REFERENCES
1. ACOG Practice Bulletin No. 144: Multifetal gestations: twin, triplet, and higher-order multifetal pregnancies. Obstet Gynecol 2014, 123(5):1118-1132.
2. Hiersch L, Barrett J, Aviram A, Mei-Dan E, Yoon EW, Zaltz A, Kingdom J, Melamed N: Patterns of discordant growth and adverse neonatal outcomes in twins. Am J Obstet Gynecol 2021, 225(2):187.e181-187.e114.
3. D’Antonio F, Odibo AO, Prefumo F, Khalil A, Buca D, Flacco ME, Liberati M, Manzoli L, Acharya G: Weight discordance and perinatal mortality in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018, 52(1):11-23.
4. Vedel C, Oldenburg A, Worda K, Larsen H, Holmskov A, Andreasen KR, Uldbjerg N, Ramb J, Bødker B, Skibsted L et al: Short- and long-term perinatal outcome in twin pregnancies affected by weight discordance. Acta Obstet Gynecol Scand 2017, 96(2):233-242.
5. Poulsen P, Wojtaszewski JF, Richter EA, Beck-Nielsen H, Vaag A: Low birth weight and zygosity status is associated with defective muscle glycogen and glycogen synthase regulation in elderly twins. Diabetes 2007, 56(11):2710-2714.
6. Nikolajev K, Koskela H, Korppi M: Birth weight and adult lung function: a within-pair analysis of twins followed up from birth. World J Pediatr 2008, 4(3):222-226.
7. Antoniou EE, Fowler T, Thiery E, Southwood TR, van Gestel S, Jacobs N, Vlietinck R, van Os J, Rijsdijk FV, Derom C et al: Intrauterine environment and cognitive development in young twins. J Dev Orig Health Dis 2013, 4(6):513-521.
8. Mazaki-Tovi S, Kanety H, Pariente C, Hemi R, Yinon Y, Wiser A, Schiff E, Sivan E: Adiponectin and leptin concentrations in dichorionic twins with discordant and concordant growth. J Clin Endocrinol Metab 2009, 94(3):892-898.
9. Schulte S, Schreiner F, Plamper M, Kasner C, Gruenewald M, Bartmann P, Fimmers R, Hartmann MF, Wudy SA, Stoffel-Wagner B et al: Influence of Prenatal Environment on Androgen Steroid Metabolism In Monozygotic Twins With Birthweight Differences. J Clin Endocrinol Metab 2020, 105(10).
10. Cosmi E, Visentin S, Favretto D, Tucci M, Ragazzi E, Viel G, Ferrara SD: Selective intrauterine growth restriction in monochorionic twin pregnancies: markers of endothelial damage and metabolomic profile. Twin Res Hum Genet 2013, 16(4):816-826.
11. Wang L, Han TL, Luo X, Li S, Young T, Chen C, Wen L, Xu P, Zheng Y, Saffery R et al: Metabolic Biomarkers of Monochorionic Twins Complicated With Selective Intrauterine Growth Restriction in Cord Plasma and Placental Tissue. Sci Rep 2018, 8(1):15914.
12. Yang J, Hou L, Wang J, Xiao L, Zhang J, Yin N, Yao S, Cheng K, Zhang W, Shi Z et al: Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut 2022, 71(12):2451-2462.
13. Jones B, Han TL, Delplancke T, McKenzie EJ, de Seymour JV, Chua MC, Tan KH, Baker PN: Association between maternal exposure to phthalates and lower language ability in offspring derived from hair metabolome analysis. Sci Rep 2018, 8(1):6745.
14. Yang J, Wei Y, Qi H, Yin N, Yang Y, Li Z, Xu L, Wang X, Yuan P, Li L et al: Neonatal hair profiling reveals a metabolic phenotype of monochorionic twins with selective intrauterine growth restriction and abnormal umbilical artery flow. Mol Med 2020, 26(1):37.
15. Khalil A, Beune I, Hecher K, Wynia K, Ganzevoort W, Reed K, Lewi L, Oepkes D, Gratacos E, Thilaganathan B et al: Consensus definition and essential reporting parameters of selective fetal growth restriction in twin pregnancy: a Delphi procedure. Ultrasound Obstet Gynecol 2019, 53(1):47-54.
16. Sulek K, Han TL, Villas-Boas SG, Wishart DS, Soh SE, Kwek K, Gluckman PD, Chong YS, Kenny LC, Baker PN: Hair metabolomics: identification of fetal compromise provides proof of concept for biomarker discovery. Theranostics 2014, 4(9):953-959.
17. Smart KF, Aggio RB, Van Houtte JR, Villas-Bôas SG: Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat Protoc 2010, 5(10):1709-1729.
18. Paul BD, Sbodio JI, Snyder SH: Cysteine Metabolism in Neuronal Redox Homeostasis. Trends Pharmacol Sci 2018, 39(5):513-524.
19. Vacek TP, Vacek JC, Tyagi N, Tyagi SC: Autophagy and heart failure: a possible role for homocysteine. Cell Biochem Biophys 2012, 62(1):1-11.
20. Zhang GL, He ZM, Shi XM, Gou CY, Gao Y, Fang Q: Discordant HIF1A mRNA levels and oxidative stress in placental shares of monochorionic twins with selective intra-uterine growth restriction. Placenta 2015, 36(3):297-303.
21. Wu J, He Z, Gao Y, Zhang G, Huang X, Fang Q: Placental NFE2L2 is discordantly activated in monochorionic twins with selective intrauterine growth restriction and possibly regulated by hypoxia. Free Radic Res 2017, 51(4):351-359.
