in Eumaeus minyas159

(male and female), Luthrodes cleotas (male and female), Taenaris butleri (male and female), Taenaris catops160

(male), and Taenaris onolaus (female) but did not detect MAM-glycosides in Theclinesthes onycha (either161

gender), female Taenaris catops, or male Taenaris onolaus. They concluded that MAM-glycosides were162

not detectable from the latter two because of the advanced age of the museum specimens, but that163

Theclinesthes onycha probably do not sequester MAM-glycosides.164

Since several of the species that sequester MAM-glycosides are brightly colored, their coloration165

may be considered aposematic. Aposematism and chemical defense are exceedingly rare traits among166

lycaenid larvae [75, 104, 105], which typically rely on crypsis and ant association for protection against167

natural enemies [21]. Eumaeus provide a striking exception in that they are gregarious and warningly168

colored in all lifestages, are known to sequester cycad toxins, and do not form larval associations169

with ants [106]; whereas larvae of other cycadivorous lycaenids commonly associate with ants and170

are cryptically colored [107–109]. Larvae of Luthrodes cleotas are cryptically colored but adults have171

much larger orange spots on their hindwings than do their congeners, and it is possible that they are172

aposematic, particularly given that adults have been shown to sequester MAM-glycosides [103].173

Larvae and adults of Dyptichini moths are brightly colored with gregarious larvae and diurnal174

adults, but it is unclear whether they sequester plant toxins at any life stage (Donaldson & Basenberg175

(1995) suggest that Z. lepida sequester MAM-glycosides, but do not provide experimental evidence176

[52]). Seirarctia echo larvae are warningly colored and covered with protective hairs. This species177

sequesters MAM-glycosides when feeding on cycads [78, 79], but it remains unknown how feeding178

on non-cycad hostplants affects their palatability and predation risk. Finally, Anatrachyntis moths179

and the other microlepidoptera are not aposematic in any lifestage and many species spend their180

entire development concealed inside plants’ pollen cones, where they may avoid some cycad toxins181

[100, 110]. It is completely unknown whether leaf-mining Erechthias and detritivorous Dasyses larvae182

encounter cycads’ defensive compounds while feeding.183

Unfortunately, records of predators and parasitoids are lacking for nearly all cycadivorous species.184

Natural enemies of Lepidoptera generally include birds, small reptiles, spiders, mantids, reduviid bugs,185

ants, and parasitic wasps and flies, though direct observations of attacks on larvae and adult butterflies186

are exceedingly rare [111]. The best-studied cycadivorous species with regard to defensive ecology is187

Eumaeus atala in southeastern Florida. Both native and non-native ants have been observed consuming188

E. atala eggs and pupae [112], but are thought to avoid adult butterflies [71]. Some assassin and ambush189

bugs (Reduviidae) will attack E. atala larvae [113] although published records are scarce. Unconfirmed190

reports exist of native and non-native reptiles attacking E. atala larvae and adults. Starlings, peacocks,191

and other non-native birds have been reported to attack caterpillars, though it’s possible that only192

naïve birds will attempt to eat E. atala, as adult butterflies were shown to be distasteful to grey jays193

[114]. There are no reports of parasitoids using E. atala as hosts, a conspicuous absence given that194

parasitoids are typically significant natural enemies of lepidopteran larvae.195
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Ruiz-García et al. (2015) monitored survival and development of Eumaeus toxea larvae in Oaxaca,196

Mexico and observed Dasydactylus beetles preying on molting E. toxea larvae but did not report finding197

any parasitoids [47]. In contrast, Manners (2015) reports that "high levels of parasitism" sometimes198

occur in Theclinesthes onycha larvae in Australia, and provides photographs of larvae parasitized by199

braconid wasps [115]. The only published records of parasitization among cycadivorous moths come200

from Zerenopsis lepida: Staude et al. (2014) reared a single parasitoid fly (Tachinidae) from a late instar201

larva in South Africa [53], and Sommerer (2014) reared 15 Z. lepida larvae and found more than 50202

percent had been parasitized by Charops sp. (Ichneumonidae) or Drino sp. (Tachinidae) [116]. Aside203

from these scattered records we know relatively little about the natural enemies of cycadivorous204