22. Lane SL, Dodson RB, Doyle AS, Park H, Rathi H, Matarrazo CJ, Moore LG, Lorca RA, Wolfson GH, Julian CG: Pharmacological activation of peroxisome proliferator-activated receptor γ (PPAR-γ) protects against hypoxia-associated fetal growth restriction. Faseb j 2019, 33(8):8999-9007.
23. Pogorelova TN, Gunko VO, Avrutskaya VV, Kaushanskaya LV, Durnitsyna OA: [Impairments of placental amino acid metabolism in fetal growth restriction]. Biomed Khim 2017, 63(3):266-271.
24. Nagpure BV, Bian JS: Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases. Handb Exp Pharmacol 2015, 230:193-215.
25. Xin D, Chu X, Bai X, Ma W, Yuan H, Qiu J, Liu C, Li T, Zhou X, Chen W et al: l-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via H(2)S formation. Brain Behav Immun 2018, 73:222-234.
26. Rees WD: Manipulating the sulfur amino acid content of the early diet and its implications for long-term health. Proc Nutr Soc 2002, 61(1):71-77.
27. Terpstra M, Rao R, Tkac I: Region-specific changes in ascorbate concentration during rat brain development quantified by in vivo (1)H NMR spectroscopy. NMR Biomed 2010, 23(9):1038-1043.
28. Barth A, Bauer R, Gedrange T, Walter B, Klinger W, Zwiener U: Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth-restricted newborn piglets. Exp Toxicol Pathol 1998, 50(4-6):402-410.
29. Ignowski E, Winter AN, Duval N, Fleming H, Wallace T, Manning E, Koza L, Huber K, Serkova NJ, Linseman DA: The cysteine-rich whey protein supplement, Immunocal®, preserves brain glutathione and improves cognitive, motor, and histopathological indices of traumatic brain injury in a mouse model of controlled cortical impact. Free Radic Biol Med 2018, 124:328-341.
30. Barth A, Bauer R, Klinger W, Zwiener U: Peroxidative status and glutathione content of the brain in normal weight and intra-uterine growth-retarded newborn piglets. Exp Toxicol Pathol 1994, 45(8):519-524.
31. Reid MV, Murray KA, Marsh ED, Golden JA, Simmons RA, Grinspan JB: Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 2012, 71(7):640-653.
32. Maliszewski-Hall AM, Alexander M, Tkáč I, Öz G, Rao R: Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain. Neurochem Res 2017, 42(1):133-140.
33. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL: Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 2017, 546(7658):381-386.
34. Alexander DC, Corman T, Mendoza M, Glass A, Belity T, Wu R, Campbell RR, Han J, Keiser AA, Winkler J et al: Targeting acetyl-CoA metabolism attenuates the formation of fear memories through reduced activity-dependent histone acetylation. Proc Natl Acad Sci U S A 2022, 119(32):e2114758119.
35. Ibba M, Soll D: Aminoacyl-tRNA synthesis. Annu Rev Biochem 2000, 69:617-650.
36. Sivakumar K, Kyriakides T, Puls I, Nicholson GA, Funalot B, Antonellis A, Sambuughin N, Christodoulou K, Beggs JL, Zamba-Papanicolaou E et al: Phenotypic spectrum of disorders associated with glycyl-tRNA synthetase mutations. Brain 2005, 128(Pt 10):2304-2314.
37. Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V et al: Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 2006, 38(2):197-202.
38. Konovalova S, Tyynismaa H: Mitochondrial aminoacyl-tRNA synthetases in human disease. Mol Genet Metab 2013, 108(4):206-211.
39. Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, Antonellis A, Jordanova A, Scherer SS: A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 2015, 84(20):2040-2047.
40. Fuchs SA, Schene IF, Kok G, Jansen JM, Nikkels PGJ, van Gassen KLI, Terheggen-Lagro SWJ, van der Crabben SN, Hoeks SE, Niers LEM et al: Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet Med 2019, 21(2):319-330.
41. Lee DY: Roles of mTOR Signaling in Brain Development. Exp Neurobiol 2015, 24(3):177-185.
42. Wahane SD, Hellbach N, Prentzell MT, Weise SC, Vezzali R, Kreutz C, Timmer J, Krieglstein K, Thedieck K, Vogel T: PI3K-p110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC2. J Neurochem 2014, 130(2):255-267.
43. Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S, Goldman SA, Zlokovic BV et al: Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell 2016, 19(5):663-671.
44. Stiles J, Jernigan TL: The basics of brain development. Neuropsychol Rev 2010, 20(4):327-348.
45. Souza R, Miranda C, Dos Santos LC: Maternal vitamin B(3) and C intake in pregnancy influence birth weight at term. Nutrition 2021, 91-92:111444.
46. Li F, Fushima T, Oyanagi G, Townley-Tilson HW, Sato E, Nakada H, Oe Y, Hagaman JR, Wilder J, Li M et al: Nicotinamide benefits both mothers and pups in two contrasting mouse models of preeclampsia. Proc Natl Acad Sci U S A 2016, 113(47):13450-13455.
47. Ear PH, Chadda A, Gumusoglu SB, Schmidt MS, Vogeler S, Malicoat J, Kadel J, Moore MM, Migaud ME, Stevens HE et al: Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring. Cell Rep 2019, 26(4):969-983.e964.
48. Griffin SM, Pickard MR, Orme RP, Hawkins CP, Williams AC, Fricker RA: Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations. PLoS One 2017, 12(8):e0183358.
49. Griffin SM, Pickard MR, Hawkins CP, Williams AC, Fricker RA: Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells. PLoS One 2020, 15(9):e0233477.