Lepidoptera in the wild, including the importance of entomopathogenic microbes. Moreover, the205

effectiveness of aposematism and other defensive strategies against vertebrate, invertebrate, and206

microbial enemies remains an outstanding issue, even among well-studied Lepidoptera.207

Evolutionary Origins of Cycadivory208

To evaluate evolutionary origins of cycadivory and relationships among cycadivorous209

Lepidoptera, cycadivory was mapped on to a phylogenetic tree constructed by combining a210

Lepidoptera phylogeny [117] including butterflies and moths with a heavily sampled butterfly211

phylogeny [118] (Figure 2). Both phylogenies were downloaded as .nex files from published sources212

and brought into R (version 3.5.1) [119] where the butterfly clade from Espeland et al. (2018) [118] was213

substituted in place of the less sampled clade from Regier et al. (2013) [117] using the R packages ape214

[120], GEIGER [121], and ggtree [122, 123]. In cases where cycadivorous species were not represented215

as tips on the tree, the represented tip of the closest relative was identified using published phylogenies216

of families or genera [31, 50, 124–126].217

A visual inspection of the Lepidoptera phylogeny suggests that cycadivory has evolved218

independently in multiple lepidopteran lineages, with several origins likely within single families219

and potentially even single genera. For example, a poorly resolved phylogenetic hypothesis based on220

morphological data for Taenaris does not place the two cycadivorous species within a monophyletic221

clade or closely related to each other [30], suggesting multiple origins of cycadivory in the genus.222

Similarly, an unpublished molecular phylogeny that includes some species of Luthrodes does not place223

the two included cycadivorous species as sister clades [127]. Conversely, cycadivory appears to be224

an ancestral trait in Eumaeus butterflies (6 species) and Diptychini moths (17 species). Given that225

both of these clades are warningly colored and obligately cycadivorous, it seems likely that cycad226

feeding or defensive traits (or both) have led to limited radiations in these groups. Dated phylogenetic227

hypotheses for all genera would be required to understand the general evolutionary significance of228

cycadivory and why some lineages have diversified while others are represented by just one or two229

species nested within otherwise non-cycadivorous clades.230

Given the evolutionary history of cycads and phylogenetic placement of cycadivorous231

Lepidoptera, it is likely that transitions to cycadivory among extant cycadivorous Lepidoptera occurred232

within the last 15 to 20 million years. Indeed, at least in lyceanid butterflies the evolutionary origins233

of cycadivory appear to be somewhat recent. Talavera et al. 2013 dates the split between Luthrodes234

and its sister genus Chilades at ~6 MY [31], but the cycadivorous species of Luthrodes included in the235

analysis are derived, placing the origin(s) of cycadivory in this lineage as even younger. Similarly,236

an unpublished molecular clock analysis in Theclinesthes estimates the origin of the genus at 2-3 MY237

[128]. Finally, Espeland et al. (2018) places the split between Eumaeus and Calycopis at ~18 MY [118],238

making the origin of Eumaeus even more recent as this analysis did not include Eumaeus’s sister genus239

Theorema.240

Improved phylogenetic estimates for cycadivorous Lepidoptera would be useful for reconstructing241

and comparing historical diet evolution among cycadivorous lineages, though research in this242

area is hindered not only by the unavailability of genus-level phylogenetic reconstructions, but243

also by incomplete or erroneous hostplant records for many species (see Table S1 in Supporting244
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Information). Some have speculated that monocot-feeding may be an evolutionary precursor to245

cycadivory because non-cycadivorous Taenaris feed on monocots [129], though there is little evidence246

from other groups to support this as a broad pattern. Among lycaenids, close relatives of cycadivorous247

species feed on dicots in the families Fabaceae, Amaranthaceae, Proteaceae, Sapindaceae, Myrtaceae,248

and Euphorbiaceae [20, 130]. Cycadivorous moths and their close relatives exhibit a broad range249

of hostplant preferences that includes both monocots and dicots. Improved knowledge of the250

evolutionary histories of cycadivorous lineages would provide a framework for testing hypotheses251

about evolutionary precursors to cycadivory and host breadth among extant species.252

Hostplant Use253

Based on the records reported here, cycadivorous Lepidoptera utilize 7 of the 10 recognized254

cycad genera [26] (Figure 3). Absent among accepted hostplant genera are Lepidozamia, Bowenia and255

Microcycas. These are all small genera (Lepidozamia: 2 species; Bowenia: 2 species; Microcycas: 1 species).256

All cycadivorous butterflies appear to be obligate cycad specialists while cycadivorous moths257

exhibit a broader range of dietary preferences. Seirarctia echo is the only confirmed facultative cycad258

folivore, accepting leaves from a wide variety of hostplants from several plant families. The ecological259

causes and consequences of feeding on cycad versus non-cycad plants are completely unexplored in260

this species. Diptychini moths are facultatively polyphagous in their 4th-6th instars but all species are261

obligate cycad specialists for the first 3 instars. Donaldson & Basenberg (1995) found no significant262

differences in survival rate, developmental duration or pupal mass between 4th instar Z. lepida larvae263

reared on angiosperm versus cycad hosts [52]. Staude (2014) has suggested that some Diptychini moths264

may not require cycads even in their early stages, as he collected a single final-instar Z. tenuis larva265

feeding on the leaves of a baobab tree (Adansonia digitata, Malvaceae) on Misali Island, Tanzania, where266

no cycads were found [53]. The remaining cycadivorous moth species are either highly polyphagous267

(e.g., Dasyses rugosella) or their host breadth is unknown (e.g., Erechthias sp.).268

Whereas not all cycadivorous Lepidoptera are specialists of cycads, their larvae are specialized269

on particular plant tissues and can therefore be categorized into discrete feeding guilds. These guilds270

include leaf chewers, leaf miners, ovulate cone feeders, pollen cone feeders, and detritivores, and the271

larvae in each of these guilds likely experience qualitative and quantitative differences in exposure to272

cycad toxins. For example, pollen cone feeders may experience reduced exposure to toxins since at273

least one cycad toxin, BMAA, appears to be sequestered in specialized cells in the pollen cones that can274

pass through the guts of other insects intact [100, 110]. Detritivorous species feed on decaying cycad275

pollen cones and stems that may also harbour lower concentrations of toxins. In contrast, Eumaeus276

butterfly larvae feed on both ovulate and pollen cones as well as leaves [45, 46], and some evidence277

suggests that Z. lepida moths also feed on ovulate cones in addition to leaves [131]. The seeds of some278

cycad species are known to contain high concentrations of MAM and BMAA relative to other plant279

tissues [132–134] and ovulate cones do not sequester BMAA into specialized cells [100, 110]. It is280

therefore unsurprising that only obligate cycad specialists can utilize ovulate cones, particularly those281

species which are known to sequester MAM.282

Among cycad specialists, it appears that larvae can accept diverse cycad species and hostplant283

breadth is expanding for several species, particularly as exotic cycads are planted as ornamentals284

in gardens worldwide. The Caribbean species Eumaeus atala, for example, historically fed only on285

Caribbean cycads in the genus Zamia, but have been observed laying eggs and feeding on cultivated286

Central American cycad species that are outside of the native range, as well as some species of African,287

Australian, and Asian cycads [39, 43]. The ability to feed on non-native cycads has been observed in288

other Eumaeus species as well [48], and increased hostplant breadth has been reported for Luthrodes289

pandava, a widespread pest that feeds on numerous native and exotic cycads across Asia and the290

Middle East [34, 135–137].291

Contemporary host use may challenge the species status of Luthrodes peripatria, which some292

authors consider to be a subspecies of Luthrodes pandava. The natural range of L. pandava is widespread293
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across southern Asia (excluding Taiwan), whereas L. peripatria is endemic to Taiwan and has historically294

fed on a single cycad species restricted to southeastern Taiwan, Cycas taitungensis [138]. In the past295

30 years, L. pandava has been introduced to Taiwan along with several exotic Cycas species. As both296

Luthrodes species accept native and non-native Cycas species as hostplants, expanded hostplant use and297

range overlap could provide opportunities for interbreeding. Further assessment of the population298

structure, introgression, and species status of L. pandava and L. peripatria would be fruitful (but see299

[34]).300

Hostplant specialization may promote divergence in the Australian species Theclinesthes onycha,301

for which two subspecies are recognized, T. onycha onycha and T. onycha capricornia. T. o. onycha feeds302

only on Macrozamia cycads distributed from southern Queensland to New South Wales whereas T.303

o. capricornia feeds only on Cycas species in Northeast and central Queensland. They overlap in304

their distributions in a narrow region in central Queensland, though microhabitat preferences may305

maintain allopatry even within this contact zone. Patterns of hostplant use and mate choice are not well306

described within the contact zone, though Eastwood (2006) found considerable genetic differentiation307

in the mitochondrial genes of each subspecies, suggesting that there is little to no gene flow between308

them [128].309

Careful analysis of hostplant use, species relationships, and reproductive barriers would also310

be useful for the two pairs of sympatric species of Eumaeus butterflies in Central and South America.311

Eumaeus childrenae and E. toxea co-occur in some parts of their ranges in Mexico, where they are easily312

distinguished based on wing pattern. These species are likely quite diverged and they utilize different313

cycad genera as hostplants throughout much of their range, though detailed studies of host use in314

areas of sympatry and allopatry have not been carried out. Eumaeus toxana and E. minyas both occur in315

South America and according to published records their ranges overlap in Peru. However, it is difficult316

to glean even basic natural history information for these two species due to widespread mistakes in317

species identifications in the published literature. Eumaeus minyas is commonly confused with several318

other Eumaeus species, especially E. toxana and the isthmus species E. godartii, but also E. toxea and319

even E. atala. Credible accounts of the distributions and range limits for E. minyas and E. toxana are320

needed, with E. toxana being particularly under-collected and poorly studied.321

Among Caribbean species, the ranges of Eumaeus atala and Seirarctia echo overlap in southern322

Florida but there are very few records of both species occurring in the same place, suggesting that323

there is some displacement at a relatively fine spatial scale. Since S. echo is broadly polyphagous,324

hostplant competition is unlikely to be a sufficient explanation. Furthermore, the range of E. atala does325

not occupy the entire range of its hostplants in Florida, and a better understanding of the factors that326

determine the range boundaries of these species would be very valuable for the management of local327

butterfly and cycad populations.328

Discussion329

Cycadivorous Lepidoptera comprise a ’component community’ of distinct lineages with varying330

degrees of specialization and diverse feeding ecologies, and therefore present numerous opportunities331

for comparative studies of eco-evolutionary dynamics (e.g., [139]). Additionally, because of their novel332

chemical and ecological features, cycads and their herbivores provide a valuable complement to the333

model systems that dominate plant-insect research. Based on this first review of the phylogenetic334

and natural histories of these species, we speculate here on some of the salient questions regarding335

cycad-Lepidoptera interactions.336

337

Is cycad-feeding adaptive? Evolutionary transitions to feeding on plants that contain defensive338

secondary compounds are claimed to promote diversification of Lepidoptera through escape and339

radiation (e.g., [17]). If cycadivory has similarly promoted diversification in lepidopteran lineages,340

then it might be considered an adaptive trait. Based on the phylogenetic pattern shown in Figure341

2, Eumaeus butterflies and Diptychini moths exhibit modest radiations following their transition to342
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cycad-feeding, whereas other cycadivores remain as only one or two species at the tips of otherwise343

angiosperm-feeding clades. Why have some cycadivorous lineages diversified while others have not?344

That the largest clades of cycadivorous Lepidoptera are also aposematic suggests that defensive345

ecology may play a role in diversification: perhaps it is not cycadivory per se that leads to diversification346

in some lineages, but rather the subsequent evolution of aposematism. This explanation is consistent347

with the cryptic coloration of cycadivorous species that have not radiated, though a few exceptions348

must be considered. Luthrodes cleotas and Seirarctia echo are both known to sequester cycad toxins and349

could be considered warningly colored; why have these species not diversified? Cycadivorous Taenaris350

species are also warningly colored but do not appear to have radiated (though even non-cycadivorous351

Taenaris are considered aposematic [20] so this situation may be more complicated).352

It may be that evolutionary trade-offs or constraints have limited diversification in these groups,353

that other cycadivorous relatives once existed but have gone extinct, or that cycadivory has evolved354

too recently for diversification to have yet taken place. Indeed, cycadivorous species of Luthrodes and355

Theclinesthes appear to be very young, and it would be interesting to compare their ages to those of356

Eumaeus butterflies and Diptychini. Among generalists, cycadivory is not expected to significantly357

influence speciation rates (at least for detritivorous moths), though Seirarctia echo and Erechthias sp.358

may be exceptions given that they possess specific adaptations for feeding on cycads’ fresh leaf tissue.359

360

Is there evidence of coevolution between cycads and their lepidopteran herbivores? All361

cycadivorous Lepidoptera must possess adaptations to circumvent or tolerate cycad-specific defenses,362

and the selective value of cycad defensive traits against herbivores seems clear. But what of the363

selective influence of cycadivorous Lepidoptera for their host cycads? While there is little debate364

about the importance of plant defensive traits for herbivore fitness [140, 141], the importance of insect365

herbivores as selective agents is less clear as most plants seem able to tolerate intermediate levels of366

herbivory without a significant reduction in fitness [142]. Evidence of reciprocal adaptation between367

pairs of plants and herbivores has been relatively scarce [143], and the step-wise selection scenario368

initially envisaged by Ehrlich & Raven appears to be extremely asymmetrical: shifts to chemically369

novel hosts lead to bursts in diversification in many herbivore groups, but escape from herbivores370

through chemical novelty seems to have had little impact on diversification rates in most plant groups371

[18, 144] (but see [145, 146]).372

Still, damage inflicted by folivorous Lepidoptera can be so extreme that just a few generations can373

decimate a large cycad. Selective pressures exerted by some specialist herbivores may therefore be374

especially severe for cycads relative to other plant groups, raising the possibility that some lepidopteran375

herbivores could select for escalated chemical defenses and perhaps influence the diversification of376

their cycad hosts. Previous work has identified diverse secondary compounds in cycads [147, 148] that377

appear to be evolving [149], but phylogenetically explicit comparisons of cycad defensive chemistries378

(toxins, antinutritive compounds, and volatile organic compounds) would be required to look for379

evidence of phytochemical escalation.380

The phylogenetic distribution of cycadivory in Lepidoptera suggests repeated, independent381

colonizations of cycads from distantly related angiosperm hosts, and the potential for co-speciation382

with cycads is reasonably plausible only among Eumaeus butterflies and Diptychini moths. Research in383

this area should therefore focus on assessing coevolution between Eumaeus with the new world cycad384

genera Zamia, Dioon, and Ceratozamia, and between the African Diptychini moths with cycad genera385

Encephalartos and Stangeria.386

387

How does cycadivory evolve? Identifying evolutionary and ecological precursors to cycadivory388

could help explain the repeated transitions to cycads among Lepidoptera. For example, did the host389

plants of ancestral species somehow facilitate shifts to cycad feeding, either through phytochemical390

similarity or other features? From the data presented here, there is no evidence that cycadivory has391

evolved from a single, shared host lineage. The ancestors of cycadivorous taxa likely fed on diverse392
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angiosperms including both monocots and dicots, though improved phylogeographic and life history393

information will be required to infer the most likely ancestral food plants of each cycadivorous lineage.394

Hypotheses regarding what the ancestors of cycadivorous species ate prior to their transitions to cycads395

may suggest as yet unknown chemical similarities between cycads and some angiosperm groups. Or,396

if no chemical similarities are found, it suggests potentially novel adaptations for overcoming cycads’397

defenses.398

Lepidoptera are known to employ numerous adaptations for feeding on chemically defended399

host plants. These include behavioral adaptations [150], physiological mechanisms [151], and perhaps400

even associations with symbiotic gut bacteria [152, 153] (otherwise considered exceptional among401

Lepidoptera [24, 154]). Host switching and feeding on select plant tissues can also minimize an insect’s402

exposure to plant defensive compounds. For example, Diptychini moths – which we consider to be403

obligate cycad specialists – commonly switch to feeding on angiospermous plants in late instars and404

thereby potentially reduce their exposure to cycad defenses.405

It is presently unknown which specific adaptations might be required for cycadivory, or how406

widely specific adaptations are shared across and within feeding guilds, e.g., among specialized407

folivores. Sierarctia echo are capable of modifying dietary MAM into its non-toxic form [79], but it is408

unknown whether other herbivores actively detoxify MAM using a similar mechanism. Moreover,409

no adaptations have been identified to date that would enable herbivores to cope with BMAA, steryl410

glycosides, or other defensive compounds, let alone complex phytochemical mixtures. Additionally,411

herbivores need to locate and discriminate between potential host plants, and while previous work has412

described chemical cues used by the insect pollinators of cycads [155], no research has investigated413

chemical communication between cycads and lepidopteran herbivores.414

Finally, different lepidopteran lineages may experience different evolutionary constraints in their415

ability to feed on cycads. Among butterflies, the Nymphalidae appear to be relatively constrained416

in their ability to colonize new hostplant families [156], whereas the Lycaenidae exhibit enormous417

trophic diversity that includes both phytophagous and aphytophagous diets [21]. Indeed, Ehrlich &418

Raven were able to identify few phylogenetic patterns in lycaenids’ host use and were puzzled by their419

’bewildering array’ of host plant affiliations [1]. The only published lycaenid genome demonstrates420

significant expansion in detoxification and digestion enzymes [23], which, if shared broadly across421

the family, might explain why lycaenid butterflies seem predisposed to trophic innovation, including422

repeated colonization of cycads over the last 20 MY. Yet despite their proclivity for unusual diets,423

feeding on chemically defended host plants and sequestering host plant defensive chemicals is rare424

among lycaenids [105], making the repeated evolution of cycadivory among lycaenids especially425

exciting.426

Conclusions427

Cycadivorous Lepidoptera are remarkably diverse in their defensive strategies, life histories,428

and hostplant relationships, providing numerous opportunities for future research. Their diets429

span the full range of host specialization and there is evidence of host expansion in some species.430

Cycad-feeding Lepidoptera include cases of possible incipient speciation and examples of likely431

introgression, widespread pests as well as locally threatened species, and clades that are relatively432

understudied in phytochemical ecology research (e.g, lycaenid butterflies, Diptychini moths) along with433

a few familiar standbys (e.g., arctiid moths, nymphalid butterflies). Moreover, cycads possess defensive434

chemistries that are not found in the angiosperm study systems that comprise the bulk of research435

on plant-insect interactions. Some of these defensive chemicals appear to be influenced by cycads’436

complex microbial associations and provide opportunities to investigate the effects of plant-microbe437

interactions on plant-herbivore interactions, as well as the ecological and non-ecological significance438

of non-protein amino acids, a widespread but relatively unstudied class of plant metabolites. The439

resulting diversity in lepidopteran defensive traits, which range from camouflage to aposematism,440

suggests both convergent and divergent adaptations to these toxins.441
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Yet despite several decades of research on a handful of focal species, many cycadivorous442

Lepidoptera remain understudied, undersampled, and undescribed. In general, research in this area443

would benefit from further investigations into cycad’s defensive chemistries and insects’ adaptations to444

cycad toxins, systematic surveys of herbivore diversity and host breadth, and studies of predator and445

parasitoid pressures in natural habitats, along with genus- and tribe-level phylogenies of cycadivorous446

groups and their sister taxa. We highlight several promising research questions in Box 1. Future studies447

would do well to consider other insect groups too, as cycadivory has been reported among larvae and448

adults of non-pollinating beetles (Coleoptera) [55]; bees (Hymenoptera) [157–159]; leaf-mining larvae449

of an unidentified fly (Diptera) [157]; termites (Blattodea) [160]; and phloem-feeding scale insects and450

mealybugs (Hemiptera) [55, 72]. By summarizing what is known about the phylogenetic placement451

of cycadivorous Lepidoptera, along with their hostplant relationships and defensive ecology, we452

introduce them as a compelling study system with great promise for investigating the causes and453

consequences of ecological interactions.454
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Box 1. Suggested Research Questions

• How widespread is sequestration of cycad defensive
compounds among cycadivorous Lepidoptera?
Which cycad toxins are sequestered and in which
species, life stages, and tissues? What adaptations are
required for deactivating, transporting, and/or storing
MAM-glycosides and potentially other cycad toxins?

• Do insect-associated gut bacteria contribute to tolerance
of cycads’ defensive chemicals?

• Who are the natural enemies of cycadivorous
Lepidoptera and how effective are lepidopteran
defensive traits (e.g., aposematism) against vertebrate
predators, invertebrate predators, parasitoids, and
entomopathogenic microbes?

• Do sequestered phytotoxins provide additional
functions beyond defense for specialized Lepidoptera,
e.g., sexual pheromones, nutrient storage, biochemical
signaling, etc.?

• What is the multi-trophic significance of cycadivory,
and how do cycads’ phytochemicals affect community
structure and nutrient flow within ecosystems?

• Why do some lepidopteran clades appear more
more likely to evolve cycadivory than others? What
evolutionary precursors, constraints, and trade-offs
might be relevant to the evolution of cycad-feeding
among Lepidoptera?

• What role do plant-associated microbes play in the
defensive traits of cycads? For example, is BMAA
produced by endosymbiotic cyanobacteria, by cycads,
by both?

• What function(s) does BMAA provide in cycad
metabolism and/or defense against herbivores?

• Can specialized insects’ adaptations to BMAA-rich
diets inform interventions relevant for human medicine
and public health?
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Table 1. Larval hostplant records for cycadivorous Lepidoptera. See text for explanation of primary and secondary
host use among geometrid moths. Species synonyms are given in Table 2 in Supporting Information. *Introduced
plant species.

Species Cycad Hosts Other Hosts Sources
Nymphalidae
Taenaris Hübner, [1819]

T. butleri (Oberthür, 1880) Cycas (species unknown) [29, 30]
T. onolaus (Kirsch, 1877) Cycas (species unknown) [29, 30]

Lycaenidae
Eumaeus Hübner, [1819]

E. atala (Poey, 1832) Zamia integrifolia, Z. vasquezii*, Cycas
revoluta*, Encephalartos villosus*,
Macrozamia lucida*, at least 30 other
non-native species

[39, 41, 43]

E. childrenae (Gray, 1832) Dioon edule, D. merolae, Ceratozamia
matudae, C. mexicana, C. norstogii, C.
robusta, C. chimalapensis, Zamia fischeri,
Z. soconuscencis, Cycas revoluta*

[38, 40, 42,
48]

E. godartii (Boisduval, 1870) Zamia acuminata, Z. fairchildiana, Z.
manicata, Z. stevensonii

[46]

E. minyas (Hübner, [1809]) Zamia encephalartoides, Z. skinneri [45, 161]
E. toxana (Boisduval, 1870) Unknown
E. toxea (Godart, [1824]) Zamia furfuracea, Z. paucijuga, Z.

encephalartoides, Z. loddigesii
[47, 72, 162]

Luthrodes Druce, 1895
L. cleaotas (Guérin-Méneville, [1831]) Cycas (species unknown) [30]
L. pandava (Horsfield, [1829]) >85 species of Cycas [32, 163, 164]
L. peripatria (Hsu, 1980) Cycas taitungensis, Cycas revoluta* [34]

Theclinesthes (Röber, 1891)
T. onycha onycha (Hewitson, 1865) Cycas megacarpa, C. ophiolitica, C. media [107, 165]
T. onycha capricornia Sibatani & Grund, 1978 Macrozamia spiralis, M. communis, M.

pauli-guilielmi
[165]

Geometridae
Zerenopsis Felder, 1874

Z. costimaculata (Prout, 1913) Primary hosts: Encephalartos
hildebrandtii

Secondary hosts: unknown in
the wild, Diospyros lycioides in
captivity

[53]

Z. flavimaculata Staude & Sihvonen, 2014 Unknown Unknown [53]
Z. geometrina (C. & R. Felder, 1874) Primary hosts: Stangeria eriopus,

Encephalartos villosus
Secondary hosts: Apodytes
dimidiata, Mimusops obovata

[53]

Z. kedar (Druce, 1896) Unknown Unknown [53]
Z. lepida (Walker, 1854) Primary hosts: Stangeria eriopus,

Encephalartos (>20 species), Cycas
thouarsii, C. circinalis*, C. revoluta*,
Dioon sp.*

Secondary hosts: Carissa
bispinosa, C. macrocarpa, C.
bispinosa, Diospyros lycioides, D.
whyteana, Apodytes dimidiata,
Maesa alnifolia, M. lanceolata,
Sclerocarya birrea

[52, 53, 166]

Z. meraca (Prout, 1928) Unknown Unknown [53]
Z. moi Staude & Sihvonen, 2014 Primary hosts: Encephalartos ferox Secondary hosts: unknown in

the wild, Diospyros lycioides in
captivity

[53]

Z. tenuis (Butler, 1878) Encephalartos hildebrandtii Adansonia digitata [53]

Veniliodes Warren, 1894
V. inflammata Warren, 1894 Primary hosts: Stangeria eriopus,

Encephalartos villosus
Secondary hosts: Apodytes
dimidiata, Diospyros lycioides

[166, 166]

V. pantheraria (C. & R. Felder, 1874) Primary hosts: Stangeria eriopus,
Encephalartos villosus

Secondary hosts: Apodytes
dimidiata, Diospyros lycioides

[51, 166]

V. setinata (C. & R. Felder, 1875) Stangeria eriopus [166]

Callioratis C. & R. Felder, 1874
C. abraxas Staude, 2001 Primary hosts: Encephalartos

lebomboensis, E. altensteinii, E. villosus
Secondary hosts: Apodytes
dimidiata, Diospyros whyteana,
Carissa sp.

[166]

C. apicisecta Prout, 1915 Stangeria eriopus & Encephalartos
tegulaneus in the wild, E. vollosus in
captivity

[166]

C. curlei Staude, 2001 Stangeria eriopus, Encephalartos
friderici-guilielmi

[166]

C. grandis Prout, 1922 Encephalartos gratus [167]
Continued on next page



20 of 23

Table 1 – continued from previous page
Species Cycad Hosts Other Hosts Sources

C. mayeri Staude, 2001 Encephalartos friderici-guilielmi [166]
C. millari Hampson, 1905 Primary hosts: Stangeria eriopus in the

wild, Encephalartos villosus in captivity
Secondary hosts: Diospyros
lycioides in the wild, Tropaeolum
majus flowers in captivity

[166]

Erebidae
Seirarctia echo (Smith, 1797) Zamia integrifolia Sabal palmetto, Diospyros spp.*,

Quercus spp., Croton spp.,
Lupinus spp., many other
woody plants, lettuce

[54, 168]

Cosmopterigidae
Anatrachyntis Meyrick, 1915

A. badia (Hodges, 1962) Zamia integrifolia, Cycas revoluta, C.
circinalis

Dozens of species, including
both angiosperms and
gymnosperms

[60, 61, 169]

A. sp Cycas micronesica Unknown [55, 62, 63]

Tineidae
Dasyses rugosella (Stainton, 1859) Cycas micronesica Dozens of plant species,

mushrooms
[55, 59]

Erechthias sp. Cycas micronesica Unknown [55]

Blastobasidae
Undetermined Zamia pumila Unknown [64]
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Eumaeus atala

Sierarctia echo

Zerenopsis lepida

Figure 1. Examples of aposematism among cycadivorous Lepidoptera. Photo credits from top to
bottom: Shayla Salzman, Hermann Staude, William Tang.
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Theclin
esthes (1

/6)

Sierarctia (1/1)

Zerenopsis (8/8) 
Callioratis (6/6)
Veniliodes (3/3) 

Eumaeus (6
/6)

Undet. Blastobasidae (1/>250)

Anatrachyntis (2/>50)
Erechthias (1/>150)

Dasyses (1/8)

Taenaris (2/25)

Warning ColorationCone feeding Leaf feeding Dead tissue feeding

Luthrodes (3
/8)    

  ?  

Figure 2. Phylogenetic placement of cycadivorous Lepidoptera. Genera containing cycadivorous
species are shown by red tips, with the butterfly clade in black and moths in grey. Warning coloration is
indicated symbolically, along with the feeding guild and whether a species is facultatively or obligately
cycadivorous (black and green, respectively). The number of cycadivorous species and the total number
of species in the genus are given in parentheses.
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Cycas

Dioon

Bowenia

Macrozamia

Encephalartos

Lepidozamia

Ceratozamia

Stangeria

Zamia

Microcycas

(117)

(16)

(2)

(41)

(65)

(2)

(30)

(1)

(1)

(81)

Figure 3. Cycad genera used as Lepidopteran host plants. Cycad phylogenetic tree from Salzman et
al. [170]. Number of species in each plant genus is given in parentheses. Each lepidopteran genus is
represented by one individual.
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